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Abstract. In ACM CCS 2008, Boldyreva et al. proposed an elegant way
of achieving an Identity-based Encryption (IBE) with efficient revoca-
tion, which we call revocable IBE (RIBE). One of the significant benefit
of their construction is scalability, where the overhead of the trusted
authority is logarithmically increased in the number of users, whereas
that in the Boneh-Franklin naive revocation way is linearly increased.
All subsequent RIBE schemes follow the Boldyreva et al. security model
and syntax. In this paper, we first revisit the Boldyreva et al. security
model, and aim at capturing the exact notion for the security of the naive
but non-scalable Boneh-Franklin RIBE scheme. To this end, we con-
sider a realistic threat, which we call decryption key exposure. We also
show that all prior RIBE constructions except for the Boneh-Franklin
one are vulnerable to decryption key exposure. As the second contribu-
tion, we revisit approaches to achieve (efficient and adaptively secure)
scalable RIBE schemes, and propose a simple RIBE scheme, which is
the first scalable RIBE scheme with decryption key exposure resistance,
and is more efficient than previous (adaptively secure) scalable RIBE
schemes. In particular, our construction has the shortest ciphertext size
and the fastest decryption algorithm even compared with all scalable
RIBE schemes without decryption key exposure resistance.

Keywords: Identity-based encryption with revocation, decryption key
exposure.

1 Introduction

Identity-based Encryption (IBE) provides an important alternative way to avoid
the need for a public key infrastructure (PKI). Revocation capability is very
important for IBE setting as well as PKI setting. An efficient way to revoke
users in the traditional PKI setting has been studied in numerous studies
[2, 17, 18, 20, 30–33]. In contrast to PKI setting, there are only a few stud-
ies on IBE setting. First, Boneh and Franklin [11] consider one naive revocation
way as follows. Let ID be a receiver’s identity and T be a time to be decrypted.
An encryptor uses (ID, T ) as the public key, and a trusted authority, called key
generation center (KGC), issues private keys pvk(ID,T ) for all non-revoked user
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IDs on each time period T via secure channels.1 We call the Boneh-Franklin
revocable IBE (RIBE) scheme BF-RIBE. However, the BF-RIBE does not scale
well; that is, the overhead on KGC is linearly increased in the number of users.
Recently, some studies [7, 13, 28] have aimed at offering scalability in the RIBE
scheme while preserving the same security level as the BF-RIBE.

For the first time, Boldyreva et al. [7] formalized the security model of RIBE
by capturing possible threats, and proposed the first scalable RIBE (BGK-RIBE)
scheme by combining Fuzzy IBE [36] with a binary tree data structure, which
was previously used in a revocation scheme [32]; Each user is given a long-term
secret key skID from KGC (via a secure channel as in IBE), and KGC broadcasts
key update kuT in each time period T (i.e., no secure channel is required in
this phase). Only a non-revoked user can generate a short-term decryption key
dkID,T from skID and kuT , which can be used to decrypt ciphertexts in time T .
By using a binary tree data structure, the size of kuT can be much smaller than
the overhead of KGC in the BF-RIBE scheme.2 Several scalable RIBE schemes
have been proposed and those are provably secure in the Boldyreva et al. security
model.

Our Contribution. Our contribution consists of two parts. First, we separate
the Boldyreva et al. security model and the security level of the BF-RIBE by
introducing a new realistic threat, which we call decryption key exposure, and
also show that all previous RIBE schemes, except the BF-RIBE, are vulnerable
to decryption key exposure.3 That is, we show that the Boldyreva et al. secu-
rity model does not fully capture the exact notion for security of the BF-RIBE
scheme. Roughly speaking, the Boldyreva et al. security model allows an ad-
versary to obtain any secret keys of a chosen identity. The only one restriction
is that if the adversary obtains skID∗ of the challenge identity ID∗, then ID∗

should be revoked before the challenge time T ∗. This model is a natural ex-
tension of the security of the ordinary IBE scheme. However, does this security
model formalize all realistic threats? For example, if the short-term decryption
key dkID,T (T �= T ∗) is leaked, is the RIBE scheme still secure? The answer to
this question may naturally appear to be ‘yes’ since the adversary can obtain
secret keys of any chosen identity, and the decryption key can be generated from
a secret key and (public) key update. But to show this thinking is wrong, we
give an exceptional attack (decryption key exposure), wherein an adversary is
allowed to obtain a decryption key dkID∗,T with the condition T �= T ∗. This
setting is based on the similar attitude of key-insulated PKE [16], where it is
desired that no information of the plaintext is revealed from a ciphertext even if

1 Boldyreva et al. [7] provided an alternative way for this naive solution to avoid a
secure channel, wherein the previous-time key is used to establish a public channel.
However, this does not match the framework of RIBE, and thus we do not discuss
it in this paper.

