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Abstract. Trapdoor Decisional Diffie-Hellman (TDDH) groups, intro-
duced by Dent and Galbraith (ANTS 2006), are groups where the DDH
problem is hard, unless one is in possession of a secret trapdoor which en-
ables solving it efficiently. Despite their intuitively appealing properties,
they have found up to now very few cryptographic applications. More-
over, among the two constructions of such groups proposed by Dent and
Galbraith, only a single one based on hidden pairings remains unbroken.
In this paper, we extend the set of trapdoor DDH groups by giving a
construction based on composite residuosity. We also introduce a more
restrictive variant of these groups that we name static trapdoor DDH
groups, where the trapdoor only enables to solve the DDH problem with
respect to a fixed pair (G, Gx) of group elements. We give two construc-
tions for such groups whose security relies respectively on the RSA and
the factoring assumptions. Then, we show that static trapdoor DDH
groups yield elementary constructions of convertible undeniable signa-
ture schemes allowing delegatable verification. Using our constructions of
static trapdoor DDH groups from the RSA or the factoring assumption,
we obtain slightly simpler variants of the undeniable signature schemes
of respectively Gennaro, Rabin, and Krawczyk (J. Cryptology, 2000) and
Galbraith and Mao (CT-RSA 2003). These new schemes are conceptually
more satisfying since they can strictly be viewed as instantiations, in an
adequate group, of the original undeniable signature scheme of Chaum
and van Antwerpen (CRYPTO ’89).

1 Introduction

The CDH and DDH Problems. Given a group G and an element G ∈ G

of large order, the Computational Diffie-Hellman (CDH) problem is to com-
pute Gxy, given Gx and Gy for random integers x, y. The Decisional Diffie-
Hellman (DDH) problem is to distinguish the two distributions (Gx, Gy, Gxy)
and (Gx, Gy, Gz) for random and independent integers x, y, z. Usually, when
considering the status of various groups with respect to the CDH and DDH
problems, one of the following two cases arises: either the CDH and DDH prob-
lems are both presumably hard (this is the case for example for subgroups of
large prime order of Z∗

p, p prime), or the group is a so-called gap group: the
CDH problem is (presumably) hard while the DDH problem is universally easy
(i.e. easy given only the description of the group law, which seems to be the
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minimal publicly available information to obtain useful applications). The lat-
ter case typically arises in certain elliptic curve groups equipped with bilinear
pairings [35,22], and has given rise to many important applications in cryptog-
raphy [32,3,4].

Trapdoor DDH Groups. Trapdoor DDH groups (TDDH groups for short),
introduced by Dent and Galbraith [18], lie somewhere between the above two
cases. These are groups where the DDH problem is hard, except if one possesses
a trapdoor for solving it efficiently. Dent and Galbraith gave two candidates for
such groups based on the concept of hidden pairings, one in elliptic curves over
the ring ZN , where N is hard to factor, and the other one based on Frey’s idea of
disguising an elliptic curve [21]. Subsequently, the second proposal was broken by
Morales [38]. Since the DDH problem is the basis of so many cryptosystems [2],
the concept of trapdoor DDH groups is very attractive. Indeed, it should enable
to control more precisely who is able to solve the DDH problem in a system.
This may help in situations where there is a conflict between security, which
requires a group where the DDH problem is hard, and some interesting additional
functionalities that could be achieved thanks to an algorithm for solving the DDH
problem. One example that comes to mind is threshold ElGamal encryption. In
threshold ElGamal encryption [19], given a secret/public key pair (x, X = Gx),
each decryption server is given a share xi of the secret key, to which is associated
a “partial” public key Gxi . In order to decrypt a ciphertext (R, Y ) = (Gr, MXr),
each server participating to decryption must compute a decryption share Si =
Rxi . Hence, checking whether a decryption share from a server is correct or
not amounts to deciding whether (Xi, R, Si) is a DDH tuple or not. Yet IND-
CPA-security of ElGamal encryption is equivalent to the hardness of the DDH
problem in the underlying group G [46]. Hence, there seems to be no other choice
than using a group where the DDH problem is hard, thereby condemning other
participants to be unable to distinguish correct decryption shares from incorrect
ones. We do not claim that TDDH groups are the best way to solve this problem
(this can be more easily achieved by having each server provide a non-interactive
zero-knowledge proof that his decryption share is correctly computed), and this
example only serves to argue that sometimes, one may want that only some
authorized party be able to solve the DDH problem. Despite these considerations,
TDDH groups have found up to now very few cryptographic applications. In
their original paper, Dent and Galbraith gave only one example, namely an
identification scheme. To the best of our knowledge, the only previous paper
proposing a non-trivial application of TDDH groups (namely the construction of
statistically hiding sets, a variant of zero-knowledge sets) is due to Prabhakaran
and Xue [43].

Contributions of This Work. The contributions of this paper can be sum-
marized as follows. First, at a conceptual level, we refine the definition of TDDH
groups of Dent and Galbraith by requiring that the CDH problem remain hard
even given the trapdoor for solving the DDH problem. This was not made explicit
in the formalization by Dent and Galbraith, yet we think that this is probably
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a key feature for many interesting applications, such as undeniable signatures
for example. We also broaden the set of constructions of trapdoor DDH groups.
We propose a new construction based on composite residuosity in Z∗

N2 (simi-
lar considerations have been made by [6], albeit not in the formalism of TDDH
groups), and identify under which hardness assumptions this group satisfies our
definition. A drawback of this construction is that it lacks what we call per-
fect soundness, meaning that the algorithm solving the DDH problem with the
trapdoor can sometimes err and declare valid a non-DH tuple.

