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Abstract. Verifiably encrypted signatures (VES) are signatures
encrypted by a public key of a trusted third party and we can ver-
ify their validity without decryption. This paper proposes a new VES
scheme which is secure under the decisional linear (DLIN) assumption
in the standard model. We also propose new obfuscators for encrypted
signatures (ES) and encrypted VES (EVES) which are secure under the
DLIN assumption.

All previous efficient VES schemes in the standard model are either
secure under standard assumptions (such as the computational Diffie-
Hellman assumption) with large verification (or secret) keys or secure
under (non-standard) dynamic q-type assumptions (such as the q-strong
Diffie-Hellman extraction assumption) with short verification keys. Our
construction is the first efficient VES scheme with short verification (and
secret) keys secure under a standard assumption (DLIN).

As by-products of our VES scheme, we construct new obfuscators
for ES/EVES based on our new VES scheme. They are more efficient
than previous obfuscators with respect to the public key size. Previous
obfuscators for EVES are secure under non-standard assumption and use
zero-knowledge (ZK) proof systems and Fiat-Shamir heuristics to obtain
non-interactive ZK, i.e., its security is considered in the random oracle
model. Thus, our construction also has an advantage with respect to
assumptions and security models. Our new obfuscator for ES is obtained
from our new obfuscator for EVES.

Keywords: verifiably encrypted signature, obfuscation, encrypted ver-
ifiably encrypted signature, decisional linear assumption.

1 Introduction

1.1 Background

In verifiably encrypted signature (VES) schemes, there are a signer, verifiers, and
a trusted third party, called the adjudicator. The signer generates a signature,
encrypts it under the public key of the adjudicator, and adds extra contents
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to make it verifiable without decryption. The adjudicator can recover ordinary
signatures from encrypted ones by using his/her decryption key.

VES was introduced by Asokan, Shoup, and Waidner [2] and Boneh, Gentry,
Lynn, and Shacham proposed an efficient (non-interactive) VES scheme based
on Boneh-Lynn-Shacham signature scheme in the random oracle model (ROM)
[8,9]. VES has useful and important applications such as online contract signing
and optimistic fair exchange [2, 3]. Suppose a situation that a user, say Alice,
wants to buy digital goods from a company online. Alice gives the company
her VES for a contract instead of paying money and the company returns the
requested digital goods if it receive a valid VES. Alice sends an ordinary signature
as effective one to the company if she receives the goods. If a malicious company
does not return the requested goods when it receives a VES, Alice can claim that
the VES is of no use for the contract since it is encrypted. If malicious Alice does
not return a ordinary signature when she receives the goods, the company sends
the encrypted signature together with the transcript to the adjudicator and the
adjudicator extracts an ordinary signature from the VES by using the secret key
of the adjudicator and returns it to the company. The adjudicator is offline, that
is, it should be active only when malicious Alice cheats the company. As another
application, Fuchsbauer used a certain kind of VES to construct delegatable
anonymous credentials [16]. Anonymous credentials are very useful for access
control [5]. In some system with access control, users must prove to have the
required credential issued by an authority to use the system. The authority may
want to delegate its right to other entities to avoid centralization of power.

Lu, Ostrovsky, Sahai, Shacham, and Waters proposed a VES scheme which is
secure under the computational Diffie-Hellman (CDH) assumption in the stan-
dard model, but the verification key size is quite large [24]. Rückert and Schröder
proposed a VES scheme with short verification keys, but its security relies on a
non-standard q-type assumption, called q-strong DH extraction assumption [27].
They did not prove its hardness in the generic group model [28]. Thus, there is
no VES scheme that achieves constant size verification key and signature based
on standard assumptions.

Program Obfuscation and Encrypted Signature/VES. Encrypted VES (EVES) is
an extension of encrypted signature (ES) proposed by Hada [23]. ES/EVES func-
tionalities output encryption of signatures/VES. They do not encrypt messages
but signatures, and can be used as building blocks of signcryption functionali-
ties as Hada pointed out [23]. If Alice uses free web-mail services to send a mail
to Bob on low computational power devices such as smart-phones and her web
browsers do not have enough resources to sign messages and encrypt them with
Bob’s public key, then she wants web-mail providers to carry out its process
instead of her. However, she does not want to reveal her signing key. The obfus-
cation for ES/EVES will give a solution. A program obfuscator is an algorithm
which transforms a program into a completely unintelligible programwhose func-
tionality is the same as the original one [4,22]. Informally speaking, obfuscators
should guarantee that what is efficiently computed given an obfuscated program
is nothing more than what is computed given black-box access to the original
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program. If Alice gives an obfuscated program for ES/EVES functionalities, then
she can securely delegate her signing capability to web-mail providers. Moreover,
in a situation that president Alice on vacation want to have vice president Carol
sign contracts for Bob (only Alice to Bob) instead of her, Alice can give Carol
an obfuscated program for EVES functionality. In the case of the obfuscator for
ES by Hada, if a malicious party has access to Bob’s decryption key, then Alice’s
signing key is extracted from the obfuscated program [23]. However, in the case
of our obfuscator for EVES, even such a malicious party cannot extract Alice’s
key due to the existence of the adjudicator’s key. Thus, obfuscators for EVES
have useful applications.

Hada proposed a secure obfuscator for an ES functionality and its application
to signcryption [23]. His scheme is secure under the DLIN assumption in the stan-
dard model, but the verification key size is quite large. Cheng, Zhang, and Zhang
proposed a secure obfuscator for an EVES functionality at ProvSec’11 [13]. Their
VES scheme and obfuscator for EVES use zero-knowledge (ZK) proofs and Fiat-
Shamir heuristics to crash ZK proofs into non-interactive zero-knowledge (NIZK)
proofs. That is, their scheme and obfuscator are secure in the ROM. Furthermore,
they used a non-standard assumption, called exponent 3-weak DH assumption
to prove the unforgeability of their scheme and did not prove opacity (explained
in the next section), which is required for secure VES schemes, of their scheme.

In general, obfuscators for ES/EVES can be obtained from fully homomor-
phic encryption (FHE) schemes [17]. However, existing FHE schemes are still
inefficient [11,12,14,18–20,29]. so we do not rely on expensive FHE schemes but
directly construct obfuscators for ES/EVES.