2 In fact, the size of kuT is O(R log(N/R)) if R ≤ N/2, and O(N − R), otherwise,
where N is the number of users and R is the number of revoked users.

3 We do not contradict the security proofs given in previous schemes. Our attack is
positioned in outside of their security models.
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Table 1. (Pairing-based) Revocable IBE schemes

CT Dec. Mpk Model Scalability DKE Assumption
size cost size resistance

BF [11] 1τG + 1τH 1p 3τG RO,
√

BDH
+2hash ft. Adaptive

BGK [7] 3τG + 1τGt 4p 6τG Standard,
√

DBDH
Selective

LV [28] 3τG + 2τGt 3p (n+ 6)τG Standard,
√

DBDH
Adaptive

Ours 3τG + 1τGt 3p (n+ 6)τG Standard,
√ √

DBDH
Adaptive

τG and τGt are the sizes of groups G and Gt, respectively, over which a bilinear pairing
e : G × G → Gt is defined. τH is the range-size of a hash function. p is the cost for
performing a bilinear pairing e. n is the size of the identity space. RO (Standard, respec-
tively) is a random oracle model (standard model, respectively). Selective (Adaptive,
respectively) means a selective-security model (adaptive-security model, respectively).
‘DKE’ means decryption key exposure. (D)BDH is (Decisional) Bilinear Diffie-Hellman
assumption.

all (short-term) decryption keys of a “different time period” are exposed. This
kind of attack is not covered by the Boldyreva et al. security model; that is,
the adversary may obtain not a secret key skID∗ but a decryption key dkID∗,T ,
and ID∗ can still be alive in the system in the challenge time period T ∗ �= T .
However, we can easily show that the BF-RIBE is still secure against decryption
key exposure since every decryption key in the BF-RIBE is a private key with a
distinct identity (ID, T ) in the Boneh-Franklin IBE scheme.

Next, we revisit approaches to achieve (adaptively secure) scalable RIBE
schemes, and propose a simple RIBE scheme by combining the (adaptively se-
cure) Waters IBE scheme [38] and the (selectively secure) Boneh-Boyen IBE
scheme [8]. This is the first scalable RIBE scheme with decryption key expo-
sure resistance, and is more efficient than previous (adaptively secure) scalable
RIBE schemes. Surprisingly, our construction does not require any additional
efficiency cost for achieving decryption key exposure resistance. In particular,
our construction has the shortest ciphertext size and a fastest decryption algo-
rithm even compared with all scalable RIBE schemes without decryption key
exposure resistance. Table 1 gives a detailed comparison with previous (efficient
pairing-based) schemes. From our standard model RIBE construction, we can
easily obtain more efficient RIBE construction in the random oracle model, by
replacing both the Waters hash and the Boneh-Boyen hash into cryptographic
hash functions that are modeled as random oracles.

Our construction is natural in the sense that its security can be reduced to
the original (non-revocable) Waters IBE scheme. However, in [28], Libert and
Vergnaud mentioned that this kind of simple construction using the original
Waters IBE scheme will face with the difficulty in the security proof, and they
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circumvented this by using a variant of the Waters IBE scheme [29] instead of
the original.4 We resolve this difficulty by carefully dealing with the means of
assigning nodes of a binary tree to each user, which we call random node assign-
ment technique. This allows us to circumvent the difficulty, and is explained in
section 4. Surprisingly, such a simple construction is secure against decryption
key exposure. The main difference between ours and previous constructions is
the re-randomizable property of the decryption key, whereas decryption keys use
the same randomness used in the secret key in all previous constructions.

