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Abstract. In CRYPTO 2010, Wee proposed the notion of “extractable hash proof
systems” (XHPS), and its richer version, “all-but-one XHPS” (ABO-XHPS), and
showed that chosen ciphertext secure (CCA secure) key encapsulation mech-
anisms (KEM) can be constructed from them. This elegantly explains several
recently proposed practical KEMs constructed based on the “all-but-one” simu-
lation paradigm in a unified framework. Somewhat frustratingly, however, there
still exist popular KEMs whose construction and security proofs are not
captured by this framework. In this paper, we revisit the framework of the ABO-
XHPS-based KEM. Firstly, we show that to prove CCA security of the ABO-
XHPS-based KEM, some requirements can be relaxed. This relaxation widens the
applicability of the original framework, and explains why many known practical
KEMs can be proved CCA secure. Moreover, we introduce new properties for
ABO-XHPS, and show how one of the properties leads to KEMs that achieve
“constrained” CCA security, which is a useful security notion of KEMs for ob-
taining CCA secure public key encryption via hybrid encryption. Thirdly, we
investigate the relationships among computational properties that we introduce
in this paper, and derive a useful theorem that enables us to understand the struc-
ture of KEMs of a certain type in a modular manner. Finally, we show that the
ABO-XHPS-based KEM can be extended to efficient multi-recipient KEMs. Our
results significantly extend the framework for constructing a KEM from ABO-
XHPS, enables us to capture and explain more existing practical CCA secure
schemes (most notably those based on the decisional Diffie-Hellman assump-
tion) in the framework, and leads to a number of new instantiations of (single-
and multi-recipient) KEMs.

Keywords: key encapsulation mechanism, extractable hash proof system, cho-
sen ciphertext security, constrained chosen ciphertext security.

1 Introduction

Background and Motivation. Studies on constructing and understanding practical pub-
lic key encryption (PKE) schemes secure against chosen ciphertext attacks (CCA secu-
rity) [24,9] are important research themes in the area of cryptography. Among several
approaches towards practical CCA secure PKE schemes, the promising approach is to
construct a PKE scheme via the hybrid encryption methodologies using a key encap-
sulation mechanism (KEM) and a data encapsulation mechanism (DEM). Cramer and
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Shoup [8] show that if we combine a CCA secure KEM and a CCA secure DEM, then
we obtain a hybrid PKE scheme which is CCA secure. Hofheinz and Kiltz [17] intro-
duce a security notion called constrained CCA security (CCCA security), and show that
a CCA secure PKE scheme can be constructed by combining a CCCA secure KEM and
a DEM satisfying the security of (one-time) authenticated encryption [2]. These results
enable us to concentrate on studying practical constructions of (C)CCA secure KEMs,
for obtaining practical PKE schemes.

Seeing in a larger perspective, there are two general paradigms towards CCA secure
PKE schemes: the first paradigm uses non-interactive proofs of “well-formedness” [10],
which includes the constructions with non-interactive zero-knowledge proofs [22,9,25]
that cover generic constructions from cryptographic primitives, and the constructions
with universal hash proof systems [7,17] that cover practical and efficient schemes
based on specific intractability of decision problems.; The second paradigm uses the
so-called “all-but-one” simulation technique, (e.g. [3,5,19,17,23,12,18,27]). In fact, [9]
can also be seen to be included in this paradigm. These two paradigms in fact cover
almost all known constructions of CCA secure PKE schemes and KEMs. Our focus in
this paper is on KEMs constructed based on the second paradigm.

In CRYPTO’10, Wee [27] introduced the notion of “extractable hash proof systems”
(XHPS) and its richer version “all-but-one XHPS” (ABO-XHPS), which are both a
special kind of non-interactive proof system for a family of one-way relations (which
defines a hard search problem, such as the computational Diffie-Hellman problem), and
showed that CCA secure KEMs can be constructed from them. This framework elegantly
explains the constructions and the security proofs of several (variants of) recently pro-
posed KEMs (e.g. [6,18]) based on hardness of “search” problems (not only “decision”
problems), which are proved with the “all-but-one” simulation paradigm.

Somewhat frustratingly, however, there still exist several popular KEMs (e.g.
[17,6,12]) whose construction and (C)CCA security are not explained by the framework
in [27], although those that cannot be explained by the framework in [27] are quite sim-
ilar to those that can be explained. The main motivation of this work is to extend the
framework of KEMs based on ABO-XHPS to capture a wider class of constructions and
security proofs of CCA secure, and even CCCA secure, KEMs, so that it works as a more
general framework capturing a wider class of constructions based on the “all-but-one”
simulation paradigm as we categorized above. Such general framework can be expected
to lead to deeper understanding of constructions and security proofs of KEMs and be
useful for future design of (C)CCA secure practical KEMs and PKE schemes, and higher
level primitives/protocols that use those as building blocks.

Our Contribution. In this paper, we revisit and extend the framework for constructing
a KEM based on ABO-XHPS in [27] in several different aspects:

Firstly, we show that to prove CCA security of the ABO-XHPS-based KEM, some
requirement of ABO-XHPS and its associated one-way relation family can be relaxed.
More specifically, the original definition of an ABO-XHPS in [27] requires some un-
necessarily strong “correctness” requirement and a underlying one-way relation family
with which the ABO-XHPS is associated needs to satisfy “gap”-type one-wayness,
which requires that one-wayness holds even in the presence of the decision oracle, and
thus is a stronger type of one-wayness. Instead, we show that as long as the ABO-XHPS
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satisfies the property which we call computational soundness (CS security, for short),
the ABO-XHPS-based KEM can be shown to be CCA secure with a weaker correct-
ness requirement for the underlying ABO-XHPS and a weaker (non-gap) one-way re-
lation. (The formal definitions of an ABO-XHPS and a family of one-way relations
are given in Section 3.) Due to these relaxations, we can treat a wider class of com-
putational assumptions, and the class of CCA secure KEMs that can be captured by the
framework becomes significantly wider. Most notably, we can now treat the decisional
Diffie-Hellman (DDH) assumption as a one-way relation family, and thus several prac-
tical DDH-based KEMs (e.g. [6,12]), which was not possible by the original framework
because of the requirement of the “gap”-type one-wayness.

Secondly, we propose another computational property of ABO-XHPS which we call
“pseudorandom extraction property” (PR-Ext security, for short), and show that if an
ABO-XHPS satisfies the property, then the ABO-XHPS-based KEM achieves CCCA se-
curity. This result enables us to explain CCCA security of the KEMs whose construction
and security proof can be understood in the “all-but-one” simulation paradigm. This en-
ables us to cast CCCA secure KEMs proposed in [17] and in [13, Sect. 6] in our extended
framework.