1.2 Our Contributions and Constructions

We propose a new efficient VES scheme based on the decisional linear assumption
(DLIN) in the standard model. Our main advantages over previous VES schemes
are as follows:

1. It is efficient and secure under a standard (i.e., not q-type) assumption in
the standard model.

2. The verification key and signature size is small (constant).

As a by-product of ourVES scheme, we construct secure obfuscators for ES/EVES
functionality based on the DLIN assumption in the standard model. Main advan-
tages of our obfuscators for ES/EVES over previous obfuscators for ES/EVES are
as follows: They are secure under the DLIN assumption in the standard model with
short verification keys.

Comparison and Related Works. Comparisons of our results and previous results
of VES schemes and obfuscators for ES/EVES are shown in Table 1 and in Table
2, respectively. Let λ denote the security parameter. In this paper, the CDH
assumption is considered in bilinear groups. There is no efficient VES scheme
and obfuscator for ES/EVES which are secure under standard assumptions in
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Table 1. A summary of previous efficient schemes and ours for VES

Reference Key size (vk/sk) VES size Assumptions ROM

BGLS [8] 1G/1Zp 2G CDH Yes

ZSS [32] 2G/2Zp 1G CDH Yes

LOSSW [24] O(λ)G(> 160G)/1Zp 3G CDH No

RS [27] 4G/2Zp 2G + 1Zp q-strong DH extraction No

This work 16G + 1GT /3G 12G + 2Zp DLIN No

Table 2. A summary of previous obfuscation for encrypted ES/EVES

Reference ES/EVES Key size (vk) ROM Assumptions

Hada [23] ES O(λ) No DLIN

CZZ [13] EVES O(λ) Yes DLIN and Exponent 3-weak DH

This work ES O(1) No DLIN

This work EVES O(1) No DLIN

the standard model with short verification keys prior to our work. The VES
scheme by Lu et al. needs a quite large verification key but its signature size is
small and its security is based on a standard CDH assumption, so one may think
that the scheme of Lu et al. is better than our scheme in terms of signature size.
However, we think it is incomparable with our new scheme and we showed a
tradeoff between the verification key size and signature size. Rückert proposed
a VES scheme based on full-domain hash RSA signature, but it is secure in the
ROM [25]. Rückert, Schneider, and Schröder proposed generic constructions for
VES without NIZKs, pairings, and ROM. Their construction is very insightful,
but their schemes use an extra adjudication setup phase and Merkle trees, so
they need to setup large parameters and have large keys (non-constant size),
that is, they are inefficient [26].

Our Construction Technique. Loosely speaking, a VES scheme consists of a sig-
nature scheme and a encryption scheme as Lu et al. and Rückert and Schröder
[24, 27]. We use a signature scheme presented by Waters at CRYPTO’09 [31]
as an underlying signature scheme. We call it the Waters dual signature in
this paper to distinguish from Waters’ signature at Eurocrypt’05 [30]. Some-
one may think that a combination of the Waters dual signature and ElGamal
encryption easily yields a secure VES scheme under the DLIN assumption, but
that is not the case. The reason is as follows: We can prove unforgeability of
VES by relying on unforgeability of the underlying signature scheme as previous
schemes [8,24,27], but opacity is non-trivial. Opacity means that it is difficult to
extract ordinary signatures from VES, i.e., decrypt VES. Moreover, it is highly
non-trivial whether we can prove opacity from standard assumptions or not.
The reason is as follows: The VES scheme of Lu et al. is a combination of Wa-
ters’ signature (Eurocrypt’05) [30] and the ElGamal encryption scheme and they
proved its opacity from the aggregate extraction assumption [8] (fortunately, it is
equivalent to the CDH assumption [15]). On the other hand, the VES scheme of
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Rückert and Schröder is a combination of Boneh-Boyen signature scheme [6] and
the ElGamal encryption scheme, but they proved its opacity from q-strong DH
extraction assumption, which is a stronger assumption than that of underlying
Boneh-Boyen signature scheme [27].

Our construction is a combination of the Waters dual signature scheme and
the ElGamal encryption scheme. We encrypt only signature elements related
to signing keys. The security proof of the Waters dual signature is different
from that of many known secure signature schemes such as Boneh-Boyen [6],
Waters [30], so we must employ a different proof strategy from that of Lu et al.
and Rückert and Schröder. The Waters dual signature has two types of signature,
standard signature (which is called type A) and semi-functional signature (which
is called type B). Semi-functional signatures also pass the verification algorithm
as standard ones and are indistinguishable from standard ones [21,31]. We extend
the proof strategy of this dual form signature technique to prove opacity. First,
we employ type B signatures as normal signatures output by a normal signing
algorithm and type A signatures are used for simulation. Both type A and B
signatures are valid signatures and there is no essential difference in terms of
functionality as long as a normal verification algorithm is used. We employ this
swap of role since we do not know how to prove that the adversary cannot
extract a valid type A signature from given VES when the oracle answers type
A signatures.

In the experiment of opacity, the adversary can output a pair of a signature
and a message such that the message was queried to an oracle which returns
a VES for the queried message. This causes the main difficulty for proving the
opacity since the adversary may output a re-randomized signature obtained by
using valid signatures from oracles. Unfortunately, the Waters dual signature is
re-randomizable. Thus, we modify the Waters dual signature scheme to make it
strongly unforgeable. Strong unforgeability guarantees that the adversary cannot
output a forgery even for a queried message, so it must hold that if the adversary
output valid signature for queried message in the experiment of opacity, then
the signature is identical to the signature generated by the VES creation oracle
(otherwise, contradict to strong unforgeability). This fact can be used to prove
the opacity of our scheme.

In the proof of opacity, we must simulate two oracles. One is the creation
oracle, which answers VES for queried messages. The other is the adjudication
oracle, which extracts ordinary signatures from queried message/VES pairs and
returns them. When we answer only encryption of type B signature for VES
creation queries of the adversary, we can prove that the adversary cannot extract
type B signature from VES under the aggregate extraction assumption. This
is the reason why we swap the role of type A signatures for that of type B
signature. We have no way to prove that when we answer only encryption of
type A signature for VES creation queries of the adversary, adversary cannot
extracts type A signature from VES.

Thus, it is showed that the adversary cannot output a valid signature for
queried message to the VES creation oracle. For non-queried messages, we can
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use the proof technique for unforgeability of dual form signatures. We show that
the adversary cannot output a type A signature when the oracle returns type B
signatures (VES).

Next, we change the type of signatures used to generate VES which are an-
swered by the VES creation oracle. Answers of the adjudication oracle depend
on the type of the VES creation oracle. Thus, we show that the view of the
adversary is indistinguishable even if the type of answers are changed from type
B to type A one-by-one for each query. This order of change is reverse to the
original proof, but it is not essential difference. Lastly, we show that the adver-
sary cannot output a type B signature when the oracle returns type A signatures
(VES).