Then, we introduce a variant of trapdoor DDH groups that we name static
trapdoor DDH groups. Their definition is very similar to the one of trapdoor
DDH groups, except that the trapdoor for solving the DDH problem is now
dedicated to a specific pair of group elements (G, Gx), hence the name static.
We then show that such groups can be easily constructed from the RSA and the
factoring problems. This concept abstracts some of the ideas underlying the work
of Hofheinz and Kiltz [31], who showed that the Strong Diffie-Hellman (SDH)
problem (i.e. solving the CDH problem given access to a static DDH oracle)
is hard in the so-called group of signed quadratic residues under the factoring
assumption.

Finally, we describe a very natural application of (static or not) TDDH groups
to convertible undeniable signature schemes. Namely, the construction we pro-
pose is exactly the original undeniable signature scheme proposed by Chaum and
van Antwerpen [12] (for which deciding the validity of a signature is equivalent
to solving the DDH problem), but in a TDDH group rather than simply a group
where the DDH problem is hard. The trapdoor for solving the DDH problem can
then be used to universally convert or delegate verification of signatures. Once
instantiated with our proposals of static TDDH groups based on the RSA or the
factoring problems, we obtain schemes similar to previous RSA-based undeni-
able signature schemes due to Gennaro, Rabin, and Krawczyk [26] and Galbraith
and Mao [23]. However, these new schemes are conceptually simpler and easier
to analyze. Moreover, since they are strict instantiations of the Chaum and van
Antwerpen scheme, their confirmation and disavowal protocols can use classical
proofs of equality or inequality of discrete logarithms, which are simpler and
more efficient than what was proposed previously for the schemes of [26,23].

Open Problems. Two key features of TDDH groups are perfect soundness (the
property that the algorithm for solving the DDH problem with the trapdoor
perfectly distinguishes DH tuples from non-DH tuples), and the possibility to
securely hash into the group (see discussion in Section 2.3). However, none of the
two candidates for TDDH groups (the hidden pairing based proposal of [18], and
our proposal in Section 3.2) fulfills both requirements. We think that providing
a plausible candidate possessing both properties is the key to enable powerful
applications of TDDH groups.1 A related open problem is whether there exists a
(plausible construction of a) TDDH group with publicly known (ideally prime)
order, since they are usually simpler to use in cryptography.
1 Our examples of static TDDH groups do fulfill both requirement, however non-static

TDDH groups would allow more flexibility in cryptographic applications.
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Organization. In Section 2 we give some basic definitions and introduce some
of the tools we will need in the remainder of the paper. In Section 3, we define
trapdoor DDH groups, and give a construction based on composite residuosity.
In Section 4, we introduce static trapdoor DDH groups, and give two construc-
tions based on respectively the RSA and the factoring assumptions. Finally,
in Section 5, we show how to obtain convertible undeniable signature schemes
from static TDDH groups, and discuss their instantiation with the constructions
described previously.

2 Preliminaries

2.1 Notation and Definitions

The set of integers i such that a ≤ i ≤ b will be denoted [a; b]. The security
parameter will be denoted k. A function f of the security parameter is said
negligible if for any c > 0, f(k) ≤ 1/kc for sufficiently large k. When S is a non-
empty finite set, we write s ←$ S to mean that a value is sampled uniformly
at random from S and assigned to s. By z ← AO1,O2,...(x, y, . . .) we denote the
operation of running the (possibly probabilistic) algorithm A on inputs x, y, . . .
with access to oracles O1, O2, . . . (possibly none), and letting z be the output.
PPT will stand for probabilistic polynomial-time. Given two Interactive Turing
Machines P and V , we denote w ← 〈P(x), V(y)〉(z) to mean that the output of
the interaction of P with private input x and V with private input y on common
input z is w.

Given an integer N , the multiplicative group of integers modulo N is denoted
Z∗

N . This group has order φ(N) where φ(·) is the Euler function and exponent
λ(N) where λ(·) is the Carmichael function. We denote JN the subgroup of Z∗

N

of all elements x ∈ Z∗
N with Jacobi symbol

(
x
N

)
= 1. This subgroup has index 2

and order φ(N)/2 in Z∗
N . Moreover it is efficiently recognizable even without the

factorization of N since the Jacobi symbol is efficiently computable given only N .
We also denote QRN the subgroup of quadratic residues of Z∗

N . This subgroup
is widely believed not to be efficiently recognizable when N is composite and
its factorization is unknown (this is the Quadratic Residuosity assumption). We
call a prime number p such that (p − 1)/2 is prime a safe prime.

In all the following, given a group G, we use the notation [G] to denote a
description of the group, i.e. an efficient algorithm for computing the group
operation. This notation always implies that G is efficiently recognizable. We
assume that it is always possible to derive from the description of the group
a negligibly close upper bound on the order |G| of the group (in some cases
the exact order may be efficiently computable), and we use the notation |G|+
to denote this upper bound.2 Given an element G ∈ G, we denote ord(G) its
order, 〈G〉 the group generated by G, DlogG(X) the discrete logarithm in base

2 E.g. when G = Z
∗
p for some prime number p, |G|+ = p − 1, while when G = Z

∗
N ,

where the factorization of N is secret, |G|+ = N .
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G of an element X ∈ 〈G〉, and CDHG(X, Y ) = GDlogG(X)DlogG(Y ). We also denote
DHG ⊂ 〈G〉3 the set of Diffie-Hellman (DH) tuples with respect to G:

DHG = {(Gx, Gy, Gxy), x, y ∈ [0; ord(G) − 1]} .