Thirdly, we study the computational properties of ABO-XHPS themselves. Specif-
ically, we introduce yet another computational property which we call weak compu-
tational soundness (wCS security, for short), and show that wCS security is implied by
both CS security and PR-Ext security. Furthermore, we show how to combine a PR-Ext
secure ABO-XHPS and a wCS secure ABO-XHPS to obtain a CS secure ABO-XHPS.
This “transformation,” together with the above mentioned results, enables us to under-
stand the constructions and CCA security of KEMs in a modular manner. For example,
this provides us with an alternative security proof of the Cash et al. KEM [6, Sect. 5.2],
without the “trapdoor test” theorem [6, Theorem 2] that was originally used to prove its
CCA security. Moreover, combined with the above mentioned results, this result enables
us to derive a number of new variants of KEMs [8,19,17,6,12] that can be shown to be
CCA secure under the DDH or the Hashed DH (HDH) assumption [11].

Finally, we show that the ABO-XHPS-based KEM can be extended to be a multi-
recipient KEM (MR-KEM) [26,16]. Here, by MR-KEM we mean the one formalized
by Smart [26] in which all recipients recover a same session-key. (This differs from
multi-recipient PKE by Bellare et al. [1] in which each receiver may recover differ-
ent message.) From this result, we derive a number of new practical (C)CCA secure
MR-KEMs.

The results in this paper are summarized in Fig. 1. Our results enable us to capture
more existing practical CCA secure schemes than the original framework [27], derive
a number of new practical instantiations of (C)CCA secure (MR-)KEMs, and understand
the structures and security proofs of these schemes. (See Section 6 for more details.)
We believe that the framework of ABO-XHPS extended by our results widely captures
the constructions of KEMs based on the “all-but-one” simulation paradigm and leads to
deeper understanding of the constructions and security proofs of practical KEMs, and
is useful for future design of (C)CCA secure practical (MR-)KEMs.

Due to space limitations, the full proofs of the theorems in this paper will be given
in the full version. We instead give intuitive explanations for each theorem.
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Fig. 1. Summary of our results. Each box with label “X” denotes an X-secure primitive. The arrow
(X→ Y) indicates that an X-secure primitive can be used to construct a Y-secure primitive.

Related Work. The relevant general framework of constructions of PKE schemes and
KEMs is be the framework using universal hash proof systems introduced by Cramer
and Shoup [7]. This framework, as we mentioned above, can be seen as one of the gen-
eral paradigms using non-interactive proof of “well-formedness”, and captures a wide
class of practical constructions of PKE schemes and KEMs, such as Cramer-Shoup PKE
scheme [8]. Kurosawa and Desmedt [20] showed how to construct CCA secure KEM
directly from hash proof systems. The requirements in the original definition of a uni-
versal hash proof system in [7] (and in [20]) were all statistical (information-theoretic)
ones. Hofheinz and Kiltz [17] introduced computational relaxation for a universal hash
proof system, and showed that the KEM based on a hash proof system in [20] can be
shown to be CCCA secure if the underlying hash proof system satisfies some computa-
tional property.

Wee [28] recently proposed the notion of threshold extractable hash proof system,
which can be seen as a generalization of an ABO-XHPS, from “all-but-one” to “all-
but-t.” From it, he showed how to construct threshold signature schemes, threshold
encryption schemes, and broadcast encryption schemes.

2 Preliminaries

In this section, we review the basic notation and the definitions for a (multi-recipient)
KEM. Due to space limitation, the definitions for other basic primitives and computa-
tional intractability assumptions will be given in the full version.

Basic Notation. N denotes the set of all natural numbers, and if n ∈ N then [n] =
{1, . . . , n}. “x← y” denotes that x is chosen uniformly at random from y if y is a finite
set, or y is assigned to x otherwise. If S is a set, then “|S|” denotes its size. “PPTA”
denotes a probabilistic polynomial time algorithm. Unless otherwise stated, k denotes
the security parameter. IfA is an algorithm andO is a function, then “AO” denotes that
A has oracle access to O. A function f(k) : N→ [0, 1] is said to be negligible if for all
positive polynomials p(k) and all sufficiently large k ∈ N, we have f(k) < 1/p(k).

Multi-Recipient KEM. Here, we review the definition of a multi-recipient KEM (MR-
KEM). We use the definition formalized by Smart [26], where all recipients recover a
same session-key. A MR-KEM Γ consists of the following five PPTAs:
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MSetup: The setup algorithm that takes 1k as input, and outputs a set of public param-
eters pub. pub specifies the session-key space K.

MKG: The (user’s) key generation algorithm that takes pub as input, and outputs a
public/secret key pair (pk, sk). Without loss of generality, we assume that the in-
formation on pub is contained in pk and sk, and we do not write pub for the inputs
of the following algorithms.

MEnc: The encapsulation algorithm that takes a set of public keyspk = (pk1, . . . , pkn)
as input, and outputs a ciphertext c and a session-key K ∈ K.

MExt: The (deterministic) user’s ciphertext extraction algorithm that takes a user i’s
public key pki, and a ciphertext c (which is output fromMEnc) as input, and outputs
the user i’s ciphertext ci.

MDec: The (deterministic) decapsulation algorithm that takes a user i’s secret key ski
and a user i’s ciphertext ci as input, and outputs a session-key K which could be a
special symbol ⊥ meaning “invalid”.

We say that a MR-KEM satisfies correctness (resp. almost-correctness), if for all pub←
MSetup(1k) and all polynomials n = n(k), the following probability is zero (resp.
negligible).

Pr[ (pki, ski)← MKG(pub) for i ∈ [n]; (c,K)← MEnc(pk = (pk1, . . . , pkn)) :

MDec(ski,MExt(pki, c)) �= K for some i ∈ [n] ]

Security Notions. Here, we recall the definitions of indistinguishability against cho-
sen ciphertext attacks (CCA security) and against constrained chosen ciphertext attacks
(CCCA security) [17].

Let ATK ∈ {CCA, CCCA} and n ∈ N. For a MR-KEM Γ = (MSetup,MKG,MEnc,
MExt,MDec), we define the experiment ExptATKΓ,A,n(k) that an adversary A attacks Γ
under the attack type ATK as follows:

ExptATKΓ,A,n(k) : [ pub← MSetup(1k); (pki, ski)← MKG(pub) for i ∈ [n];

pk← (pk1, . . . , pkn); (c
∗,K∗

1 )← MEnc(pk); K∗
0 ← K; b← {0, 1};

b′ ← AO(pub,pk, c∗,K∗
b ); If b′ = b then return 1 else return 0 ],

where the oracle O is determined by ATK in the following ways: If ATK = CCA, then
the oracleO is the decapsulation oracleO(·, ·) which takes a user index/ciphertext pair
(i, c) as input, and outputs the result of tMDec(ski,MExt(pki, c)). If ATK = CCCA then
the oracleO is the constrained decapsulation (CDEC) oracleOcdec(·, ·, ·), which takes
a user index i, a predicate pred : K → {0, 1}, and a ciphertext c as input, and outputs a
response that is calculated as follows:

Ocdec(i, pred, c) =

{
K If MDec(ski,MExt(pki, c)) = K �= ⊥ ∧ pred(K) = 1

⊥ Otherwise

Moreover, in both cases ATK ∈ {CCA, CCCA}, A is not allowed to submit a query that
contains a user index/ciphertext pair (i, c) satisfying MExt(pki, c) = MExt(pki, c

∗) to
the oracle.
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Let A be an adversary that runs in a CCCA experiment and makes in total q queries,
and let (ij , predj , cj) be A’s j-th CDEC query. “The running time of A in the CCCA

experiment” is defined as the sum of A’s running time and the total of the maximum
running time for evaluating each predj submitted by A. “The running time of the CCCA
experiment” is defined as the total running time of ExptCCCAΓ,A (k) minus “the running time
ofA in the CCCA experiment.” For a CCCA adversaryA and an experiment E (not neces-
sarily ExptCCCAΓ,A (k)) thatA runs in, we define the parameter called (plaintext) uncertainty
uncertA,E(k) by:

uncertA,E(k) =
1

q

∑
j∈[q]

Pr[E ;K ← K : predj(K) = 1].