Secure obfuscations for ES and EVES based on the Waters dual signature
scheme are also non-trivial because the signing keys of the Waters dual signa-
ture scheme consist of multiple group elements and the signing algorithm com-
putes exponentiation of the signing keys with randomness in contrast to Waters’
signature presented at Eurocrypt’05, whose signing key is only one group ele-
ment and signing algorithm only multiplies it by other group elements [30]. We
overcome this hurdle by using additive homomorphic property of ElGamal and
the linear encryption schemes [7]. Cheng et al. use the linear encryption scheme
for not only encryption of VES but also the construction of VES itself, so their
VES scheme cannot check the validity of ciphertext by using only the pairing
technique and they need (NI)ZK [13]. We do not need (NI)ZK because our new
VES scheme uses the ElGamal encryption scheme and can verify the validity of
VES by using only pairings.

Remark. In this extended abstract, we do not have enough space to write com-
plete proofs and all definitions, so we omitted some of them.

2 Preliminaries

Notations and Conventions. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}.
When D is a random variable or distribution, y

R← D denote that y is randomly

selected from D according to its distribution. If S is a set, then x
U← S denotes

that x is uniformly selected from S. y := z denotes that y is set, defined or
substituted by z. When b is a fixed value, A(x)→ b (e.g., A(x)→ 1) denotes the
event that machine (or algorithm) A outputs a on input x. We say that function
f : N → R is negligible in λ ∈ N if for every constant c ∈ N there exists kc ∈ N

such that f(λ) < λ−c for any λ > kc. Hereafter, we use f < negl(λ) to mean that
f is negligible in λ. Let Γ := (p,G,GT , e, g) be a description of groups G and
GT of prime order p equipped with efficient bilinear map e : G × G → GT . We
often omit common parameters Γ . Let Gbmp be a standard parameter generation
algorithm for bilinear maps that outputs Γ .

Definition 1 (DLIN assumption). The DLIN problem is to guess β ∈ {0, 1},
given (Γ, g, f, ν, gx, fy, Qβ)

R← Gdlinβ (1λ), where Gdlinβ (1λ): Γ := (p,G,GT , e, g)
R←

Gbmp(1
λ), f, ν

U← G,x, y
U← Zp,Q0 :=νx+y,Q1

U← G, return (Γ, g, f, ν, gx, fy, Qβ).
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The advantage is AdvDLIN
A (λ) :=

∣
∣
∣Pr

[

A(I)→ 1
∣
∣
∣ I R← Gdlin0 (1λ)

]

− Pr
[

A(I)→ 1
∣
∣
∣ I R← Gdlin1 (1λ)

]∣
∣
∣. We say that

the DLIN assumption holds if for all probabilistic polynomial-time (PPT) ad-
versary A, AdvDLIN

A (λ) < negl(λ).

Definition 2 (Aggregate Extraction (AgExt) assumption [8, 15]). The
AgExt problem in bilinear groups is to compute gxy, given Γ := (p,G,GT , e,

g)
R← Gbmp(1

λ) and (gx, gy, gβ, gδ, gxy+βδ) for x, y, β, δ
U← Zp. The advan-

tage is AdvAgExtA (λ) := Pr[z = gxy | Γ
U← Gbmp(1

λ);x, y, β, δ
U← Zp; z

R←
A(Γ, gx, gy, gβ , gδ, gxy+βδ)]. We say that the AgExt assumption holds in bilin-

ear groups if for any PPT A, AdvAgExtA (λ) < negl(λ).

Definition 3 (CDH assumption). The CDH problem in bilinear groups is to

compute gxy, given Γ := (p,G,GT , e, g)
R← Gbmp(1

λ) and (gx, gy) for x, y
U← Zp.

The advantage is AdvCDH
A (λ) := Pr[z = gxy | Γ U← Gbmp(1

λ);x, y
U← Zp; z

R←
A(Γ, gx, gy)]. We say that the CDH assumption holds in bilinear groups if for
any PPT A, AdvCDH

A (λ) < negl(λ).

The AgExt assumption is equivalent to computational Diffie-Hellman (CDH)
assumption, which is implied by the DLIN assumption.

Theorem 1 ( [15]). The AgExt and CDH problems are Karp reducible to each
other with O(1) computation.

Verifiably Encrypted Signature (VES). A VES scheme consists of following seven
algorithms VES = {AdjGen,Gen, Sign,Vrfy,Create,VesVrfy,Adj}:
Adjudicator Key Generation: Algorithm AdjGen takes as input security pa-

rameter 1λ and outputs a pair of key for an adjudicator, that is, (apk, ask)
R←

AdjGen(1λ).
Key Generation: Algorithm Gen takes as input 1λ and outputs a pair of keys

for a signer, that is, (vk, sk)
R← Gen(1λ). They are called the verification key

and the signing key, respectively.
Signing: Algorithm Sign takes as input a signing key and a message and outputs

signature σ. That is, σ
R← Sign(sk,M), where M ∈ Mvk and Mvk is a

message space defined by vk.
Verification: Algorithm Vrfy is deterministic and takes as input vk, M , and

σ and outputs bit b. If b = 1 then the signature is valid. Else, it is invalid.
That is, Vrfy(vk, σ,m)→ b.

VES Creation: Algorithm Create takes as input sk, apk, and M and outputs

VES ω on M . That is, ω
R← Create(sk, apk,M).

VES Verification: Algorithm VesVrfy is deterministic and takes as input apk,
vk, ω, and M and outputs bit b, VesVrfy(apk, vk, ω,M)→ b.

Adjudication: Algorithm Adj takes as input ask, apk, vk, ω, and M . If ω is

valid, it extracts an ordinary signature σ on M and returns σ, that is σ
R←

Adj(ask, apk, vk, ω,M) if VesVrfy(apk, vk, ω,M)→ 1.
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For correctnes, it is required that ∀λ ∀(apk, ask) R← AdjGen(1λ) ∀(vk, sk) R←
Gen(1λ) ∀m ∈ Mvk VesVrfy(apk, pk,Create(sk, apk,M),M) → 1 and
Vrfy(vk,Adj(ask, apk, vk,Create(sk, apk,M)),M)→ 1.

Experiments VesForgeA(λ) and OpacA(λ) are defined as follows:

Experiment VesForgeA(λ)
(apk, ask)

R← AdjGen(1λ);

(vk, sk)
R← Gen(1λ);

(M∗, ω∗) R←
ACO(sk,apk,·),AO(ask,apk,vk,·,·)(vk, apk);
Return 1 iff
VesVrfy(apk, vk, ω∗,M∗)→ 1 and
M∗ /∈ QC and M∗ /∈ QA.