A group generator Gen is a PPT algorithm which on input a security parameter
1k, outputs a tuple ([G], G, γ) where [G] is the description of a group G, G ∈ G

is an element of order 2Θ(k), and γ is some arbitrary side information. We say
that the CDH problem is hard for Gen if for any PPT adversary A, the following
probability is negligible:

Pr
[
([G], G, γ) ← Gen(1k), (X, Y ) ←$ 〈G〉2, Z ← A([G], G, γ; X, Y ) :

Z = CDHG(X, Y )
]

.

We say that the DDH problem is hard for Gen if for any PPT adversary A, the
following advantage is negligible:

∣
∣
∣ Pr

[
([G], G, γ) ← Gen(1k), (X, Y ) ←$ 〈G〉2, Z ← CDHG(X, Y ) :

1 ← A([G], G, γ; X, Y, Z)
]

− Pr
[
([G], G, γ) ← Gen(1k), (X, Y, Z) ←$ 〈G〉3 :

1 ← A([G], G, γ; X, Y, Z)
]∣∣
∣ .

2.2 Proofs of Equality and Inequality of Discrete Logarithms

Protocols for proving, given (G, X, Y, Z) ∈ G, the equality of discrete logarithms
(EDL) DlogG(X) = DlogY (Z) or the inequality of discrete logarithms (IDL)
constitute (among many other applications) the heart of respectively the con-
firmation and disavowal protocols for many undeniable signature schemes, and
have therefore been the subject of many works. They vary depending on the exact
kind of zero-knowledge property one wants to achieve. The basic honest-verifier
zero-knowledge (HVZK) proof of EDL is due to Chaum and Pedersen [11], while
the simplest HVZK proof of IDL is due to Camenish and Shoup [9]. These pro-
tocols are usually described for ambient groups G with publicly known prime
order, in which case recognizing 〈G〉 is trivial, so that these protocols are actu-
ally proofs that a tuple (X, Y, Z) ∈ G3 is in DHG or not. They can be adapted
to the case where the order of the ambient group is composite and secret using
well-known techniques [27,28], with the caveat that if 〈G〉 is not efficiently rec-
ognizable, the verifier must be promised that X, Y, Z ∈ 〈G〉 since these proofs
do not in general ensure membership of X, Y, Z in 〈G〉 with negligible sound-
ness.3 Stated differently, if G′ is a cyclic and efficiently recognizable subgroup
of G (e.g. G = Z∗

N and G′ = JN when JN is cyclic), these protocols are ac-
tually proofs that a tuple (X, Y, Z) ∈ G′ is a DH tuple with respect to G or
not, assuming that the verifier is guaranteed that G is indeed a generator of
3 The soundness of the Schnorr protocol [44], seen as a proof of membership in 〈G〉,

is 1/�, where � is the smallest prime factor of the order of the ambient group G.
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G′ (which may not be efficiently checkable). The HVZK protocols for EDL and
IDL are described in the full version of the paper [45]. They can be strengthen
to achieve various notions of zero-knowledge (against cheating verifiers) using
known techniques [29,14,16,25] that we do not discuss in this paper.

The HVZK proofs of EDL and IDL can be made non-interactive in the Ran-
dom Oracle Model using the Fiat-Shamir transformation [20], i.e. by having the
prover compute the challenge (first message from the verifier) by itself by ap-
plying a hash function to the commitment (first message from the prover). Note
that these proofs then become universally convincing.

2.3 Hashing into Groups

For many applications (and in particular for undeniable signatures based on the
Chaum and van Antwerpen scheme [12]), it is required to securely hash into
the subgroup 〈G〉 specified by the group generator Gen. We discuss this in more
details in the full version of the paper [45].

3 Trapdoor DDH Groups

We start by defining trapdoor DDH groups. Our definition is a refinement of
the one of Dent and Galbraith [18] in that we explicitly require that the CDH
problem remain hard even given the trapdoor τ enabling to solve the DDH
problem.

3.1 Definition

Definition 1. A trapdoor DDH group T DDH is a pair of algorithms
(Gen, Solve) with the following properties. The trapdoor DDH group generator
algorithm Gen is a PPT algorithm which takes as input a security parameter 1k

and outputs a tuple ([G], G, τ) where [G] is the description of a group G, G ∈ G

is a group element of order 2Θ(k), and τ is a trapdoor information, such that:

i) hardness of DDH without the trapdoor: the DDH problem is hard for the
group generator Gen′ which outputs only ([G], G);

ii) hardness of CDH with the trapdoor: the CDH problem is hard for Gen.

Solve is a deterministic polynomial-time algorithm which takes as input
([G], G, τ) and a tuple (X, Y, Z) ∈ G3, either accepts (outputs 1) or rejects (out-
puts 0), and satisfies the following:

iii) completeness: for all ([G], G, τ) possibly output by Gen, Solve always accepts
on input a DH tuple (X, Y, Z) ∈ DHG;

iv) soundness: for any PPT adversary A, the following probability is negligible:

Pr
[
([G], G, τ) ← Gen(1k), (X, Y ) ←$ 〈G〉2, Z ← A([G], G; X, Y ) :

1 ← Solve([G], G, τ ; X, Y, Z) ∧ (X, Y, Z) /∈ DHG

]
.
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We say that T DDH has perfect soundness when Solve always rejects on input
a non-DH tuple (X, Y, Z), so that the above probability is zero.