Finally, we say that an adversary A is a valid CCCA adversary if (1) “the running time
ofA in the CCCA experiment” is polynomial in k, and (2) uncertA,E(k) is negligible for
all experiments E whose running time is at most that of “the running time of the CCCA
experiment” thatA runs in.

For a KEM Γ , an adversary A, ATK ∈ {CCA, CCCA}, and n ∈ N we define ATK

advantage AdvATKΓ,A,n(k) of A by AdvATKΓ,A,n(k) = |Pr[ExptATKΓ,A,n(k) = 1]− 1/2|.

Definition 1. We say that a MR-KEM Γ is CCA secure if AdvCCAΓ,A,n(k) is negligible for
any PPTA A and any polynomial n = n(k). Furthermore, we say that a MR-KEM Γ
is CCCA secure if AdvCCCAΓ,A,n(k) is negligible for any valid CCCA adversary A and any
polynomial n = n(k).

Single-Recipient KEM. When we talk about ordinary “single-recipient” KEMs, we
need not consider the setup and user key generation algorithms separately. Therefore,
in order to clarify the difference between multi-recipient KEMs and ordinary KEMs,
we write the key generation, the encapsulation, and the decapsulation algorithms of a
single-recipient KEM by KG, Enc, and Dec, respectively (without the prefix “M”). The
syntax and the security notions for single-recipient KEMs are defined similarly to those
of MR-KEMs.

3 Definitions for All-But-One Extractable Hash Proof Systems

In this section, we define an ABO-XHPS and one-way relations which are necessary
for ABO-XHPS, following the definitions in [27]. However, our definitions here are
slightly different from ones in [27], and we also highlight the difference.

3.1 One-Way Relation Families

A family of relations (relation family, for short) R (that supports a PRG) is associated
with the following three PPTAs (RSetup, RSamp, G):

RSetup: The setup algorithm that takes 1k as input, and outputs a public/private pa-
rameter pair (pub, pri). pub contains the description of sets U , S,W , and K, from
which we can efficiently sample elements uniformly. pub also fixes one relation
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Rpub over U × S. We require that: (1) for all u, there is at most one s such that
(u, s) ∈ Rpub (with overwhelming probability over the choice of pub), and (2)
given pri (corresponding to pub) and (u, s) ∈ U × S, whether (u, s) ∈ Rpub or not
is efficiently decidable. For notational convenience, we assume that pub is provided
as input to the following algorithms, and do not write it explicitly.

RSamp: The sampling algorithm that (takes pub as input, and) outputs a pair (u, s) ∈
Rpub so that u is distributed uniformly over U . The randomness space of RSamp
is W , and when we need to make the randomness used to sample (u, s) explicit,
we write this process as “(u, s)← RSamp(w)” (in this case, RSamp is treated as a
deterministic algorithm).

G: The (pseudorandom) generator that takes (pub and) an element s ∈ S as input, and
outputs K ∈ K.

Hereafter, we identify a relation familyR with the associated PPTAs (RSetup,RSamp,
G), and in particular, write R = (RSetup,RSamp,G).

Definition 2. We say thatR = (RSetup,RSamp,G) is a one-way relation family if the
advantage AdvPRGR,A(k) defined below is negligible for any PPTA A:

AdvPRGR,A(k) = |Pr[(pub, pri)← RSetup(1k); (u, s)← RSamp;

K∗
1 ← G(s);K∗

0 ← K; b← {0, 1}; b′← A(pub, u,K∗
b ) : b

′ = b]− 1

2
|.

Furthermore, we say thatR is a gap one-way relation family if the advantage is negli-
gible for any PPTA adversary that is given access to the “relation” oracle which takes
(u, s) ∈ U × S as input and tells if (u, s) ∈ Rpub or not.

Difference from the Definition in [27]. The original definition of one-way relation fam-
ilies in [27] is the “gap” version here. The definition of (non-gap-)one-way relation
family is clearly weaker, thus potentially easier to achieve and captures wider class of
relation families than the gap version. For example, the “gap” one-way relation of [27]
does not capture the HDH-based Diffie-Hellman relation family we introduce below.1

Concrete Example of One-Way Relation Families: Diffie-Hellman Relation. Let G

be a group of prime order p and let H : G → K be a hash function. We say that
the hashed Diffie-Hellman (HDH) assumption holds in (G, H) if the distributions of
(g, ga, gb, H(gab)) and (g, ga, gb,K) are computationally indistinguishable, where g ∈
G, a, b ∈ Zp, and K ∈ K are chosen randomly.2

The Diffie-Hellman relation family (that supports a PRG H)RDH, indexed by pub =
(g, gα) ∈ (G)2, is defined by RDH

(g,gα) = {(u, s) ∈ (G)2|s = uα}. The associated
algorithms (RSetup,RSamp,G) are as follows: RSetup sets U = S = G andW = Zp,

1 We note that in [28], Wee introduced the definition of one-way relation families in the same
sense as the one defined here.

2 The DDH assumption is the special case of the HDH assumption in which H is the identity
function. It is possible that the DDH assumption in G is false while the HDH assumption in
(G,H) holds for some H . For more details about the HDH assumption, see [11,19,6,12] and
the full version of this paper.
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picks random elements g ∈ G and α ∈ Zp, and sets pub = (g, h) = (g, gα) and
pri = α. RSamp(w) := (gw, hw). G(s) := H(s). It is straightforward to see thatRDH

is a one-way relation family under the HDH assumption in (G, H).

3.2 All-But-One Extractable Hash Proof Systems

An ABO-XHPS is always associated with a relation family. Thus, for notational con-
venience, we denote by “XR” an ABO-XHPS X associated with a relation family R.
(If R is clear from the context, we often omit R and just write X .) Informally, an
ABO-XHPS is a special type of “designated-verifier non-interactive zero-knowledge
proof of knowledge,” and it has, as its internal structure, a family of “tag-based” hash
functions Hpk : T × U → {0, 1}∗ indexed by a public key pk (where T is the tag
space) which represents the relation of an instance u ∈ U and a (tag-based) “proof”
π = Hpk(tag, u) (with some tag ∈ T ). If π is in a valid form, we can “extract” the
answer s to the instance u satisfying (u, s) ∈ Rpub, using the secret key correspond-
ing to pk. It is possible that H itself is not efficiently computable. Furthermore, X has
“simulation” algorithms for key generation, extraction, and generating a proof. The first
two algorithms work normally as above, except for one particular tag tag∗ (used for the
simulated key generation process) under which one can generate a valid proof without
a witness (hence the name “all-but-one”).