Related Work. After the Boneh-Franklin RIBE scheme [11] and the Boldyreva
et al. scalable (but selectively secure) RIBE scheme [7], there were some results.
Libert and Vergnaud [28] proposed the first adaptively secure RIBE scheme (LV-
RIBE) without assuming any stronger assumption compared with that of the
Boldyreva et al.5 Later an RIBE scheme from lattices [13] also have proposed.
All these RIBE schemes are proven secure in the security model proposed by
Boldyreva et al. [7].

Revocable IBE with mediators [5, 10, 14, 26] has been considered, where
a special semi-trusted authority called a mediator who helps users to decrypt
each ciphertext. However, this essentially requires communication between users
and the mediator at each decryption and so is not totally satisfactory in some
practical circumstances.

Recently, several functional encryption (FE) schemes, which are generaliza-
tions of the IBE scheme, have been proposed [23, 36], and the revocation ca-
pability in FE has also been studied [3, 4, 34]. The revocation method used
in [4, 34] differs from RIBE contexts; the senders carry out the revocation, so it
does not require any private key update procedures on the recipient’s side. In [3]
Attrapadung and Imai considered two different ways for revocation method; one
is similar to that in [4, 34], and the other is similar to that in RIBE schemes.
However, decryption key exposure is not considered in [3], so achieving revo-
cation capabilities in FE with decryption key exposure resistance would be an
interesting future area of study.

All revocable IBE schemes use a strategy in which only decryption keys of
users who are not revoked in a time period T can be updated in time period
T . This strategy is similar to those for cryptosystems against key exposure such
as key-insulated PKE [6, 16, 27] and IBE [21, 22, 39, 40], forward secure en-
cryption [12], and intrusion-resilient PKE [15]. However, these systems require
a secure channel between a user and a key issuer or do not support scalability.

Outline. The next section gives preliminaries. In Section 3, we provide def-
initions for the RIBE scheme and explain the vulnerability of previous RIBE
schemes against decryption key exposure. Section 4 gives our construction for a

4 In a footnote of [28], there is a remark that a two-level hierarchical version of the
Waters original IBE seems to work, however the details are not provided.

5 Both schemes are secure under the Decisional Bilinear Diffie-Hellman (DBDH) as-
sumption.
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scalable RIBE scheme (with decryption key exposure resistance) and a high-level
description of its security proof. We discuss about a room for extention of our
RIBE scheme in Section 5. Finally, we summarize our result and leave several
interesting open problems in Section 6.

2 Bilinear Groups and Waters IBE Scheme

Definition 1 (Bilinear Groups). A bilinear group generator G(·) is an algo-
rithm that takes as input a security parameter λ and outputs a bilinear group
(p,G,Gt, e), where p is a prime of size 2λ, G and Gt are cyclic groups of order
p, and e is an efficiently computable bilinear map e : G×G→ GT with

– Bilinearity : for all u, u′, v, v′ ∈ G, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) =
e(u, v)e(u, v′),

– Non-degeneracy : for a generator g of G, e(g, g) �= 1Gt , where 1Gt is the
identity element in Gt.

In the security proof of our RIBE construction, we provide a reduction from
our IND-RID-CPA secure RIBE scheme to the IND-ID-CPA secure Waters IBE
scheme, which is secure under the DBDH assumption. We give the definition of
the DBDH assumption, description of the Waters IBE scheme, and IND-ID-CPA
security of ordinary IBE schemes.

Definition 2 (Decision Bilinear Diffie-Hellman (DBDH) Assumption).
Given a bilinear group (p,G,Gt, e) generated by G(λ), define two distributions
D0(λ) = (g, ga, gb, gc, e(g, g)abc) ∈ G4×GT and D1(λ) = (g, ga, gb, gc, e(g, g)z) ∈
G4 × GT , where g

$← G and a, b, c, z
$← Zp. The DBDH problem in the bilinear

group (p,G,Gt, e) is to decide a bit b from given Db, where b
$← {0, 1}. The

advantage of A in solving the DBDH problem in the bilinear group (p,G,Gt, e)
is defined by

AdvDBDH
G,A (λ) =

∣
∣
∣Pr[A(D0(λ))→ 1]− Pr[A(D1(λ))→ 1]

∣
∣
∣.

We say that the DBDH assumption holds in the bilinear group (p,G,Gt, e) if no
Probabilistic Polynomial Time (PPT) algorithm has a non-negligible advantage
in solving the DBDH problem in the bilinear group (p,G,Gt, e).