Note that the soundness condition implies in particular that Solve, on input a
uniformly random tuple (X, Y, Z) ∈ G3, accepts only with negligible probability.
We silently assumed in the above definition that Solve is always run with a
correctly generated trapdoor. This is safe for all examples presented below since
there is an efficient way, given ([G], G, τ), to check whether the trapdoor is
correct. We assume that Solve outputs a special symbol ⊥ when this is not the
case. We recall the original proposal of a TDDH group based on hidden pairings
by Dent and Galbraith [18] in the full version of the paper [45].

3.2 A TDDH Group Based on Composite Residuosity

In this section, we describe a TDDH group T DDHBCP based on the group of
quadratic residues modulo N2, where N is an RSA modulus. This group was
first considered by Bresson, Catalano, and Pointcheval [6], who noticed that
when the factorization of N is publicly available, this constitutes a gap group,
i.e. a group where the CDH problem is hard and the DDH problem is easy. Here,
we show that it constitutes in fact a TDDH group when the factorization of N
is kept secret and used as the trapdoor.

We first recall some basic facts about the group of quadratic residues modulo
N2, where N is an RSA modulus. Let p, q be two safe primes where p = 2p′ + 1
and q = 2q′ + 1 (p′ and q′ primes), and N = pq. The group QRN2 of quadratic
residues modulo N2 is a cyclic group of order m = Np′q′. We define the notion
of partial discrete logarithm.

Definition 2 (Partial Discrete Logarithm). Given a generator G of QRN2 ,
the partial discrete logarithm of a group element X ∈ QRN2 is defined as
PDlogG(X) = DlogG(X) mod N .

Computing the partial discrete logarithm is believed to be hard without the
factorization of N .4 However, it can be efficiently computed given the prime
factors of N (or simply λ(N)) as follows [42]:

1. input: N , λ(N), generator G of QRN2 and X ∈ QRN2 ; output: PDlogG(X)
2. for integers u ∈ [0; N2 − 1] such that u = 1 mod N , define the function

(having integer values) L(u) = (u − 1)/N
3. return

L(Xλ(N) mod N2)
L(Gλ(N) mod N2)

mod N .

We now formally describe the TDDH group T DDHBCP. On input the security
parameter 1k, GenBCP selects two k-bit safe primes p = 2p′ + 1 and q = 2q′ + 1,
4 As noted by Paillier [42] and in [6], the Partial Discrete Logarithm problem can be

shown equivalent to the Composite Residuosity Class problem in the particular case
considered here.
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sets N = pq, selects a random generator G of QRN2 , and outputs ([Z∗
N2 ], G, τ =

(p, q)). The SolveBCP algorithm works as follows: on input a tuple (X, Y, Z) ∈
(Z∗

N2 )3 (as well as the trapdoor τ = (p, q)), it checks whether X, Y, Z ∈ QRN2 ,
computes x′ = PDlogG(X), y′ = PDlogG(Y ), and z′ = PDlogG(Z) as described
above, and checks whether z′ = x′y′ mod N . It accepts if this holds and rejects
otherwise. The security of this TDDH group relies on a “partial” version of the
CDH problem, defined as follows.

Definition 3 (Partial CDH Problem). We say that the Partial CDH prob-
lem is hard if for any PPT algorithm A, the following probability is negligible:

Pr[([Z∗
N2 ], G, τ) ← GenBCP(1k), (X, Y ) ←$ 〈G〉2, Z ← A([Z∗

N2 ], G; X, Y ) :
DlogG(Z) ≡ DlogG(X)DlogG(Y ) mod N ] .

Theorem 1. Assuming that the DDH problem (without the factorization of N),
the CDH problem (with the factorization of N), and the Partial CDH problem
(without the factorization of N) are hard for QRN2 , T DDHBCP is a trapdoor
DDH group.

Proof. We prove that properties i) to iv) of Definition 1 are satisfied. Proper-
ties i) and ii) follow directly from the assumptions that respectively the DDH
(without the factorization of N) and the CDH (with the factorization of N)
problems are hard in QRN2 . Property iii) is straightforward to verify by defini-
tion of SolveBCP. Finally, property iv) follows from the hardness of the Partial
CDH problem. ��

Note that this TDDH group does not have perfect soundness. In particular, on
input a random tuple (X, Y, Z) ∈ (QRN2 )3, there is a negligible probability that
SolveBCP accepts and yet (X, Y, Z) /∈ DHG (this probability can easily be seen
to be O(1/N) [6]). Moreover, given the trapdoor τ = (p, q), and two random
elements (X, Y ) ∈ (QRN2 )2, it is easy to generate Z such that (X, Y, Z) /∈ DHG

and yet SolveBCP accepts on input (X, Y, Z): simply compute x′ = PDlogG(X)
and y′ = PDlogG(Y ) and output Gx′y′ mod N . Alternatively, given two random
elements (X, Y ) ∈ (QRN2)2 and Z = CDHG(X, Y ), it is easy to compute Z ′ = Z
such that SolveBCP accepts on input (X, Y, Z ′): simply compute Z ′ = ZUN

for some random U ∈ QRN2 . This may be of concern in some applications,
especially for undeniable signature schemes where Solve is typically used to
check the validity of signatures (see Section 5).5