Experiment OpacA(λ)
(apk, ask)

R← AdjGen(1λ);

(vk, sk)
R← Gen(1λ);

(M∗, σ∗) R←
ACO(sk,apk,·),AO(ask,apk,vk,·,·)(vk, apk);
Return 1 iff
Vrfy(vk, σ∗,M∗)→ 1 and
M∗ /∈ QA.

where the creation oracle, CO(sk, apk, ·), returns a VES for a queried message,
the adjudication oracle, AO(ask, apk, vk, ·, ·), extracts and returns a signature
for a queried message/VES pair, and QC and QA are sets of messages queried
by the adversary to CO and AO, respectively.

Definition 4 (Secure VES [8]). A VES scheme is secure if it satisfies unforge-
ability and opacity, i.e., it holds for any PPT A, Pr[VesForgeA(λ)→ 1] < negl(λ)
and Pr[OpacA(λ)→ 1] < negl(λ).

Collision Resistant Hash Functions (CRHF). Let H := {Hk} be a keyed hash
family of functions Hk : {0, 1}∗ → {0, 1}n indexed by k ∈ Kλ where λ is a
security parameter.

Definition 5. We say that H is (t, ε)-collision-resistant if for any adversary
A running in time t, we have that AdvCRHF

A,H (λ) := Pr[m0 �= m1 ∧ Hk(m0) =

Hk(m1) | (m0,m1)
R← A(k)] < ε where the probability is taken over the random

choice of k ∈ Kλ and random coins of A.

3 Strongly Unforgeable Waters Dual Signature

Waters Dual Signature Scheme. We review a signature scheme presented by
Waters [31] since we use it as a essential building block. However, we add a few
minor changes to fit the scheme to this paper. We will explain the differences
between the original scheme and modified scheme WdSig.

Wd.Gen(1λ, Γ ): On input security parameter λ and Γ := (p,G,GT , e, g)
R←

Gbmp(1
λ), it chooses generators v, v1, v2, w, u, h

U← G and exponent

a1, a2, b, α
U← Zp, computes τ1 := vva1

1 , τ2 := vva2
2 , and sets V K :=

(Γ, gb, ga1 , ga2 , gba1 , gba2 , v, v1, v2, τ1, τ2, τ
b
1 , τ

b
2 , w, u, h, e(g, g)

αa1b) and SK
:= (V K, gα, gαa1 , ga1a2). Hereafter we often omit input 1λ.
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Wd.Sign(SK,M): On input message M ∈ Zp, it selects r1, r2, z1, z2, γ, stag
U←

Zp, sets r := r1 + r2, computes sig := (σ0, σ1, . . . , σ7, stag), where

σ0 := (uMwstagh)r1 , σ1 := gαa1vrg−a1a2γ , σ2 := g−αvr1g
z1ga2γ ,

σ3 := (gb)−z1 , σ4 := vr2g
z2ga1γ , σ5 := (gb)−z2 ,

σ6 := (gb)r2 , σ7 := gr1 .

Wd.Vrfy(V K, sig,M): On input V K,M , and sig, it outputs 1 if and only if it
holds that

e(uMwstagh, σ7) = e(g, σ0),

e(gb, σ1)e(g
ba1 , σ2)e(g

a1 , σ3) = e(τ1, σ6) e(τ
b
1 , σ7),

e(gb, σ1) e(g
ba2 , σ4) e(g

a2 , σ5) = e(τ2, σ6) e(τ
b
2 , σ7) e(g, g)

αa1b.

The differences are as follows: In the original Waters dual signature scheme,
(1) the verification equation is only one equation and probabilistic, (2) values
v, v1, v2 are included in secret keys, (3) value ga1a2 is not included in the signing
key, (4) the (normal) signing algorithm does not multiply g−a1a2γ , ga2γ , ga1γ in
σ1, σ2, σ4, respectively.

There are two types of signatures in the Waters dual signature scheme, type
A (if γ = 0) and type B (if γ �= 0) signatures. The modified three verifica-
tion equations above are introduced by Abe et al. [1]. They proved that if a
signature passes the equations, then the signature is either type A or B. The
original equations use ciphertexts and the decryption procedure of the Waters
dual encryption scheme, so it is probabilistic and has a semi-functional verifi-
cation algorithm that uses semi-functional ciphertexts [31]. Type A signatures
are signatures with γ = 0 and pass both the normal and semi-functional verifi-
cation equations. Type B signatures are signatures with γ �= 0 and cannot pass
the semi-functional verification equations (Gerbush, Lewko, O’Neill, and Wa-
ters defined them as backdoor verification tests [21]). As long as the verification
equations are normal, both type A and type B signatures are valid signatures
and there is no essential difference. Thus, we employ type B signatures in the
normal signing algorithm.

Even if v, v1, v2 are disclosed, we cannot compute vb2 (and semi-functional
ciphertexts of the dual system encryption of Waters [31]). Thus, we add (v, v1, v2)
to the verification key and this does not affect its security since gα and gαa1 (and
vb2) are kept secret and they are essential secret signing keys. This is observed
by Abe et al. [1]. For the minor changed version above, the following theorem
holds [1, 31].

Theorem 2. If the DLIN assumption holds, then WdSig := Wd.{Gen, Sign,Vrfy}
is existentially unforgeable against adaptive chosen message attacks (EUF-CMA).

The original Waters dual signature is not strongly unforgeable since it is re-
randomizable. “Strong” means that the adversary cannot forge a signature even
for a queried message to the signing oracle. In order to make our VES scheme



414 R. Nishimaki and K. Xagawa

satisfy opacity, we modify the Waters dual signature. We extend the technique by
Boneh, Shen, and Waters [10]. They introduced a property called 2-partitioned
to convert unforgeable signature schemes into strongly unforgeable signature
schemes. We extend 2-partitioned to 3-partitioned.

Definition 6. A signature scheme is 3-partitioned if it satisfies the following
two properties:

– The signing algorithm consists of three deterministic algorithms F1, F2, and
F3

1. chooses random R ∈ R (R is a space for randomness),
2. computes Σ1 := F1(M,R, V K), Σ2 := F2(R, V K), Σ3 := F3(R,SK),
3. and outputs signature σ := (Σ1, Σ2, Σ3).