Definition 3 (Waters IBE). The Waters IBE consists of four algorithms
SetupWat, PKGWat, EncWat, and DecWat.

– SetupWat(λ) : Generate a bilinear group (p,G,Gt, e)← G(λ). Choose g, g2, u′,

u1, . . . , un
$← G and α

$← Zp. Set g1 = gα. Publish a master public key
mpkWat = {g, g1, g2, u′, u1, . . . , un} and keep a master secret key mskWat =
{gα2 }.
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– PKGWat(mpkWat,mskWat, ID) : Parse ID = (b1, . . . , bn) ∈ {0, 1}n, where for

all i ∈ [1, n], bi ∈ {0, 1}. Choose r
$← Zp and return the private key

pvkID = (gα2 (u
′

n∏

i=1

ubi
i )

r, gr).

– EncWat(mpkWat, ID,M) : Parse ID = (b1, . . . , bn) ∈ {0, 1}n. Choose t
$← Zp

and return a ciphertext

CTWat := (M · e(g1, g2)t, g−t, (u′
n∏

i=1

ubi
i )t).

– DecWat(mpkWat, pvkID,CTWat) : Parse CTWat = (C0, C1, C2) and pvkID =
(d0, d1) and return

C0 · e(C1, d0) · e(C2, d1).

Definition 4 (IND-ID-CPA). Let IBE = (Setup,PKG,Enc,Dec) be an IBE
scheme. For adversary A define the following experiment:

ExpIND-ID-CPA
IBE,A (λ)
(mpk,msk)← Setup(λ);
(M∗

0 ,M
∗
1 , ID

∗, st)← APKG(·)(mpk) such that |M∗
0 | = |M∗

1 |;
b

$← {0, 1};
CT∗ ← Enc(mpk, ID∗,M∗

b );

b′ ← APKG(·)(CT∗, st);
If b = b′ return 1 else return 0.

In the above experiment, PKG(·) is an oracle, which returns a private key pvkID
of given identity ID, and A is not allowed to send ID∗ to PKG(·).

An IBE scheme is said to be IND-ID-CPA if for all PPT adversaries A the
following advantage is negligible in the security parameter λ.

AdvIND-ID-CPA
IBE,A (λ) =

∣
∣
∣Pr

[

ExpIND-ID-CPA
IBE,A (λ) = 1

]

− 1

2

∣
∣
∣.

Theorem 1 ([38]). The Waters IBE scheme is IND-ID-CPA secure under
DBDH assumption. More precisely, if there exists an adversary A breaking IND-
ID-CPA security of the Waters IBE scheme with ε advantage, then by using A,
we can construct an algorithm B solving DBDH problem in the same bilinear
group, over which the Waters IBE scheme is defined, with O( ε

nq ) advantage,
where q is the maximum number of key extraction queries issued by A.

3 Definition of RIBE Scheme

In this subsection, we give the formal definition of the syntax and the security
model of our RIBE construction. First, we give the syntax of RIBE scheme.
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Our syntax of RIBE scheme is slightly different from previous one [7, 28]6 ; Our
DKG algorithm is probabilistic, whereas the Boldyreva et al. one is deterministic.7

ARIBE schemeRIBE consists of seven algorithms (Setup,PKG,KeyUp,DKG,Enc,
Dec,Revoke). LetM, I, and T be a message space, an identity space, and a time
space, respectively.

Definition 5 (Syntax of RIBE).

Setup : This is the (stateful) setup algorithm which takes as input the security
parameter λ and the number of users N , and outputs the public parameter
mpk, the master secret key msk, the initial revocation list RL = ∅, and a
state st.

PKG : This is the (stateful) private key generation algorithm which takes as input
mpk, msk, an identity ID ∈ I, and outputs a secret key skID associated with
ID and an updated state st.

KeyUp : This is the key update generation algorithm which takes as input mpk,
msk, the key update time T ∈ T , the current revocation list RL, and st, and
outputs the key update kuT .

DKG : This is the probabilistic decryption key algorithm which takes as input
mpk, skID, and kuT , and outputs a decryption key dkID,T or ⊥ if ID has
been revoked.

Enc : This is the probabilistic encryption algorithm which takes as input mpk,
ID ∈ I, T ∈ T , and a message M ∈M, and outputs a ciphertext CT.