Formally, an ABO-XHPSX , associated with a relation familyR = (RSetup,RSamp,

G), consists of six PPTAs (XKG, Pub, Ext, X̂KG, P̂riv, Êxt) that satisfy the following
“functional requirements” (correctness) with overwhelming probability over the choice
of (pub, pri)← RSetup(1k):

Extraction Mode. For all (pk, sk) ← XKG(pub, pri) and all tuples (tag, u, π): If π
= Hpk(tag, u) then (u,Ext(sk, tag, u, π)) ∈ Rpub, and if π �= Hpk(tag, u) then
Ext(sk, tag, u, π) = ⊥.

All-But-One Mode. For all tag∗ and all (pk, ŝk)← X̂KG(pub, tag∗):
Private Evaluation under tag∗: For all (u, s) ∈ Rpub: P̂riv(ŝk, u) = Hpk(tag

∗, u).
Extraction: For all tag �= tag∗ and all (u, π): If π = Hpk(tag, u) then (u, s) ∈
Rpub, where s = Êxt(ŝk, tag, u, π). (The case of π �= Hpk(tag, u) is unspecified.)

Public Evaluation. For all pk (output from either XKG or X̂KG), tag, and (u, s) =
RSamp(w): Pub(pk, tag, w) = Hpk(tag, u).

Indistinguishability of Two Modes. For all tag∗, the two distributions,
{(pk, sk) ← XKG(pub, pri) : pk} and {(pk, ŝk) ← X̂KG(pub, tag∗) : pk}, are
statistically indistinguishable.

In this paper, we also consider a slight relaxation of the extraction property of the
“all-but-one” mode. We say that an ABO-XHPS satisfies almost-correctness if for all
(pub, pri) ← RSetup(1k), all (u, s) = RSamp(w), and all (tag, tag∗) such that tag �=
tag∗, the following probability is overwhelming: Pr[(pk, ŝk) ← X̂KG(pub, tag∗) :

Êxt(ŝk, tag, u,Hpk(tag, u)) = s].
We note that the indistinguishability of the two modes implies that the information

on a tag tag∗ is statistically hidden from pk output from X̂KG(pub, tag∗).
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Difference from the Definition in [27]. Here, we explain the difference of our definition
of ABO-XHPS and the definition by Wee [27, Sect. 3.4]. Firstly, XKG algorithm in
[27] does not take the private parameter pri as input (while ours does). However, this
restriction is unnecessary for proving (C)CCA security of the ABO-XHPS-based KEM,
and thus we allow XKG to take pri as input.

Secondly, the correctness requirements of Ext and Êxt algorithms in [27] are defined
in an “if-and-only-if” style. More specifically, the correctness requirements of Ext and
Êxt algorithms in [27] are: (i) “π = Hpk(tag, u) ⇔ (u,Ext(sk, tag, u, π)) ∈ Rpub,”

and (ii) “π = Hpk(tag, u) ⇔ (u, Êxt(ŝk, tag, u, π)) ∈ Rpub.” Regarding (i), since the
definition of [27] does not specify what is output from Ext when Hpk(tag, u) �= π,
we require that it output ⊥. We stress that this is without loss of generality because
given pri, it is possible to tell whether (u,Ext(sk, tag, u, π)) ∈ Rpub or not, and pri
can be contained in sk in our definition. The main difference from the definition in this
paper and the one in [27] is regarding (ii), i.e. correctness of Êxt algorithm. It is clear
that ours requires weaker correctness since we do not specify the behavior of Êxt in
case Hpk(tag, u) �= π, while the definition in [27] does. As will be shown later, this
relaxation is the main reason that makes the framework of the ABO-XHPS-based KEM
much wider, and makes it possible to capture most known practical CCA secure KEMs,
and even CCCA secure schemes.

4 Computational Properties of ABO-XHPS

In this section, we introduce three computational properties of ABO-XHPS which are
all related to the behavior of the extraction algorithm for the all-but-one mode, i.e. Êxt,
and play important roles for proving (C)CCA security of the ABO-XHPS-based KEMs
in the next section. We also show the relationships among these properties.

4.1 Computational Soundness (CS)

“Computational soundness” (CS security) captures soundness of the Êxt algorithm, and
roughly means that it is hard to find an “invalid proof” π from which Êxt extracts some
value that is not ⊥. This is, it is hard to find a tuple (tag, u, π) satisfying tag �= tag∗,

Hpk(tag, u) �= π, and Êxt(ŝk, tag, u, π) �= ⊥, where (pk, sk) ← X̂KG(pub, tag∗).
Formally, consider the experiment ExptCSX ,A(k) that an adversaryA = (A1,A2) runs in
as in Fig. 2 (top-left).

Definition 3. We say that an ABO-XHPS X satisfies computational soundness (CS se-
cure, for short), if the advantage AdvCSX ,A(k) = Pr[ExptCSX ,A(k) = 1] is negligible for
any PPTAA.

Concrete CS Secure ABO-XHPS. The factoring-based ABO-XHPS [27, Sect. 4.2], the
(non-twin-)Diffie-Hellman-based one [27, Sect. 5.1] in case instantiated with bilinear
groups, and the twin Diffie-Hellman-based one [27, Sect. 5,2] shown by Wee, are in fact
all CS secure. The Êxt algorithm of these ABO-XHPS satisfy the “if-and-only-if”-style
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ExptCSX ,A(k) :

(pub, pri)← RSetup(1k);
(tag∗, st)← A1(pub);

(pk,̂sk)← X̂KG(pub, tag∗);
AOCS

2 (pk, st);
If A2 submits to oracle OCS

at least one query
(tag′, u′, π′) such that

tag′ �= tag∗

∧ Hpk(tag
′, u′) �= π′

∧ ̂Ext(̂sk, tag′, u′, π′) �= ⊥
then return 1 else return 0

The oracle in ExptCSX ,A(k):

OCS(tag, u, π) =
{

̂Ext(̂sk, tag, u, π) If tag �= tag∗

⊥ Otherwise

The oracle in ExptPR-ExtX ,A (k) and ExptwCSX ,A(k):

OPR-Ext(tag, u, π) = OwCS(tag, u, π) =
{

̂Ext(̂sk, tag, u, π) If tag �= tag∗ ∧ Hpk(tag, u) = π

⊥ Otherwise

ExptPR-ExtX ,A (k) :

(pub, pri)← RSetup(1k);
(tag∗, st)← A1(pub);

(pk,̂sk)← X̂KG(pub, tag∗);
(tag′, u′, π′, st′)← AOPR-Ext

2 (pk, st);
s′1 ← ̂Ext(̂sk, tag′, u′, π′);
s′0 ← S ;
b← {0, 1};
b′ ← A3(s

′
b, st

′);
If b′ = b then return 1 else return 0

ExptwCSX ,A(k) :

(pub, pri)← RSetup(1k);
(tag∗, st)← A1(pub);