– Given M and Σ2 there is at most one (Σ1, Σ3) such that (Σ1, Σ2, Σ3) is a
valid signature on M under VK.

A 2-partitioned signature is σ = (Σ′
1, Σ

′
2) where Σ′

1 = F ′
1(M,R, SK) and Σ′

2 =
F ′
2(R,SK) [10]. Value Σ′

2 binds all randomness R, so M and R fully determine
Σ′

1. For VES, signature elements related to the secret signing key (i.e., Σ3) should
be encrypted, so we cannot use such elements as inputs to hash functions (we will
use hash functions to obtain strongly secure signature) and want to isolate the
secret signing key from Σ′

2. Otherwise, encrypted signatures are not verifiable.
If Σ3 is not used as an input of hash function, then hash values are not changed
even if Σ3 is encrypted. This is the reason why we introduced 3-partitioned and
Σ1 and Σ2 are independent of the secret signing key.

Let Π := (Gen, Sign,Vrfy) be an existentially unforgeable signature scheme.
New signature scheme Π ′ := (Gen′, Sign′,Vrfy′) is as follows:

Gen′(1λ): It generates (V K, SK)
R← Gen(1λ), chooses h̄

U← G and random hash
key k ∈ K, and sets (V K ′, SK ′) := ((V K, h̄, k), SK).

Sign′(SK ′,M): On input message M ∈ {0, 1}�, it chooses exponent ϕ
U← Zp

and randomness R ∈ R, computes Σ2 := F2(R, V K), ϑ := Hk(M ‖ Σ2)
(view ϑ as an element in Zp), m := Hk(g

ϑh̄ϕ), Σ1 := F1(m,R, V K) and
Σ3 := F3(R,SK), and outputs a signature sig := (Σ1, Σ2, Σ3, ϕ).

Vrfy′(V K ′, sig,M): On input V K ′,M , and signature sig = (Σ1, Σ2, Σ3, ϕ), it
computes ϑ′ := Hk(M ‖ Σ2) (view ϑ′ as an element Zp), m

′ := Hk(g
ϑ′
h̄ϕ),

It outputs 1 if and only if Vrfy(V K, (Σ1, Σ2, Σ3),m
′)→ 1.

Theorem 3. Signature scheme Π ′ is (t, q, ε)-strongly existentially unforgeable
if Π is (t, q, ε/3)-existentially unforgeable, the (t, ε/3)-DL assumption holds in
G, and H is (t, ε/3)-collision-resistant.

This is easily proved by extending the proof of Boneh, Shen, andWaters [10]. The
DL assumption means the discrete logarithm assumption. The essential point is
that given message M and partial signature Σ2, the randomness which is used
to generate the whole signature is determined and there is at most one (Σ1, Σ3)
such that (Σ1, Σ2, Σ3) is a valid signature on M under V K. Intuitively, in the
construction of Π ′, we sign not only message M but also randomness R to bind
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the randomness and prevent re-randomization. Moreover, in order to prevent
message m being determined by randomness R, new randomness ϕ is introduced
and chameleon hash functions (gϑh̄ϕ) are used. Value m will be signed.

Theorem 4. The Waters dual signature is 3-partitioned.

Proof. Let R := {(r1, r2, z1, z2, stag, γ)| r1, r2, z1, z2, stag, γ U← Zp}, then func-

tions F1, F2, and F3 are defined as follows: R
R← R, F1(M,R, V K) :=

σ0 = (uMwstagh)r1 , F2(R, V K) := (σ3, . . . , σ7, stag) = (g−bz1 , vr2g
z2 ·

ga1γ , g−bz2 , gbr2 , gr1 , stag), F3(R,SK) := (σ1, σ2) = (gαa1vr · g−a1a2γ , g−αvr1g
z1 ·

ga2γ) where γ
U← Zp is chosen for type B signatures. If the signature is

type A, then γ := 0. We can interpret σ3, σ5, σ6, σ7 (outputs of F2) as
g−bz1 , g−bz2 , gbr2 , gr1 , respectively and it follows σ0 = (uMwstagh)r1 from the
first verification equation, that is, the output of F1 is fixed. If we interpret σ4

as vr2g
z2 · ga1γ , then by the second and third equations two unknowns σ1 and σ2

are fixed to gαa1vr · g−a1a2γ and g−αvr1g
z1 , respectively, that is, the output of

F3 is fixed. Thus, if the output of F2 and M are fixed, then the outputs of F1

and F3 are also fixed.

We can see that even if (σ1, σ2) is encrypted by the ElGamal encryption, hash
value ϑ = Hk(M ‖ (σ3, . . . , σ7, stag)) is not changed, so it can be fitted to VES
schemes. Note that we assume that each element g ∈ G has a unique encoding.
We can obtain strongly secure scheme sWdSig:

sWd.Gen(1λ, Γ ): It generates (V K ′, SK ′) R←Wd.Gen(1λ, Γ ), chooses h̄
U← G and

random hash key k ∈ K, and sets (V K, SK) := ((V K ′, h̄, k), SK ′).
sWd.Sign(SK,M): On input messageM ∈ Zp, it selects r1, r2, z1, z2, γ, stag, ϕ

U←
Zp, sets r := r1 + r2, computes σ1 := gαa1vr · g−a1a2γ , σ2 := g−αvr1g

z1 · ga2γ ,
σ3 := (gb)−z1 , σ4 := vr2g

z2 · ga1γ , σ5 := (gb)−z2 , σ6 := (gb)r2 , σ7 := gr1 ,
ϑ := Hk(M ‖ Σ2) where Σ2 = (σ3, . . . , σ7, stag) and view ϑ as an el-
ement in Zp, m := Hk(g

ϑh̄ϕ), σ0 := (umwstagh)r1 , and outputs sig :=
(σ0, σ1, . . . , σ7, stag, ϕ).

sWd.Vrfy(V K, sig,M): On input VK,M , and signature sig = (σ0, σ1, . . . ,
σ7, stag, ϕ), it computes ϑ′ := Hk(M ‖ (σ3, . . . , σ7, stag)), m

′ := Hk(g
ϑ′
h̄ϕ),

and Wd.Vrfy(V K ′, sig′,m′) → b where sig′ := (σ0, . . . , σ7, stag), and
outputs b.

Corollary 1. The scheme above is strongly unforgeable against adaptive chosen
message attacks if the DLIN assumption holds. In particular, for any PPT ad-
versary F against sWdSig that makes at most q signing queries, there exists PPT
algorithm B′ for DLIN and C for CRHF, AdvsEUF-CMA

F ,sWdSig (λ) ≤ {(q+3)/3}AdvDLIN
B′ +

(1/3)AdvCRHF
C,H where AdvsEUF-CMA

F ,sWdSig (λ) and AdvEUF-CMA
F ′,WdSig (λ) is the advantage of the

adversary for sWdSig.