Dec : This is the deterministic decryption algorithm which takes as input mpk,
dkID,T , and CT, and outputs M or ⊥ if CT is an invalid ciphertext.

Revoke : This is the stateful revocation algorithm which takes as input an identity
to be revoked ID ∈ I, a revocation time T ∈ T , the current revocation list
RL, and a state st, and outputs an updated RL.

Every RIBE scheme should satisfy the following correctness condition: For any
(mpk,msk)← Setup(λ), M ∈M, all possible state st, and a revocation list RL, if
ID ∈ I is not revoked on a time T ∈ T , then for (skID, st)← PKG(mpk,msk, ID,
st), kuT ← KeyUp(mpk, msk, T, RL, st), and dkID,T ← DKG(mpk, skID, kuT ),

Dec(mpk, dkID,T ,Enc(mpk, ID, T,M)) = M holds.

Next, we provide a security definition of RIBE scheme that captures realistic
threats including decryption key exposure.

Definition 6 (IND-RID-CPA). Let RIBE = (Setup,PKG,KeyUP,DKG,Enc,
Dec,Revoke) be a RIBE scheme. For an adversary A define the following exper-
iment:
6 Boldyreva et al. [7] define the selective security, and Libert-Vergnaud [28] extends it
to adaptive security.

7 All DKG algorithms in the previous constructions are deterministic and invertible in
the sense that a secret key can be recovered from a corresponding decryption key (and
key update), and so previous schemes are vulnerable against decryption key exposure.
To prevent such an attack by inversion, we define DKG to be probabilistic.



Revocable Identity-Based Encryption Revisited 223

ExpIND-RID-CPA
RIBE,A (λ,N)
(mpk,msk)← Setup(λ,N);
(M∗

0 ,M
∗
1 , ID

∗, T ∗, st)← AO(mpk) such that |M∗
0 | = |M∗

1 |;
b

$← {0, 1};
CT∗ ← Enc(mpk, ID∗, T ∗,M∗

b );
b′ ← AO(CT∗, st);
If b = b′ return 1 else return 0.

In the above experiment, O is a set of oracles {PKG(·),KeyUp(·),Revoke(·, ·),
DKG(·, ·)} defined as follows:

PKG(·) : For ID ∈ I, it returns skID (by running PKG(mpk,msk, ID, st) →
skID).

KeyUp(·) : For T ∈ T , it returns kuT (by running KeyUp(mpk,msk, T, RL, st)→
kuT ).

Revoke(·, ·) : For ID ∈ I and T ∈ T , it returns the updated revocation list RL
(by running Revoke(mpk, ID, T,RL, st)→ RL).

DKG(·, ·) : For ID ∈ I and T ∈ T , it returns dkID,T (by running PKG(mpk,msk,
ID, st))→ skID and DKG(mpk, skID, kuT )→ dkID,T ).

A is allowed to issue the above oracles with the following restrictions:8

1. KeyUp(·) and Revoke(·, ·) can be queried on time which is greater than or
equal to the time of all previous queries.

2. Revoke(·, ·) cannot be queried on time T if KeyUp(·) was queried on T .
3. If PKG(ID∗) was queried, then Revoke(ID∗, T ) must be queried for T ≤ T ∗.
4. DKG(·, ·) cannot be queried on time T before KeyUp(·) was queried on T .
5. DKG(ID∗, T ∗) cannot be queried.

A RIBE scheme is said to be IND-RID-CPA if for all PPT adversaries A and
polynomials N , the following advantage is negligible in the security parameter λ.

AdvIND-RID-CPA
RIBE,A (λ,N) =

∣
∣
∣Pr

[

ExpIND-RID-CPA
RIBE,A (λ,N) = 1

]

− 1

2

∣
∣
∣.

3.1 Security Analysis of Previous RIBE Schemes

In this section, we analyze the security of previous RIBE schemes in our secu-
rity model, which assumes a stronger adversary than Boldyreva et al. adver-
sarial model: our adversary can access the decryption key oracle, which is not
given in the Boldyreva et al. model. First, we show that the (simple but non-
scalable) BF-RIBE scheme is secure in the new adversarial model. Next, we show
that all previous RIBE schemes except for the BF-RIBE are vulnerable against

8 The fourth and fifth restrictions are the difference between our definition and
Boldyreva et al.’s one [7].
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decryption key exposure. More precisely, we can construct polynomial time adver-
saries using decryption key oracles.9 We briefly explain the BGK-RIBE scheme
and the LV-RIBE scheme are vulnerable against decryption key exposure.