(pk,̂sk)← X̂KG(pub, tag∗);
(tag′, u′, π′, s′)← AOwCS

2 (pk, st);
If tag′ �= tag∗

∧ Hpk(tag
′, u′) �= π′

∧ s′ = ̂Ext(̂sk, tag′, u′, π′)
= ̂Ext(̂sk, tag′, u′,Hpk(tag

′, u′))
then return 1 else return 0

Fig. 2. The CS experiment (top-left), the PR-Ext experiment (bottom-left), the wCS experiment
(bottom-right), and the definitions of the oracles (top-right)

correctness, and additionally have the property that invalid proofs π �= Hpk(tag, u)
can be detected publicly or by using a secret key of the ABO-XHPS. Furthermore,
the recently proposed practical CCA secure KEMs based on the HDH and the DBDH
assumptions can be understood as CS secure ABO-XHPS. These include (a simplified
version of) the KEM in [5], [6, Sect. 5.2], and [13, Sect. 4]. Concretely, here we show the
ABO-XHPS XCKS based on the KEM by Cash et al. [6, Sect. 5.2], which is associated
with the HDH-based Diffie-Hellman relation family RDH, as in Fig. 3. XCKS can be
proved to be CS secure because the truth value of the validity check in the Êxt algorithm
of XCKS is the same as the truth value of the validity check in the Ext algorithm with
overwhelming probability, due to the “trapdoor test” [6, Theorem 2]. In the full version,
we also show ABO-XHPS based on the KEMs in [5] and [13, Sect. 4].

4.2 Pseudorandom Extraction Property (PR-Ext)

The “pseudorandom extraction property” (PR-Ext security) guarantees that if the Êxt
algorithm is given (tag, u, π) such that Hpk(tag, u) �= π and tag �= tag∗, then the

extracted value s = Êxt(ŝk, tag, u, π) looks pseudorandom. In the context of the ABO-
XHPS-based KEMs (that will be shown later), this property means that when c = (u, π)

is an inconsistent ciphertext, if we extract s from Êxt, then the seed s of the session-key
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XKG(pub = (g, h), pri = α) :
x, y1, y2 ← Zp; X ← gx

Yi ← gyi for i ∈ [2]
pk ← (g, h,X, Y1, Y2)
sk ← (α, x, y1, y2)
Return (pk, sk)

X̂KG(pub = (g, h), tag∗) :
z′, z1, z2, z3 ← Zp; X ← gz

′
h−tag∗

Y1 ← gz1h−z2 ; Y2 ← gz3Y −tag∗
1

pk ← (g, h,X, Y1, Y2)
̂sk ← (z′, z1, z2, z3, tag∗)
Return (pk,̂sk)

Pub(pk, tag, w) :
π1 ← (htagX)w; π2 ← (Y tag

1 Y2)
w

Return π ← (π1, π2)

̂Priv(̂sk, u) :

π1 ← uz′ ; π2 ← uz3

Return π ← (π1, π2)

Ext(sk, tag, u, π) :
If uα·tag+x = π1 and uy1·tag+y2 = π2

then return s← uα else return ⊥

̂Ext(̂sk, tag, u, π) :

s← (π1 · u−z′)
1

tag−tag∗ ; s′ ← (π2 · u−z3)
1

tag−tag∗

If sz2s′ = uz1 then return s else return ⊥

Fig. 3. The CS secure ABO-XHPS XCKS. The internal hash function family is defined by
Hpk(tag, u) = ((htagX)w, (Y tag

1 Y2)
w) where u = gw.

K = G(s) looks like a uniformly random value. This property is like computational
universal2 [17] for a “Cramer-Shoup” type HPS [7], and plays a key role for showing
CCCA security of the ABO-XHPS-based KEMs that will be given in the next section.
Formally, consider the experiment ExptPR-ExtX ,A (k) that an adversary A = (A1,A2,A3)
runs in as in Fig. 2 (bottom-left). In the experiment, it is required that (tag′, u′, π′) in
A2’s output satisfy tag′ �= tag∗ and Hpk(tag

′, u′) �= π′.

Definition 4. We say that an ABO-XHPS X has the pseudorandom extraction property
(PR-Ext secure, for short), if the advantage AdvPR-ExtX ,A (k) = |Pr[ExptPR-ExtX ,A (k) =
1]− 1/2| is negligible for any PPTA A.

Concrete PR-Ext Secure ABO-XHPS. Here, we show a concrete ABO-XHPS based on
the KEM by Hofheinz and Kiltz [17] and the KEM by Hanaoka and Kurosawa [13, Sect.
6], both of which are associated with the HDH-based Diffie-Hellman relation RDH.
The ABO-XHPS XHoKi based on [17] and the ABO-XHPS XHaKu based on [13, Sect.
6] are constructed as in Fig. 4. XHoKi can be proved PR-Ext secure roughly because
the value z2 generated in X̂KG is information-theoretically hidden from pk and values
s extracted from a “correct” proof π = Hpk(tag, u) using Êxt, while it appears in a
value s extracted from an “invalid proof π satisfying π �= Hpk(tag, u) and makes the

extracted value s look like a random value in G. The value β generated in X̂KG of
XHaKu plays a similar role. We also note that XHaKu satisfies only almost-correctness,
as Êxt cannot extract a value when tag = β. However, it suffices for showing CCCA

security of the ABO-XHPS-based KEM shown in the next section.

4.3 Weak Computational Soundness (wCS)

“Weak computational soundness” (wCS security) guarantees that it is hard to find an
“invalid” proof π �= Hpk(tag, u) such that if we extract a value s with Êxt from the in-
valid π, then the value s is the same as the value that is extracted from a “correct” proof
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XKG(pub = (g, h), pri = α) :
x1, x2 ← Zp

Xi ← gxi for i ∈ [2]
pk ← (g, h,X1, X2)
sk ← (α, x1, x2)
Return (pk, sk)

X̂KG(pub = (g, h), tag∗) :
z1, z2, z3 ← Zp

X1 ← gz1hz2 ; X2 ← gz3h−z2·tag∗

pk ← (g, h,X1, X2)
̂sk ← (z1, z2, z3, tag

∗)
Return (pk,̂sk)

Pub(pk, tag, w) : ̂Priv(̂sk, u) :

π ← (Xtag
1 X2)

w π ← uz1·tag∗+z3

Return π Return π

Ext(sk, tag, u, π) :
If ux1·tag+x2 = π then
return s← uα else return ⊥

̂Ext(̂sk, tag, u, π) :

s← (π · u−(z1·tag+z3))
1

z2(tag−tag∗)

Return s

XKG(pub = (g, h), pri = α) :
a0 ← α; A0 ← h; a1, a2 ← Zp

Ai ← gxi for i ∈ [2]; Let f(x) :=
∑2

i=0 aix
i

pk ← (g,A0, A1, A2); sk← f(·)
Return (pk, sk)

X̂KG(pub = (g, h), tag∗) :
β, z1, z2 ← Zp; A0 ← h

Compute(∗) A1 = ga1 and A2 = ga2 s.t.
(f(0), f(tag∗), f(β)) = (α, z1, z2)

pk ← (g,A0, A1, A2); ̂sk ← (β, z1, z2, tag
∗)