4 Static Trapdoor DDH Groups

In this section, we define and construct static trapdoor DDH groups. They are
similar to trapdoor DDH groups as defined in Section 3, except that the trapdoor
only allows to solve the DDH problem with respect to a specific pair of group
elements (G, Gx).
5 We note however that imperfect soundness is not a problem for the identification

scheme outlined in [18].
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4.1 Definition

Definition 4. A static trapdoor DDH group ST DDH is a tuple of algorithms
(Gen, Samp, Solve) with the following properties. The static trapdoor DDH group
generator algorithm Gen is a PPT algorithm which takes as input a security
parameter 1k and outputs a tuple ([G], G, τ) where [G] is the description of a
group G, G ∈ G is a group element of order 2Θ(k), and τ is a (master) trapdoor
information, such that:

i) hardness of DDH without the trapdoor: the DDH problem is hard for the
group generator Gen′ which outputs only ([G], G).

Samp is a PPT algorithm which on input ([G], G, τ), samples uniformly at ran-
dom a group element X ←$ 〈G〉, and outputs6 (X, x, τx) where x = DlogG(X)
and τx is a (static) trapdoor information, such that:

ii) hardness of CDH with the static trapdoor: for any PPT algorithm A, the
following probability is negligible:

Pr
[
([G], G, τ) ← Gen(1k), (X, x, τx) ← Samp([G], G, τ), Y ←$ 〈G〉,

Z ← A([G], G; X, Y ; τx) : Z = CDHG(X, Y )
]

.

Solve is a deterministic polynomial-time algorithm which takes as input ([G], G),
a tuple (X, Y, Z) ∈ 〈G〉 ×G2, and the trapdoor τx for X, either accepts (outputs
1) or rejects (outputs 0), and satisfies the following:

iii) completeness: for all ([G], G, τ) and (X, x, τx) possibly output by Gen and
Samp, and any (Y, Z) ∈ G2, Solve always accepts when (X, Y, Z) ∈ DHG;

iv) soundness: for any PPT adversary A, the following probability is negligible:

Pr
[
([G], G, τ) ← Gen(1k), (X, x, τx) ← Samp([G], G, τ), Y ←$ 〈G〉,

Z ← A([G], G; X, Y ) : 1 ← Solve([G], G; X, Y, Z; τx) ∧ (X, Y, Z) /∈ DHG

]

We say that ST DDH has perfect soundness when Solve always rejects on input
a non-DH tuple (X, Y, Z), so that the above probability is zero.

Again, we silently assumed that Solve is always run with the correct trapdoor
τx because in all examples below this can be checked efficiently. In the remain-
der of this section, we propose two constructions of static TDDH groups based
respectively on the RSA problem and the factoring problem.

4.2 A Construction Based on the RSA Problem

We first show how a static TDDH group can be obtained from the RSA problem.
Let N = pq be an RSA modulus. When (p − 1)/2 and (q − 1)/2 are coprime,
6 We stress that in typical applications, x is retained by an authorized user and is

never made available to the adversary.
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then the subgroup JN of Z∗
N is cyclic. Moreover, when p and q are distinct safe

primes, the DDH problem is widely believed to be hard in JN [2]. We define the
static TDDH group ST DDHRSA as follows. On input 1k, the group generator
GenRSA selects two k-bit safe primes p = 2p′ + 1 and q = 2q′ + 1, defines N = pq
and m = (p − 1)(q − 1)/2 = 2p′q′, selects a generator G of JN , and outputs
([JN ], G, τ = m). The SampRSA algorithm, on input ([JN ], G, m), draws a random
x ←$ Z∗

m, computes X = Gx, τx = 1/x mod m, and outputs (X, x, τx) (note
that we slightly deviate from Definition 4 here since X is not uniformly random
in 〈G〉, but the statistical distance is negligible). Algorithm SolveRSA, on input
([JN ], G; X, Y, Z; τx), first checks that X, Y, Z ∈ JN , that the trapdoor is correct
by verifying whether Xτx = G (it outputs ⊥ if this does not hold), and outputs
1 iff Zτx = Y .

Definition 5. We say that the RSA problem is hard for JN if for any PPT
adversary A, the following probability is negligible:

Pr
[
([JN ], G, m) ← GenRSA(1k), e ←$ Z

∗
m, Y ←$ JN , Z ← A([JN ], Y, e) : Ze = Y

]

Theorem 2. Assuming that the DDH problem and the RSA problem are hard
in JN (for N the product of two distinct safe primes), ST DDHRSA is a static
TDDH group with perfect soundness.

Proof. We show that properties i) to iv) of Definition 4 hold. Property i) holds
by assumption that DDH is hard for JN . We now prove property ii). Assume
that there is an adversary A breaking property ii). We construct a reduction
R that solves the RSA problem as follows. The reduction is given the product
N = pq of two safe primes, a random e coprime with m = (p−1)(q −1)/2, and a
random challenge Y ∈ JN of which it must compute the e-th root. The reduction
draws a random X ←$ JN . With overwhelming probability, X is a generator of
JN since p and q are safe primes. The reduction defines G = Xe, and runs A
on input ([JN ], G; X, Y ; e). The statistical distance between inputs (G, X, Y ) in
the simulated experiment and in the real CDH experiment defining property ii)
is negligible (the difference coming from cases where X does not generate JN).
Moreover, e is the correct trapdoor for X since G = Xe implies e = 1/x mod m,
where x = DlogG(X). Hence, A returns the correct value Z = CDHG(X, Y ) with
probability negligibly close to its advantage, in which case Z = Y x, which implies
Ze = Y , so that Z is indeed the e-th root of Y . The running time of R is similar
to the one of A and its success probability is negligibly close to the one of A.
Property iii) is clear, and ST DDHRSA has perfect soundness since by definition
of SampRSA, x is coprime to m so that Zτx = Y ⇔ Zxτx = Y x ⇔ Z = Y x. ��

4.3 A Construction Based on Signed Quadratic Residues

In this section, we describe a static TDDH group based on signed quadratic
residues, whose usefulness for cryptography was first noticed by Hofheinz and
Kiltz [31]. This can be seen as a variant of ST DDHRSA described above, whose
security relies on the factoring problem rather than the RSA problem. We first
give some definitions.
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Definition 6. Let N be an odd positive integer such that −1 ∈ JN . We denote
J

+
N the quotient group JN /{−1, 1}. We identify J

+
N with the set JN ∩[1; (N −1)/2]

equipped with the group operation ◦ defined as a ◦ b = |ab mod N |, where |x mod
N | is defined as the absolute value of x mod N when representing elements of
ZN as integers in [−(N − 1)/2; (N − 1)/2].

To be completely rigorous, the mapping which to an element {−x, x} ∈ J
+
N

associates |x| is a group isomorphism between J
+
N and (JN ∩ [1, (N − 1)/2], ◦).

Let N = pq be a Blum integer (i.e. p and q are two primes such that p ≡ q ≡
3 mod 4). Then −1 ∈ JN so that we can define J

+
N , which in this particular case

is named the group of signed quadratic residues and denoted QR
+
N .7 Its order is

φ(N)/4 = (p−1)(q−1)/4. The most interesting points to notice about this group
is that it is efficiently recognizable (since it is isomorphic to JN ∩ [1; (N − 1)/2]),
and that the squaring operation is one-to-one so that any x ∈ QR

+
N has a unique

square root in QR
+
N (more precisely, for any x ∈ QR

+
N , either x or −x mod N

is a quadratic residue mod N , and exactly one corresponding square root is in
QR

+
N ). Moreover, when (p − 1)/2 and (q − 1)/2 are coprime, then JN is cyclic

and so is QR
+
N . See [31] for proofs of these basic facts.

In the following, we restrict ourselves for simplicity to the special case where N
is the product of two distinct safe primes. This implies that N is a Blum integer,
and that (p − 1)/2 and (q − 1)/2 are coprime so that QR

+
N is cyclic. Moreover, a

uniformly random element of QR
+
N is a generator with overwhelming probability

since the number of generators of QR
+
N is φ((p − 1)(q − 1)/4) = (p − 3)(q − 3)/4.

Let G be a generator of QR
+
N , and denote m = |QR

+
N | = (p − 1)(q − 1)/4.

Let x ∈ [0; m − 1] and X = Gx. To build a trapdoor enabling to solve the
static DDH problem for (G, X), we use the following idea: the trapdoor will
be t = 2x ± m (computed over Z), i.e. the value 2x masked with the group
order m. Since computing the group order m is as hard as factoring N , t does
not reveal x. Now, given a group element Y = Gy ∈ G, t enables computing
Y t = G2xy = CDHG(X, Y )2. This enables testing whether an element Z is a
correct solution to the static CDH problem (in other words to solve the static
DDH problem) by simply checking whether Z2 = Y t. However, as we will see,
the static CDH problem remains as hard as computing square roots in QR

+
N ,

which in turn is equivalent to factoring N . For what follows, we will also make
the assumption that the DDH problem is hard in QR

+
N . The DDH problem in

QR
+
N can easily shown to be equivalent to the DDH problem in JN , which as

already pointed out is widely believed to be hard when N is the product of two
distinct safe primes [2].

We now formally define the static TDDH group ST DDHSQR. For ease of ex-
position, given an odd integer m, we define the function ξ from [0; m − 1] to
{1, 3, 5, . . . , 2m − 3, 2m − 1} as:

{
ξ(x) = 2x + m if x ∈ [0; (m − 1)/2]
ξ(x) = 2x − m if x ∈ [(m + 1)/2; m − 1] .

7 We warn that QR
+
N is not equal to QRN /{−1, 1} for the good reason that −1 /∈ QRN

when N is a Blum integer.
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ξ(x) is the unique odd integer t ∈ [1; 2m − 1] such that t = 2x ± m.
On input the security parameter 1k, GenSQR selects two k-bit safe primes p =

2p′+1 and q = 2q′+1, sets N = pq, m = p′q′, selects a generator G of the group of
signed quadratic residues QR

+
N , and outputs ([QR

+
N ], G, m). Algorithm SampSQR,

on input ([QR
+
N ], G, m), selects a random x ∈ [0; m−1], sets X = Gx, τx = ξ(x),

and outputs (X, x, τx). The algorithm SolveSQR, on input ([QR
+
N ], G; X, Y, Z; τx),

first checks that the trapdoor is correct by verifying whether Gτx = X2 (it
outputs ⊥ if this does not hold), and outputs 1 iff Y τx = Z2. We now formally
prove that this constitutes a static TDDH group under appropriate assumptions
(the proof of property ii) is reminiscent of the one of Theorem 3.2 in [31]).

Theorem 3. Under the factoring assumption (for the product of safe primes)
and the DDH assumption for QR

+
N , ST DDHSQR is a static TDDH group with

perfect soundness.