Boneh-Franklin RIBE Scheme: To fit the BF-RIBE scheme into our syntax
of the RIBE scheme, BF-RIBE can be instantiated with the IND-CPA secure
symmetric encryption scheme. Let EncBF(mpkBF, ID,M) and PKGBF(mskBF, ID)
be an encryption algorithm and private key generation algorithm for the BF-
IBE scheme, respectively, where (mpkBF,mskBF) is a pair of a master public
key and master secret key, ID is a receiver’s identity, and M is a message.
Let SE = (SEnc, SDec) be a symmetric encryption scheme. For each user ID,
KGC randomly chooses a secret key of SE and gives it to the user ID as
skID. The encryption algorithm of the (modified) BF-RIBE scheme is defined
as Enc(mpkBF, ID, T,M) := EncBF(mpkBF, (ID, T ),M). In each time period T ,
KGC runs PKGBF(mskBF, (ID, T )) → pvk(ID,T ), where pvk(ID,T ) will be a de-
cryption key for ID on time T , that is, pvk(ID,T ) = dkID,T . Then KGC posts
kuT = {SEncskID (dkID,T )|ID is a non-revoked user in time period T }. Then,
only non-revoked users can recover dkID,T . If the BF-IBE scheme is IND-ID-CPA
secure and the SE is IND-CPA secure, then the (modified) BF-RIBE scheme is
IND-RID-CPA secure, which can easily be proven by using the standard hybrid
argument.

Boldyreva-Goyal-Kumar RIBE Scheme: Boldyreva et al. [7] proposed the
first scalable but selectively secure RIBE scheme by using Fuzzy IBE [36]. Due to
the collusion resistance of the Fuzzy IBE scheme, no revoked user can compute
its decryption key. The user’s decryption keys are associated with two attributes:
identity ID and time period T . The decryption key is split into two components
corresponding to ID and T . A secret key skID is associated with ID and key
update kuT is associated with T . The DKG algorithm is only to put parts of skID
and kuT together.10 More concretely, the PKG algorithm returns {(x,Dx, dx)}x∈I

which is a private key of a user who is assigned to a leaf node η, and the KeyUp
algorithm returns {(y, Ey, ey)}y∈J. If a user is not revoked on T , then there exist
x where x ∈ I∩J. The DKG algorithm finds such a x, and returns (Dx, Ex, dx, ex)
which is a decryption key dkID,T of this user on time T . Therefore, an adversary
that has dkID∗,T and kuT can always recover a part (Dx∗ , dx∗) of skID∗ for
some x∗ if ID∗ is not revoked in time T , and can always compute dkID∗,T∗ =
(Dx∗ , Ex∗ , dx∗ , ex∗) from the parts (Dx∗ , dx∗) of skID∗ and (Ex∗ , ex∗) of kuT∗ if
ID∗ is still not revoked in the challenge time T ∗.

9 As we mentioned in the introduction, a goal of this subsection is to not contradict the
security proofs of previous RIBE schemes. Our attack is positioned outside of their
security models.

10 Chen et al. [13] proposed an RIBE scheme based on lattices by applying the Agrawal
et al. lattice-based IBE [1]. They used the same methodology as that of BGK-RIBE,
where a private key itself is contained in a corresponding decryption key. Therefore,
the same attack works.
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Libert-Vergnaud RIBE Scheme: Libert and Vergnaud [28] proposed the
first adaptively secure RIBE scheme without random oracles. In the LV-RIBE
scheme, the process of DKG(mpk, skID, kuT ) is component-wise multiplications
or additions between skID and kuT . Since kuT is public information, if an ad-
versary obtains a decryption key dkID∗,T , where T �= T ∗, it can then recover
skID in polynomial-time by performing the inverse process of DKG, that is, di-
visions or subtractions. More concretely, the PKG algorithm returns skID =
{(i, dID,i)}i∈I, where dID,i := (d1,i, d2,i, r1,i), and the KeyUp algorithm returns
kuT = {kuT,j}j∈J, where kuT,j := (ku1,j , ku2,j , r2,j). The DKG algorithm parses
skID = {(i, dID,i)}i∈I and kuT = {(j, kuT,j}j∈J. If there is no pair (i, j) ∈ I × J