Note that the DL assumption is implied by the DLIN assumption.
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4 Construction of Our VES

We present our VES scheme, sWdVES, based on the strongly secure variant
the Waters dual signature scheme in this section. The proposed scheme is ba-
sically the same as the strongly unforgeable Waters dual signature scheme in
Section 3 except that we encrypt signature elements which include secret keys
(gα, gαa1 , ga1a2) by the ElGamal encryption scheme. That is, in our creation algo-
rithm, only σ1 and σ2 are encrypted. In order to verify encrypted signatures, we
add extra elements and cancel out group elements which are generated by pair-
ing computation of encrypted signatures in the verification equation. sWdVES is
as follows:

AdjGen(1λ): It selects β
U← Zp and sets apk := ζ := gβ and ask := β.

Gen(1λ): It generates (V K ′, SK ′) := ((g, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ
b
1 , τ

b
2 ,

v, v1, v2, w, u, h, h̄, k, e(g, g)
αa1b), (gα, gαa1 , ga1a2))

R← sWd.Gen(1λ) and sets
vk := V K ′ and sk := (V K ′, SK ′).

Sign and Vrfy: Same as sWd.{Sign,Vrfy} in Section 3, respectively.

Create(sk, apk,M): It generates (σ0, . . . , σ7, stag, ϕ)
R← sWd.Sign(SK ′,M), se-

lects ρ1, ρ2
U← Zp, outputs ω := (K0, . . . ,K7,K

′
1,K

′
2, K̂1, K̂2, stag, ϕ), where

(K0,K3, . . . ,K7) := (σ0, σ3, . . . , σ7) and

K1 := σ1 · ζρ1 , K ′
1 := gρ1 , K̂1 := (gb)ρ1 ,

K2 := σ2 · ζρ2 , K ′
2 := gρ2 , K̂2 := (gba1)ρ2 .

VesVrfy(apk, vk, ω,M): It parses ω = (K0, . . . ,K7,K
′
1,K

′
2, K̂1, K̂2, stag, ϕ), and

computes ϑ′ := Hk(M ‖ (K3, . . . ,K7, stag)), m
′ := Hk(g

ϑ′
h̄ϕ), It outputs 1

if and only if it holds that

e(K ′
1, g

b) = e(g, K̂1) , e(K ′
2, g

ba1) = e(g, K̂2)

e(um′
wstagh,K7) = e(g,K0)

e(gb,K1)

e(ζ, K̂1)
· e(g

ba1 ,K2)

e(ζ, K̂2)
· e(ga1 ,K3) = e(τ1,K6) e(τ

b
1 ,K7)

e(gb,K1)

e(ζ, K̂1)
· e(gba2 ,K4) e(g

a2 ,K5) = e(τ2,K6) e(τ
b
2 ,K7) e(g, g)

αa1b

Adj(ask, apk, vk, ω,M): It parses ω = (K0, . . . ,K7, stag, ϕ) and computes σ1 :=
K1 · (K ′

1)
−β , σ2 := K2 · (K ′

2)
−β , σ3 := K3, σ4 := K4, σ5 := K5, σ6 :=

K6, σ7 := K7, σ0 := K0. If VesVrfy(apk, vk, ω,M) → 1, then it outputs
(σ0, . . . , σ7, stag, ϕ). These are valid signatures.

Intuitively, the scheme above is secure because underlying signature scheme is
strongly unforgeable. The adversary has no choice but to decrypt valid VES given
by oracles to output a valid signature, but it contradicts to the one-wayness of
the ElGamal encryption scheme.
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Rückert and Schröder defined key-independence and extractability of VES to
prove unforgeability and collusion-resistance of VES in a modular way [26, 27].
Key-independence means that a VES creation algorithm consists of a signa-
ture generation part and a transformation (into VES) part and they are in-
dependent. Extractability means that if VES ω is valid, then the adjudicator
can extract a valid (ordinary) signature σ with except negligible probability.
Collusion-resistance means that no adversary can forge VES even if the ad-
judicator is corrupted, i.e., adversary obtains the secret decryption key of the
adjudicator. Rückert and Schröder showed the following theorem.

Theorem 5 ( [27]). Let VES be an extractable and key-independent verifiably
encrypted signature scheme. VES is unforgeable if and only if the underlying
signature scheme Sig is unforgeable.

As a corollary, sWdVES is unforgeable under the DLIN assumption since we
can easily show that our sWdVES based on sWdSig is key-independent and ex-
tractable though we omit proofs in this extended abstract.

Theorem 6. sWdVES is opaque if the DLIN assumption holds and there exists
CRHF.

Proof. If adversary A outputs forgery σ∗ = (σ∗
0 , . . . , σ

∗
7 , stag

∗, ϕ∗) and M∗ such
that M∗ is not queried to AO, then it means that A breaks opacity of sWdVES.
A directly forges a signature of underlying sWdSig or extracts a signature by
breaking the one-wayness of the ElGamal encryption scheme. In order to prove
opacity, we introduce the following games: Let Game-(i) denote a game where
CO answers encryption of type A signatures for the first i (i ∈ [qC] and qC is the
number of creation query by A) queries and encryption of type B signatures for
the remaining (qC−i) queries and AO answers signatures extracted from queried

VES for all qA (the number of adjudication query) queries. Let Advforge-Ai (resp.

Advforge-Bi ) denote the advantage of the adversary in Game-(i) for outputting type
A (resp. B) forgery for a non-queried message (a message which is not queried
to CO). Let Advextract-B0 denote the advantage of the adversary in Game-0 for
extracting a type B signature from a VES for a queried message (a message
which is queried to CO).
1. In Game-(0), CO returns encryption of type B signature and AO returns

type B signature. First, we show Lemma 1: If A outputs a valid type B
signature for message Mi which has been already queried to CO, then we
can construct algorithm E which solves the AgExt problem. Thus, in the
remaining games, we only consider A which outputs forgery for message M∗

such that M∗ �= Mi for all i ∈ [q]. We can show that if A outputs forgery of
type A signature, then we can construct algorithm B1 which solves the CDH
problem.