Proof. Deferred to the full version of the paper [45] for reasons of space. ��

4.4 Relation to the Strong Diffie-Hellman Problem

We note that in a static TDDH group with perfect soundness, the Strong Diffie-
Hellman (SDH) problem [1] is always hard.8 The SDH problem is to compute
CDHG(X, Y ) given X, Y ∈ 〈G〉, and being granted access to a static DDH oracle
which on input (Y ′, Z ′) ∈ G2 outputs 1 iff (X, Y ′, Z ′) ∈ DHG. Clearly, an
adversary A breaking the SDH problem can be turned into an adversary B
breaking property ii) of the static TDDH group (B can answer queries of A to
the static DDH oracle thanks to the trapdoor τx it is given as input). Applying
this observation to ST DDHSQR, we recover Theorem 3.2 of [31] which states that
SDH is hard in QR

+
N under the factoring assumption. Hence, the concept of static

TDDH group allows to cast the result of [31] in a more general framework. In
particular, Theorem 2 directly implies that under the RSA assumption, the SDH
problem is hard in JN , which complements the result of [31].9 As an immediate
consequence of the results of [1,15], we obtain that Hybrid ElGamal encryption
over JN is IND-CCA2-secure in the ROM under the RSA assumption.

5 Convertible Undeniable Signatures

5.1 Background on Undeniable Signatures

In this section, we show how TDDH groups can be used to build simple and
natural undeniable signature schemes with attractive properties such as univer-
sal convertibility and delegation. Undeniable signatures, introduced by Chaum
8 More precisely, the SDH problem is hard for the group generator which only outputs

([G], G).
9 Note that, by inspection of the proof of property ii), this result holds in fact for all

RSA moduli N such that JN is cyclic, not only the product of safe primes.
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and van Antwerpen [12], are signatures that cannot be universally verified: con-
firmation (or disavowal) of a signature requires the cooperation of the signer
(however a signer cannot deny the validity of a correct signature, hence the
name undeniable). Later, Boyar et al. [5] proposed the refined notion of convert-
ible undeniable signature (CUS) scheme, where a mechanism allows the signer to
selectively or globally transform undeniable signatures into self-authenticating
signatures. The particular scheme proposed in [5] was later broken in [36]. Sub-
sequently, schemes based on usual signatures such as ElGamal [17], Schnorr [37],
and RSA [26,24,23] were proposed.

We first recall the basic Chaum and van Antwerpen undeniable signature
scheme [12] (in its Full Domain Hash version [41,39]). Let G be a group, G′ be
a cyclic and efficiently recognizable subgroup of G, G be a (certified) generator
of G′, and H : {0, 1}∗ → G′ be a hash function (modeled as a random oracle
in security proofs). Assume the DDH problem is hard for G

′. The secret and
public keys of a user are x ∈ Z|G′|+ and X = Gx respectively. To sign a message
μ ∈ {0, 1}∗, the signer computes M = H(μ) ∈ G′, and S = Mx. The signature is
S. A signature S on μ is valid iff (X, H(μ), S) is a valid DH tuple (with respect
to G). Since we assumed that the DDH problem is hard, checking the validity
of a signature cannot be done without knowledge of x.10 Hence, the signer must
cooperate with the verifier in order to confirm or disavow a purported signature.
The confirmation protocol is a proof that (X, H(μ), S) ∈ DHG (i.e. a proof
of EDL since G is guaranteed to be a generator of G′), whereas the disavowal
protocol is a proof that (X, H(μ), S) /∈ DHG (i.e. a proof of IDL). The security
of this scheme (depending on which type of EDL and IDL proofs are used) has
been studied in [41,34,39,33].

The idea to allow efficient universal conversion of signatures is simply to use
a Chaum and van Antwerpen undeniable signature with a (static or not) TDDH
group, and to use the trapdoor to delegate the ability to verify undeniable sig-
natures and to universally convert them. In the following, we describe the con-
struction using static TDDH groups since the instantiations using constructions
of Sections 4.2 and 4.3 are particularly interesting.

5.2 Construction of a CUS scheme from a Static TDDH Group

Let ST DDH = (Gen, Samp, Solve) be a static TDDH group with perfect sound-
ness. For this part, we assume that Gen outputs a tuple ([G], G, τ) such that G

is cyclic and efficiently recognizable, and G is a generator of G. This assumption
is satisfied by ST DDHRSA and ST DDHSQR. Note that there is not necessarily
an efficient way to check that G is indeed a generator; we come back on this
issue later. We construct a CUS scheme CUS as follows (see the full version of
the paper [45] for a more formal description). To construct his public/secret key
pair, the signer runs Gen(1k) to obtain ([G], G, τ) and then Samp([G], G, τ) to
10 When the DDH problem is easy in G

′, signatures can be universally verified. For
example, using bilinear groups (where a pairing can be used to solve the DDH
problem), one obtains the Boneh-Lynn-Shacham signature scheme [4].
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obtain (X, x, τx). It also selects a hash function H : {0, 1}∗ → G. The public
key of the signer is pk = ([G], G, X, H) and its secret key is sk = (x, τx). To
sign a message μ ∈ {0, 1}∗, the signer computes M = H(μ), and S = Mx. The
signature is S. The signer can confirm or disavow a signature by running a proof
of EDL or IDL respectively with the verifier. To individually convert a signature,
the signer produces a NIZK proof of EDL (using an independent hash function
HFS to apply the Fiat-Shamir transform). To universally convert signatures, the
signer releases τx as universal receipt. A signature S for message μ can then be
verified by running Solve([G], G; X, H(μ), S; τx).