Return (pk,̂sk)

Pub(pk, tag, w) : ̂Priv(̂sk, u) :

Return π ← (A0A
tag
1 Atag2

2 )w Return π ← uz1

Ext(sk, tag, u, π) :

If uf(tag) = π then
return s← uα else return ⊥
̂Ext(̂sk, tag, u, π) :
If tag = β then return ⊥
Let f ′ be a degree-2 polynomial s.t.
(f ′(tag), f ′(tag∗), f ′(β)) = (logu π, z1, z2)

Compute(∗) and return s← uf ′(0)

Fig. 4. The PR-Ext secure ABO-XHPS XHoKi (left) and XHaKu (right). The internal hash func-
tion family of XHoKi is defined by Hpk(tag, u) = (Xtag

1 X2)
w, and that of XHaKu is defined by

Hpk(tag, u) = (A0A
tag
1 Atag2

2 )w, where u = gw. (∗) In XHaKu, The values A1 and A2 in X̂KG

and the value uf ′(0) in ̂Ext can be computed by Lagrange interpolation in the exponent [13].

π′ = Hpk(tag, u). Formally, consider the experiment ExptwCSX ,A(k) that an adversary
A = (A1,A2) runs in as in Fig. 2 (bottom-right).

Definition 5. We say that an ABO-XHPS X satisfies weak computational soundness
(wCS secure, for short), if the advantage AdvwCSX ,A(k) = Pr[ExptwCSX ,A(k) = 1] is negligi-
ble for any PPTA A.

We show that wCS security is indeed weaker than both CS and PR-Ext security.

Theorem 1. Let R be a relation family and let X be an ABO-XHPS associated with
R. Assume that R is a one-way relation family, and X is either CS secure or PR-Ext
secure. Then X is wCS secure.

Intuition. If X is CS secure, then it is hard to find an invalid proof π �= Hpk(tag, u)
from which we can extract some value that is not ⊥, and thus wCS security is satisfied.
If X is PR-Ext secure, then an extracted value s from an invalid proof π �= Hpk(tag, u)

is pseudorandom, which will be different from the value Êxt(ŝk, tag, u,Hpk(tag, u))
with overwhelming probability, and thus wCS security is satisfied.

Concrete wCS Secure ABO-XHPS. By definition, any ABO-XHPS whose Êxt algorithm
satisfies the “if-and-only-if”-style correctness of [27], is automatically wCS secure (and
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XKG(pub = (g, h), pri = α) :
x← Zp; X ← gx

Return pk ← (g, h,X) and sk ← (α, x)

X̂KG(pub = (g, h), tag∗) :
z ← Zp; X ← gzh−tag∗

Return pk ← (g, h,X) and ̂sk← (z, tag∗)
Pub(pk, tag, w) :
Return π ← (htagX)w

̂Priv(̂sk, u) :
Return π ← uz

Ext(sk, tag, u, π) :
If uα·tag+x = π then
return s← uα else return ⊥

̂Ext(̂sk, tag, u, π) :

Return s← (π · u−z)
1

tag−tag∗

Fig. 5. The wCS secure ABO-XHPS XKiltz . The internal hash function family is defined by
Hpk(tag, u) = (htagX)w where u = gw.

hence all XHPS shown in [27] is wCS secure). Here, we show another concrete ex-
ample of a wCS secure ABO-XHPS, which is based on the KEM by Kiltz [19] and is
associated with the Diffie-Hellman relation family RDH. (This is a variant of the (non-
twin-)Diffie-Hellman-based ABO-XHPS in [27, Sect. 5.1].) Specifically, the example
of the ABO-XHPS, which we call XKiltz, is as in Fig. 5. XKiltz can be shown to be wCS
secure because there is no tuple (tag, u, π, s) that satisfies the winning condition of an
adversary A in the wCS experiment. Namely, if tag �= tag∗ and π �= Hpk(tag, u), then

it is guaranteed that Êxt(ŝk, tag, u, π) �= Êxt(ŝk, tag, u,Hpk(tag, u)).

4.4 Combining PR-Ext and wCS to Obtain CS

Here, we propose a “transformation” for obtaining a CS secure ABO-XHPS from
PR-Ext secure one and wCS secure one. Let R be a relation family, and for i ∈ [2],

let Xi = (XKGi,Pubi,Exti, X̂KGi, P̂rivi, Êxti) be an ABO-XHPS which is associated
with R. Furthermore, let H(i) be the internal hash function family of Xi. Then, us-
ing X1 and X2 as building blocks, we construct another ABO-XHPS X ′ = (XKG′,

Pub′, Ext′, X̂KG
′
, P̂riv

′
, Êxt

′
), which is associated with the same R, as in Fig. 6. Let

PK = (pk1, pk2) be a public key of X ′. Then the internal hash function family H′ of
X ′ is defined by H′

PK(tag, u) = (π1, π2) = (H
(1)
pk1

(tag, u),H
(2)
pk2

(tag, u)).
The following theorem holds.

Theorem 2. Let R be a relation family and let X1 and X2 be ABO-XHPS associated
withR. Assume thatR is a one-way relation family, X1 andX2 are PR-Ext secure and
wCS secure, respectively. Then the ABO-XHPS X ′ constructed as in Fig. 6 is CS secure.

Intuition. In order for an adversary A against the CS security of X ′ to win, it has to
make a query (tag, u, π = (π1, π2)) of either of the following types: (1) tag �= tag∗

∧ H
(1)
pk1

(tag, u) �= π1 ∧ Êxt1(ŝk1, tag, u, π1) = Êxt2(ŝk2, tag, u, π2) �= ⊥, or (2)

tag �= tag∗ ∧ H
(1)
pk1

(tag, u) = π1 ∧ H
(2)
pk2

(tag, u) �= π2 ∧ Êxt1(ŝk1, tag, u, π1) =

Êxt2(ŝk2, tag, u, π2) �= ⊥. However, a tuple of the first type is hard to find due to the
PR-Ext security ofX1, because if the query is of first type, then the extracted value s1 =

Êxt1(ŝk1, tag, u, π1) is a pseudorandom and is different from s2 = Êxt2(ŝk2, tag, u, π2)
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XKG′(pub, pri) :
(pki, ski)← XKGi(pub, pri) for i ∈ [2]
PK ← (pk1, pk2); SK ← (sk1, sk2)
Return (PK,SK)

X̂KG
′
(pub, tag∗) :

(pki,̂ski)← X̂KGi(pub, tag
∗) for i ∈ [2]

PK ← (pk1, pk2); ̂SK ← (̂sk1,̂sk2)

Return (PK,̂SK)

Pub′(PK, tag, w) :
πi ← Pubi(pki, tag, w) for i ∈ [2]
Return π ← (π1, π2)

̂Priv
′
(̂SK, u) :

πi ← ̂Privi(̂ski, u) for i ∈ [2]
Return π ← (π1, π2)

Ext′(SK, tag, u, π) :
si ← Exti(ski, tag, u, πi) for i ∈ [2]
If s1 = s2 �= ⊥ then return s1

else return ⊥

̂Ext
′
(̂SK, tag, u, π) :

si ← ̂Exti(̂ski, tag, u, πi) for i ∈ [2]
If s1 = s2 �= ⊥ then return s1

else return ⊥

Fig. 6. The transformation for obtaining a CS secure ABO-XHPSX ′ from a PR-Ext secure ABO-
XHPS X1 and a wCS secure ABO-XHPS X2

with overwhelming probability, regardless of the value s2. Furthermore, a query of the
second type is also hard to find because such tuple can be directly used to break the
wCS security of X2. More specifically, the condition H

(1)
pk1

(tag, u) = π1 guarantees s1

= Êxt1(ŝk1, tag, u, π1) = Êxt2(ŝk2, tag, u,H
(2)
pk2

(tag, u)) due to the correctness of the
all-but-one mode of ABO-XHPS. Therefore, the tuple (tag, u, π2, s1) with tag �= tag∗

and H
(2)
pk2

(tag, u) �= π2 satisfies the winning condition of the wCS experiment.