2. Next, we consider Game-(i). We can show that if A detects the change from
type B answer to type A answer by CO, then we can construct algorithm B2
which solves the DLIN problem.
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3. Last, we consider Game-(qC), where all answers for VES queries of A are
encryption of type A signature. We can show that if A outputs a forgery
of type B signature, then we can construct algorithm B3 which solves the
DLIN problem.

Thus, if the DLIN assumption holds, the signature scheme is opaque. The core
part is Lemma 1. By statements described above except Lemma 1, we can show
AdvOpac

A (λ) = Advforge-A0 + Advextract-B0 + Advforge-B0 < Advextract-B0 + AdvEUF-CMA
F ,WdSig <

Advextract-B0 + (qC + 2)AdvDLIN
B . By Lemma 1, we can show

Advextract-B0 < qCAdv
AgExt
E + AdvsEUF-CMA

F ′,sWdSig + AdvCRHF
C

<
4qC + 3

3
AdvDLIN

B +
4

3
AdvCRHF

C .

Thus, it holds AdvOpac
A (λ) < ((7qC + 9)/3)AdvDLIN

B + (4/3)AdvCRHF
C .

Lemma 1. If there exists adversary A that outputs a type B forgery for a queried
message Mi in Game-(0), then we can construct algorithm E that solves the AgExt
problem.

Proof of lemma. E is given instance (Γ, gx, gy, gβ, gδ, gxy+βδ) of the AgExt
problem. E generates the verification key as follows: Chooses exponents

a1, b, yv, yv1 , yv2 , yw, yh, yu, η
U← Zp and hash key k ∈ K, computes g := g,

gb := gb, ga1 := ga1 , ga2 := gy, gba2 := (gy)b, gba1 := gba1 , v := gyv ,
v1 := gyv1 , v2 := gyv2 , w := gyw , u := gyu , h := gyh , h̄ := gη, ζ :=
gβ, e(g, g)αa1b := e(gx, gy)a1·b (it implicitly holds α = xy though E does
not have α), τ1 := vva1

1 , τb1 , τ2 := v(gy)yv2 , and τb2 , and sets V K :=
(g, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ

b
1 , τ

b
2 , w, u, h, h̄, k, e(g, g)

αa1b) and apk := ζ = gβ .
Note that E does not have a2 = y and gα = gxy, so E cannot directly compute
Type B signature.

Simulation of Creation Oracle: E initializes list QList := ∅. E chooses random

index j
U← [qC], i.e., guesses which VES A selects and outputs its extraction.

E outputs encryption of Type B signatures for i-th VES creation query Mi as

follows: If i �= j, then chooses r1, r2, z1, z2, γ
′, stag, ϕi, ρ1, ρ2

U← Zp, sets r :=

r1 + r2 (we want to set γ := x+ γ′), computes σi,1 := (gy)−γ′a1 · vr = (gαa1vr) ·
g−a1a2γ (where a2 = y and xy = α), σi,2 := (gy)γ

′
vr1g

z1 = (gαvr1g
z1) · ga2γ ,

K3 := σi,3 := (gb)−z1 , K4 := σi,4 := (gx)a1ga1γ
′
vr2g

z2 = (vr2g
z2) · ga1γ , K5 :=

σi,5 := (gb)−z2 , K6 := σi,6 := gr2b, K7 := σi,7 := gr1 , ϑi := Hk(Mi ‖ Σi,2)
where Σi,2 := (σi,3, . . . , σi,7), mi := Hk(g

ϑi h̄ϕi), K0 := σi,0 := (umiwstagh)r1 ,

K1 := σi,1 · ζρ1 , K ′
1 := gρ1 , K̂1 := (gb)ρ1 , K2 := σi,2 · ζρ2 , K ′

2 := gρ2 , K̂2 :=
(gba1)ρ2 , stores (Mi, σi, Ri := (r1, r2, z1, z2, stag, γi := γ′)) in QList where σi :=
(σi,0, . . . , σi,7, stag, ϕi) and outputs ω := (K0, . . . ,K7,K

′
1,K

′
2, K̂1, K̂2, stag, ϕi)

for Mi. We can verify σi is a correct type B signature.
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Embedding Instance: If i = j, then E chooses r∗1 , r
∗
2 , z

∗
1 , z

∗
2 , γ

∗, stag∗, ϕ∗,
ρ∗1, ρ

∗
2

U← Zp, sets r
∗ = r∗1 + r∗2 , answers K

∗
1 := (gxy+βδ)a1 · vr∗ · (gy)−a1γ

∗
ζρ

∗
1 =

(gαa1vr
∗
)·g−a1a2γ

∗
ζρ

′
1 (where a2 = y, xy = α, ρ′1 := a1δ+ρ∗1),K∗′

1 := (gδ)a1gρ
∗
1 =

gρ
′
1 , K̂∗

1 := (gδ)ba1gbρ
∗
1 = (gb)ρ

′
1 , K∗

2 := (gxy+βδ)−1vr
∗

1 gz
∗
1 · (ga2)γ

∗
(gβ)ρ

∗
2 =

(g−αvr
∗

1 gz
∗
1 ) · ga2γ

∗
ζρ

′
2 (where ρ′2 := −δ + ρ∗2), K

∗′
2 := (gδ)−1gρ

∗
2 = gρ

′
2 , K̂∗

2 :=
(gδ)−ba1gba1ρ

∗
2 = (gba1)ρ

′
2 , K∗

3 := (gb)−z∗
1 , K∗

4 := vr
∗

2 gz
∗
2 ga1γ

∗
, K∗

5 := (gb)−z∗
2 ,

K∗
6 := gr

∗
2b, K∗

7 := gr
∗
1 , ϑ∗ := Hk(K

∗
3 , . . . ,K

∗
7 , stag

∗), m∗ := Hk(g
ϑ∗
h̄ϕ∗

), and
K∗

0 := (um∗
wstag∗h)r

∗
1 and records (Mj , ω

∗ := (K∗
0 , . . . , ϕ

∗), j, γ∗) as the chal-
lenge instance. It can be verified ω∗ is a correct encryption of type B signature.