Informally, the two main security properties of a CUS scheme (beside sound-
ness of the confirmation and disavowal protocols) are (see the full version of the
paper [45] for details):

– security against existential forgery under chosen-message attacks (EF-CMA-
security): any PPT attacker, given the receipt for universal verification τx,
and with access to a signing oracle, can forge a new signature with only
negligible probability (note that access to confirmation or disavowal oracles
is unnecessary here since the adversary is given the universal receipt τx for
checking signatures);

– invisibility under chosen-message attacks (INV-CMA-security): any PPT ad-
versary can distinguish a valid signature for a message of its choice from a
string sampled uniformly at random from the signature space with only neg-
ligible probability. The adversary is granted access to the signing oracle, the
confirmation and disavowal protocols, and the individual signature conver-
sion oracle (with the restriction that they cannot be queried on the challenge
message).

We stress that formalizing the invisibility notion is quite subtle (many variations
appear in the literature [13,17,8,23]), and that the exact property that is achieved
is dependent on the nature of the confirmation and disavowal protocols [39,33].
Theorem 4. When instantiated with a static TDDH group with perfect sound-
ness, and when the confirmation and disavowal protocols are zero-knowledge, the
CUS scheme described above is EF-CMA-secure and INV-CMA-secure in the
ROM (for H and HFS).
Proof. Deferred to the full version of the paper [45] for reasons of space. ��

Delegation. The ability to verify (confirm or disavow) and convert (either
individually or universally) signatures can easily be delegated to a semi-trusted
party by simply giving him the trapdoor τx. Since the CDH problem remains
hard even with the trapdoor, the third party cannot forge signatures on behalf
of the signer. It can however prove in zero-knowledge whether a signature is
valid or invalid (since it knows the witness τx for this). We avoid using the term
designated confirmer signatures [10] here since this usually refers to schemes
(mostly following the “encryption of a signature” paradigm [40,8]) where the
signer can create designated confirmer undeniable signatures without having
beforehand to transmit some secret information to the confirmer (in our case
the trapdoor τx).
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Instantiation with ST DDHRSA and ST DDHSQR. The CUS scheme de-
scribed above can be instantiated with the two static TDDH groups described
in Sections 4.2 and 4.3. The schemes obtained this way are similar respectively to
the scheme of Gennaro, Rabin, and Krawczyk [26] and Galbraith and Mao [23],
with important distinctions though. Both schemes work over Z∗

N , but without
explicitly restricting in which subgroup. As a consequence, they cannot be ex-
actly seen as an instantiation of the Chaum and van Antwerpen scheme, and
specific confirmation and disavowal protocols were therefore proposed for them
(see also [24]). On the contrary, our schemes are strict instantiations of the
Chaum and van Antwerpen scheme, and in particular the confirmation and dis-
avowal protocols can use zero-knowledge proofs of EDL and IDL derived from
the HVZK protocols described in the full version of the paper [45]. This is con-
ceptually simpler and more efficient (especially for the disavowal protocol).

Certifying Signers Public Keys. Correct key generation is of primary im-
portance in factoring-based undeniable signatures, since a cheating signer may
generate its secret/public key in a different way than the one expected by veri-
fiers, which may enable him to confirm invalid signatures or disavow valid ones
(see [24]). Hence, the signer, when registering his public key, must prove to the
certification authority (CA) that it was generated according to the specification
of the static TDDH group generator. We now discuss this issue with respect to
ST DDHRSA and ST DDHSQR. For both schemes, the signer must first prove to the
CA that its modulus N is the product of two safe primes. A zero-knowledge pro-
tocol for this was proposed by Camenish and Michels [7]. Though expensive, this
protocol must be run only once at key registration time. Then, the signer must
prove that G is indeed a generator of either JN or QR

+
N . The situation is slightly

different in the two cases. Denote N = pq with p = 2p′ +1 and q = 2q′ +1. When
p and q are safe primes, then an integer g ∈ Z∗

N such that g2 = 1 mod N and
gcd(g2 − 1, N) = 1 necessarily has order in {p′q′, 2p′q′} [26, Lemma 1]. Hence,
an ad-hoc solution for ensuring that the element G provided by the signer is
a generator of the intended group is as follows. Restrict the scheme to moduli
N such that N ≡ 1 mod 8 and fix g0 = 2 so that g0 ∈ JN . Since an element
g ∈ QR

+
N generates QR

+
N exactly when g has multiplicative order modulo N

in {p′q′, 2p′q′}, we see by the previous remark that g0 is always a generator of
QR

+
N . Hence, when using ST DDHSQR, we can impose to the signer to always use

G = g0. Things are a bit more complicated when using ST DDHRSA, since for an
element g ∈ Z∗

N with order in {p′q′, 2p′q′} to generate JN , one has to check that
it is a quadratic non-residue. What we propose for this is that the signer proves
in zero-knowledge to the CA whether g0 ∈ QRN or not [30]. If it is in QRN ,
then the signer tries with g0 + 1, g0 + 2, etc. until a quadratic non-residue in JN

is found. The signer then has to use G = g0 + i for the smallest i ≥ 0 such that
g0 + i ∈ JN \ QRN .

As a matter of fact, there seems to be no reason to instantiate the CUS
scheme with ST DDHRSA rather than ST DDHSQR since both schemes are almost
identical, except that the key registration step is simpler for ST DDHSQR.
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