5 KEMs Based on ABO-XHPS

In this section, we show our results regarding the KEMs based on ABO-XHPS. Specif-
ically, we show that CCA security of the ABO-XHPS-based KEM can be shown without
using gap version of one-way relation families and the stronger correctness requirement
defined in [27], and instead a (non-gap) one-way relation family and our weaker cor-
rectness, together with CS security, suffices. Furthermore, we show that the KEM can be
shown to be CCCA secure if the ABO-XHPS satisfies PR-Ext security. Finally, we show
that using the ABO-XHPS in a slightly different way, the ABO-XHPS-based KEM can
be extended to be a (C)CCA secure MR-KEM.

5.1 Single-Recipient KEM

Let R = (RSetup,RSamp,G) be a relation family, X = (XKG, Pub, Ext, X̂KG, P̂riv,
Êxt) be an ABO-XHPS associated with R, and TCR : U → T be a target collision
resistant hash function (TCRHF).3 Then we construct a KEM Γ1 = (KG,Enc,Dec)
based on the ABO-XHPS X as in Fig. 7 (left).

3 Roughly, an efficiently computable function TCR is said to be a TCRHF if given a random
input x, it is hard to find another input x′ such that TCR(x) = TCR(x′)∧x �= x′. The formal
definition can be found in the full version or in the papers [19,17,12,18,27].
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KG(1k) :
(pub, pri)← RSetup(1k)
(pk, sk)← XKG(pub, pri)
Return (pk, sk)

Enc(pk) :
w←W
(u, s)← RSamp(w)
tag← TCR(u)
π ← Pub(pk, tag, w)
c← (u, π); K ← G(s)
Return (c,K)

Dec(sk, c) :
(u, π)← c; tag← TCR(u)
s← Ext(sk, tag, u, π)
If s = ⊥ then return ⊥
Return K ← G(s)

MSetup(1k) :
(pub, pri)← RSetup(1k)
Return pub

MKG(pub) :
dummy← T
(pk,̂sk)← X̂KG(pub, dummy)

SK ← (̂sk, dummy)
Return (pk, SK)

MExt(pki, c) :
(u,π)← c; (π1, . . . , πn)← π
Return ci ← (u, πi)

MEnc(pk) :
(pk1, . . . , pkn)← pk
w ←W
(u, s)← RSamp(w)
tag← TCR(u)
πi ← Pub(pki, tag, w)

for i ∈ [n]
π ← (π1, . . . , πn)
c← (u,π); K ← G(s)
Return (c,K)

MDec(SKi, ci) :

(̂ski, dummyi)← SKi; (u, πi)← ci; tag← TCR(u)

If tag �= dummyi and s = ̂Ext(̂ski, tag, u, πi) �= ⊥
then return K ← G(s) else return ⊥

Fig. 7. The (single-recipient) KEM Γ1 (left) and the MR-KEM ΓM (right)

CCA Security. Wee [27] showed the following.4

Theorem 3. ([27]) If R is a gap one-way relation family, XR is an ABO-XHPS, and
TCR is a TCRHF, then the KEM Γ1 is CCA secure.

We show that the same KEM Γ1 can be proved in the following way, without using a
“gap” one-way relation family.

Theorem 4. IfR is a one-way relation family, XR is an ABO-XHPS which satisfies CS
security, and TCR is a TCRHF, then the KEM Γ1 is CCA secure.

Intuition. To ensure that the real challenge key K∗
1 = G(s∗) looks random for a CCA ad-

versaryA, we have to use pseudorandomness of the generatorG of the one-way relation
R. However, the reduction algorithm B, who attacks pseudorandomness of G, needs to
simulate the CCA experiment for A without knowing the private parameter pri or the
randomness w∗ used to sample (u∗, s∗) ∈ Rpub. B therefore simulates the CCA exper-

iment for A by using the all-but-one mode of the ABO-XHPS X . The P̂riv algorithm
enables B to generate the challenge ciphertext c∗ = (u∗, π∗) correctly, using ŝk output

from X̂KG(pub, tag∗) where tag∗ = TCR(u∗). However, since we do not use “gap”
one-way relation family, B does not have access to the relation oracle Rpub, and thus
cannot check inconsistency of a ciphertext by itself. Here, CS security of X guarantees
that even if A submits an invalid ciphertext c = (u, π) with Hpk(TCR(u), u) �= π, the

Êxt algorithm almost perfectly works like the Ext algorithm in the real decapsulation
algorithm in Dec of Γ1. In doing so, the TCRHF TCR enables B to always use Êxt,

4 As we have mentioned, Wee’s definition of ABO-XHPS in [27] requires stronger correctness
for ̂Ext algorithm. However, CCA security of the ABO-XHPS-based KEM can be shown with-
out this requirement.
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so that the problematic situation where tag = TCR(u) = tag∗ never occurs. Then, in-
distinguishability of two modes guarantees that A’s behavior cannot be non-negligibly
different between the case in which the experiment is simulated by B with the all-but-
one mode, and the case in which A is in the original CCA experiment.

CCCA Security. We show that the KEM Γ1 based on the ABO-XHPS X is CCCA secure,
when X is PR-Ext secure.

Theorem 5. If R is a one-way relation family, XR is an ABO-XHPS which satisfies
PR-Ext security, and TCR is a TCRHF, then the KEM Γ1 is CCCA secure.

Intuition. The intuitive explanation on the proof of this theorem is very close to that of
Theorem 4. The difference is that we can no longer expect that the Êxt algorithm can be
used to reject an invalid ciphertext c = (u, π) with π �= Hpk(TCR(u), u), because X is
not guaranteed to be CS secure. However, recall that PR-Ext security of X guarantees
that an extracted value s from an invalid input is a pseudorandom value in S, which in
turn guarantees that K = G(s) ∈ K is also pseudorandom and thus unpredictable to the
adversaryA. Recall also that a valid CCCA adversary has to control its “uncertainty” to
be negligible. These help thatA’s CDEC query with an invalid ciphertext is “implicitly”
rejected, and thus the main reduction algorithm B’s simulation of the CCCA experiment
forA are guaranteed to be almost perfect.