Simulation of Adjudication Oracle: When A makes �-th adjudication query
(M�, ω�), then we know that A must have queried M� to CO by the theorem
of Rückert and Schröder (Otherwise, it is a forgery. This is the same argument
by Rückert and Schröder in [27]). First, E verifies the query and returns ⊥ if it
is invalid. Otherwise, E acts as follows: If M� = Mj , that is, the guessed index
((Mj , . . .) /∈ QList), then E aborts. Otherwise, there exists (Mi, σi, Ri) ∈ QList
for some i �= j such that M� = Mi and the signature is Type B. In this
case (M� = Mi), for query (M�, ω = (K0, . . . ,K7,K

′
1,K

′
2, K̂1, K̂2, stag, ϕ)), if

ϕ �= ϕi, then A breaks strong unforgeability of our modified Waters dual sig-
nature. We consider an intermediate game where if ϕ �= ϕi, then E aborts.
The probability E aborts with this condition is less than the success proba-
bility of breaking strong unforgeability of sWdSig. That is, it holds ϕ = ϕi

without negligible probability. If ϕ = ϕi, then it holds K3 = σi,3, K4 = σi,4,
K5 = σi,5, K6 = σi,6, K7 = σi,7, stag = stagi since otherwise it means
A outputs (K3, . . . ,K7, stag) such that Hk(σi,3, . . . , σi,7, stagi) = ϕi = ϕ =
Hk(K3, . . . ,K7, stag) and (K3, . . . ,K7, stag) �= (σi,3, . . . , σi,7, stagi). This is a
collision of the hash function and contradicts to the collision-resistant prop-
erty. We consider an intermediate game where if Hk(σi,3, . . . , σi,7, stagi) = ϕi =
ϕ = Hk(K3, . . . ,K7, stag) and (K3, . . . ,K7, stag) �= (σi,3, . . . , σi,7, stagi), then
E aborts. The probability E aborts with this condition is less than the success
probability of breaking the CRHF. That is, randomness of (K3, . . . ,K7, stag) is
the same as that of (σi,3, . . . , σi,7, stagi) without negligible probability.

By using K3 = g−bz1 , K5 = g−bz2, K6 = gbr2 , K7 = gr1 , E can compute
gr2 = (K6)

1/b, gr1 = K7, g
z1 = (K3)

−1/b, gz2 = (K5)
−1/b, vr = (gr1 · gr2)yv ,

vr1 = (gr1 · gr2)yv1 , and vr2 = (gr1 · gr2)yv2 since E has b, yv, yv1 , yv2 and it holds
that v = gyv v1 = gyv1 v2 = gyv2 . E can use the same computation procedure in
the simulation of CO above by using γi stored in QList. Therefore, E can return
valid Type B signature (σ0, . . . , σ7, stag, ϕ) such that the randomness r in σ1,
σ2 is the same as that in K1, K2 by using stored information σi. That is, AO is
perfectly simulated by E .
Solving the Problem: At some point, A outputs a Type B extraction, M∗ =
Mj, stag

∗, σ∗
1 = gαa1vr

∗
g−a1a2γ

∗
, σ∗

2 = g−αvr
∗

1 gz
∗
1 ga2γ

∗
, σ∗

3 = (gb)−z∗
1 , σ∗

4 =
vr

∗
2 gz

∗
2ga1γ

∗
, σ∗

5 = (gb)−z∗
2 , σ∗

6 = gr
∗
2b, σ∗

7 = gr
∗
1 , ϑ∗ = Hk(σ3, . . . , σ7, stag

∗),
m∗ = Hk(g

ϑ∗
h̄ϕ), and σ∗

0 = (um∗
wstag∗h)r

∗
1 (not queried to AO but CO) such

that randomness are the same as those used when B embedded the problem in-
stance at j-th query and (Mj , ω

∗, j, γ∗) is recorded as the challenge instance.



420 R. Nishimaki and K. Xagawa

This is guaranteed by the strong unforgeability and collision-resistance as we
discussed above. By using these values, E can compute gr

∗
2 = (σ∗

6)
1/b, gr

∗
1 = σ∗

7 ,
gz

∗
1 = (σ∗

3)
−1/b, gz

∗
2 = (σ∗

5)
−1/b, vr

∗
= (gr

∗
1 · gr∗2 )yv , vr

∗
1 = (gr

∗
1 · gr∗2 )yv1 ,

vr
∗

2 = (gr
∗
1 · gr∗2 )yv2 , since E has b, yv, yv1 , yv2 and it holds that v = gyv v1 = gyv1

v2 = gyv2 . Thus, E can compute gz
∗
1 ·vr∗1 ga2γ

∗
/σ∗

2 = gα = gxy since E has a1 and
γ∗ is recorded. That is, E can output solution gxy of the AgExt problem if the
adversary outputs a Type A extraction for queried message Mj to CO. E guesses
index j, so its success probability is degraded by a factor of 1/qC. However, it
still breaks the AgExt problem with non-negligible probability ε/qC where ε is
the success probability of A. �

5 Application to Obfuscators for ES and EVES

Our VES scheme can be used to construct new obfuscators for ES and EVES.
Hada constructed an obfuscator for ES by combining Waters’s signature (2005)
and the linear encryption scheme [23]. The linear encryption scheme proposed
by Boneh, Boyen, and Shacham [7] and is as follows:

L.Gen(1λ): It generates Γ
R← Gbmp(1

λ), selects exponents xe, ye
U← Zp, and out-

puts pk := (fe, he) := (gxe , gye), dk := (xe, ye).

L.Enc(pke,m): On input m ∈ G and pk = (fe, he) it selects r, s
U← Zp and

outputs c := (f r
e , h

s
e, g

r+sm).

Hada’s idea is as follows: Suppose that signature σ is computed as σ = sk ·G(m)
where sk ∈ G is the signing key, m ∈ Zp is the message and G : Zp → G is
an efficiently computable function. Then, for ciphertext c = L.Enc(pk, sk), we
can compute c̃ := c · G(m) = L.Enc(pk, sk · G(m)) by homomorphic property
of the linear encryption scheme. This is exactly an encrypted signature. The
ciphertext of sk can be seen as an obfuscated circuit for encrypted signatures
since the linear encryption scheme is semantically secure and no information
about sk is revealed. We extend Hada’s construction, that is, we combine our
VES scheme based on the strongly unforgeable Waters dual signature and the
linear encryption scheme. However, our VES scheme is based on the Waters dual
signature, which is more complex than Waters’ signature at Eurocrypt’05, so it
is non-trivial whether we can use Hada’s technique directly or not. Especially, in
Waters’ signature at Eurocrypt’05, the signing algorithm does not exponentiate
sk, but in the Waters dual signature, it does. We can resolve this problem by us-
ing the multiplicatively homomorphic property of the linear encryption scheme,
that is, we can compute cr · G(m) = L.Enc(pk, skr · G(m)). Therefore, if we
encrypt sk = (gα, gαa1 , ga1a2) by linear encryption, then we can construct an
obfuscator for ES/EVES. We omit details of these constructions since we do not
have space to present them. We will present them in a full version.
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