such that i = j, then return ⊥. Otherwise, choose such pair i = j. Return
dkID,T = (dT,1, dT,2, dT,3, dT,4) = (d1,i · ku1,i, d2,i, ku2,i, r1,i + r2,i). Therefore,
anyone can easily compute (d1,i, d2,i, r1,i) ∈ skID from “both” dkID,T and kuT,i

such that d1,i = dT,1/ku1,i and r1,i = dT,4 − r2,i. Moreover, d2,i is directly
contained in dkID,T .

One may expect that we can impede this attack by adding a randomization
process in DKG, but it does not seem easy to prove the security of such a mod-
ification of the LV-RIBE scheme. LV-RIBE scheme is based on a variant of the
Waters IBE (LV-IBE) scheme proposed in [29]. The security strategy of the LV-
IBE is somewhat similar to the Gentry IBE [19] such that the simulator can
compute a private key for any identity, even the challenge identity, in the proof.
The simulator can generate a private key using “fixed” randomness and this
fixed randomness is also used in making the challenge ciphertext.11 Therefore,
in the adversarial view, the challenge ciphertext is uniformly generated since it
cannot obtain the corresponding private key of the challenge ciphertext. Since
the LV-RIBE is based on the LV-IBE, the LV-RIBE does not support full re-
randomization of the decryption key. Therefore, decryption key exposure reveals
randomness used in the secret key. Since kuT∗ is public, if dkID∗,T∗ is leaked, the
randomness of skID∗ will be also leaked. (Not all parts of the randomness, but
fixed randomness, which is essentially used in the security proof, will be leaked.)
As mentioned, the simulation of this type of IBE scheme, such as the LV-IBE
and the Gentry IBE scheme, succeeds only when the fixed randomness of the
private key is hidden from the adversary’s view. Therefore, we cannot construct
a simulator for the LV-RIBE scheme when we directly follow the same strategy
used in the LV-IBE scheme.

4 Our Construction

In this section, we propose an RIBE scheme. For the revocation process, we
basically follow previous RIBE schemes’ strategy using a binary tree structure;
that is, to reduce the key update costs, we apply a binary tree structure and

11 The term “fixed” means that the simulator can generate only one private key using
fixed randomness per each identity after publishing mpk. A decryption key may
have other flexible randomness, but at least a part of the randomness should be
fixed according to the identity.
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Fig. 1. Example of KUNode

define the KUNode algorithm. In the actual schemes, this algorithm is used in a
black-box manner.

4.1 KUNode Algorithm

We introduce the KUNode algorithm and Boldyreva et al.’s idea for efficient
revocation.

Definition 7 (KUNode Algorithm [7]). This algorithm takes as input a binary
tree BT, revocation list RL, and time T , and outputs a set of nodes. A formal
description of this algorithm is as follows: If η is a non-leaf node, then ηleft and
ηright denote the left and right child of η, respectively. Each user is assigned to
a leaf node. If a user (assigned to η) is revoked on time T , then (η, T ) ∈ RL.
Path(η) denotes the set of nodes on the path from η to root. The description of
KUNode is given below.

KUNode(BT, RL, T ) :

X, Y← ∅;
∀(ηi, Ti) ∈ RL

If Ti ≤ T then add Path(ηi) to X

∀x ∈ X

If xleft �∈ X then add xleft to Y

If xright �∈ X then add xright to Y

If Y = ∅ then add root to Y

Return Y

Figure 1 gives a simple example to help the readers easily understand KUNode(BT,
RL, T ). In the example, let a user u3 (assigned to x10) be revoked.
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Then, X = Path(x10) = {x10, x5, x2, root = x1}, and Y = {x3, x4, x11}. Intu-
itively, all users, except u3, have a node x ∈ Y that is contained in the set of
nodes on the path from their assigned node to root: e.g., x4 for u1 and u2, x11

for u4, and x3 for u5, u6, u7, and u8, whereas Y ∩ Path(x10) = ∅.
When a user joins the system, KGC assigns it to the leaf node η of a com-

plete binary tree, and issues a set of keys, wherein each key is associated with
each node on Path(η). At time period T , KGC publishes key updates for a set
KUNode(BT, RL, T ). Then, only non-revoked users have at least one key corre-
sponding to a node in KUNode(BT, RL, T ) and are able to generate decryption
keys on time T .