5.2 Multi-Recipient KEM

Here, we show how to construct a MR-KEM using ABO-XHPS. Using the same build-
ing blocks (R,X , and TCR) as in Γ1, we construct a MR-KEM ΓM = (MSetup,MKG,
MEnc,MExt,MDec) as in Fig. 7 (right).

The main feature of the MR-KEM ΓM is that we use the all-but-one mode of the
underlying ABO-XHPS X even for normal operations, namely, each user’s key is setup
with X̂KG using a “dummy tag” dummy. This is to setup users’ keys without using the
private parameter pri corresponding to pub, which makes it possible to share pub with
many users. Since Êxt cannot extract a value when it is invoked with the tag that is
used to generate ŝk, the decapsulation algorithm MDec rejects a user i’s ciphertext c =
(u, πi) satisfying TCR(u) = dummy, even if c is honestly generated by using MEnc.
Therefore, our MR-KEM ΓM does not have perfect correctness. However, it satisfies
almost-correctness: The information on dummy in a user’s secret key is information-
theoretically hidden from entities other than the user who holds dummy. Therefore, it
is hard to find a ciphertext c = (u,π) that satisfies TCR(u) = dummy, regardless of
the validity of c.

Hiwatari et al. [16] proposed two MR-KEMs. Their first scheme, which is CCA se-
cure, is based on the KEM by [6, Sect. 5.2], while their second scheme, which is CCCA
secure, is based on the KEM by [13, Sect. 5]. Both of their schemes can be seen as con-
crete instantiations of the MR-KEM ΓM : Their first one is based on the ABO-XHPS
XCKS, while their second one is based on the ABO-XHPS XHaKu. From another view-
point, our MR-KEM based on ABO-XHPS is a generalization of Hiwatari et al.

Theorem 6. IfR is a one-way relation, XR is an ABO-XHPS which satisfies CS secu-
rity, and TCR is a TCRHF, then the MR-KEM ΓM is CCA secure.



348 T. Matsuda and G. Hanaoka

Theorem 7. If R is a one-way relation, XR is an ABO-XHPS which satisfies PR-Ext
security, and TCR is a TCRHF, then the MR-KEM ΓM is CCCA secure.

The proofs proceed similarly to those of Theorems 4 and 5. The difference is that here,
we start from the situation in which each user’s key is generated by X̂KG with dummy
tag dummy, while in the proofs of Theorems 4 and 5, we started from the situation in
which each user’s key is generated by XKG. We also have to deal with the difference
between multi-recipient (n users) and single-recipient environments, but this can be
essentially dealt with users’ key-wise hybrid argument.

6 Discussion

Capturing a Wider Class of Constructions and Security Proofs. We see that by our
results, the framework of KEMs based on ABO-XHPS captures most practical (C)CCA
secure KEMs. Concretely, many existing CCA secure KEMs can be seen as concrete
instantiations derived from our extended framework, which include KEMs by Boyen et
al. [5], Cash et al. [6, Sect. 5.2], and Hanaoka and Kurosawa [13, Sect. 4], and the CCCA
secure KEMs by Hofheinz and Kiltz [17] and Hanaoka and Kurosawa [13, Sect. 6].

Interestingly, the extraction mode of the ABO-XHPS XCKS based on the Cash et al.
KEM [6, Sect. 5.2] is exactly the same as that of the CS secure ABO-XHPS obtained
via the transformation (Theorem 2) using the PR-Ext secure ABO-XHPS XHoKi and
the wCS secure ABO-XHPS XKiltz. Therefore, Theorems 2 and 4 provide us with an
alternative proof of CCA security of Cash et al. KEM, without using the trapdoor test
theorem [6, Theorem 2]. We see that this is a concrete evidence that our results are use-
ful for understanding constructions and security proofs of practical CCA secure KEMs
in a modular manner.

As is the same with the original framework [27], our results also work for k-wise
product relation (i.e. k-independent copies of relation families). This extension is useful
to capture hardcore bit-based constructions of KEMs in the framework of ABO-XHPS.
However, the clear disadvantage of this approach is that the ciphertext size of the KEM
derived from the ABO-XHPS for the k-wise product relation becomes linear in k.

Strictly speaking, ours (and the original framework in [27]) still does not capture
the CCA secure KEMs whose session-key is derived using hardcore bits but whose ci-
phertext size is constant (e.g. [13,14,15,29]). Technically, the security proofs of these
KEMs require hybrid argument to replace the real session-key bit-by-bit to finally reach
the game in which the real session-key is truly random (and thus an adversary has
zero advantage), while the security proofs of the ABO-XHPS-based KEMs in our work
and in [27], do not allow this approach. Moreover, it seems to us that how to derive
many hardcore-bits in each scheme is quite dependent on the algebraic structure of
the constructions. However, we note that at least the “basic structures” of the KEMs
in [15,29], which do not consider hardcore-bit-based session-key derivation but derive
key by considering “the corresponding (hashed version of) decisional problems, can
be seen as concrete instantiations from our extended framework. To extend the frame-
work of ABO-XHPS-based KEMs further to capture these constructions will be worth
tackling.
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New Instantiations of (MR-)KEMs. Due to Theorems 4, 5, 6, and 7, we can derive
a number of new (C)CCA secure (MR-)KEMs. Specifically, due to Theorem 2, we can
construct a CS secure ABO-XHPS from a PR-Ext secure ABO-XHPS and a wCS secure
ABO-XHPS, or from two PR-Ext secure ABO-XHPS via Theorem 1 (i.e. one of the
two ABO-XHPS is treated as a wCS secure ABO-XHPS). Therefore, using the ABO-
XHPS we show in Section 4, we can derive a number of variants of KEMs [8,6,12]:
we can obtain a CS secure ABO-XHPS by the combination of XHoKi and XKiltz (which
happens to be essentially identical to XCKS as mentioned above) and the combination of
XHaKu and XKiltz. We can also obtain a new CS ABO-XHPS by combining XHoKi and
XHaKu, two independent instances of XHoKi, and two independent instances of XHaKu.
Then, from these CS secure ABO-XHPS, we derive new CCA secure KEMs and MR-
KEMs, due to Theorems 4 and 6, respectively.

Furthermore, we can also obtain a number of practical MR-KEMs from existing
ABO-XHPS. For example, from the CS secure ABO-XHPS based on the KEM by
Boyen et al. [5] (which can be found the full version), we obtain a CCA secure MR-
KEM based on the DBDH assumption whose ciphertext size is n + 1 group elements
when sending to n recipients. This construction is the most efficient CCA secure MR-
KEM in terms of ciphertext size. Moreover, by using the factoring-based ABO-XHPS
shown in [27, Sect. 4.2] (which is CS secure), we obtain a CCA secure factoring-based
MR-KEM which is more efficient than the construction that naively concatenates the
ciphertexts from a single-recipient KEM by Hofheinz and Kiltz [18].

Finally, we stress that the advantages of our results are not only the efficiency of the
concretely derived (MR-)KEMs, but also the strengthening of the framework of [27],
which we believe is useful for future design of (C)CCA secure (MR-)KEMs.
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