4.2 Our Construction

For a simple description of our RIBE scheme, we use notation FWat and FBB to
denote the respective hash functions used in the Waters IBE scheme and Boneh-
Boyen IBE scheme. More precisely, for an identity space I and time space T ,
define FWat : I → G and FBB : T → G by

FWat(ID) = u′
n∏

i=1

ubi
i and FBB(T ) = v′vT , respectively,

where ID = (b1, b2, . . . , bn) ∈ {0, 1}n.
Before describing our construction, we will explain the intuition behind it.

As mentioned, we need a different approach to achieve an (adaptively secure)
RIBE scheme with decryption key exposure. To this end, we begin with a simple
two-level HIBE scheme (without delegating property). More precisely, the first
level is assigned for identity and the second level is assigned for the time pe-
riod. Since we consider only polynomially bounded time (as all previous RIBE
schemes), we combine the adaptively secure Waters IBE scheme (for the first
level) and the selectively secure Boneh-Boyen IBE scheme (for the second level).
The decryption key of our RIBE scheme is exact second level secret key of the
HIBE scheme, that is,

dkID,T = (gα2 FWat(ID)rFBB(T )
s, gr, gs).

The above decryption key allows user to re-randomize r and s in the exponent
without knowing master key gα2 .

12 Decryption key exposure will then not be
helpful for the adversary in obtaining information about the challenge ciphertext
since this combined two-level hierarchical extension can be considered as a secure
HIBE scheme (for exponentially many identities and polynomially many time
periods) in the sense that it has resistance against collusion attacks. To generate
secret keys and key updates, we use a technique similar to that used in [28].

12 As mentioned in section 3.1, the LV-RIBE does not support such re-randomization
process in decryption keys, and this is the essential difference between ours and
previous schemes.
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The master secret key is randomly divided into two parts, which are respectively
contained in the secret key and key updates, that is,

(gαθ FWat(ID)rθ , grθ) ∈ skID and (g̃αθ FBB(T )
sθ , gsθ ) ∈ kuT ,

where gθ · g̃θ = g2. Therefore, if the adversary cannot obtain both the secret
key and key updates, which will contribute to computing the target decryption
key dkID∗,T∗ , then in the security proof we can simulate either the secret key or
key update. (We can assume that the part not given to the adversary contains
information about the master key and the other part is a random element.)

Even if the above intuition explains the decryption key exposure resistance of a
combination of the Waters IBE and the Boneh-Boyen IBE, we need an additional
technique to circumvent the difficulty pointed out in [28]. The difficulty occurs
when the adversary issues a secret key query for the target identity ID∗. For
each node θ in the binary tree, a random value gθ is assigned. Whenever PKG
is run, the identity ID is assigned in the leaf node and the value gθ on the path
to the root node is used in the secret key skID. In the security proof, whenever
a secret key query or key update query regarding ID is issued, the simulator
should decide which of two shares gαθ and g̃αθ will contain the master secret key,
where θ is on the path to the root of tree; that is, one share is gα2 Sθ and the
other is S−1

θ for random group element Sθ. However, when the target identity
ID∗ is unknown and has yet to be assigned a leaf, the other path regarding the
different identity ID may or may not have connection with the path regarding
ID∗ (except the root node). To address this issue, Libert and Vergnaud used a
variant of the Waters IBE wherein the simulator can generate at least one valid
decryption key for each identity and can answer queries regardless of whether
nodes are on the path from ID∗ to the root node. However, our construction does
not support a simulation strategy such as is used in [28, 29] since the original
Waters IBE scheme uses a different proof strategy, called partitioning, in the
security proof. Instead, we carefully deal with the method to assign identity into
the tree. In our RIBE scheme, whenever a new identity joins the system, KGC
assigns a random leaf node among the undefined nodes.13 In the security proof,
this simple random node assignment technique allows the simulator to pre-assign
a random leaf node for the target identity (therefore nodes on the path to the
root node are also pre-determined) and to simulate for a secret key, decryption
key, and key update queries before receiving queries regarding ID∗. When the
first query regarding ID∗ is issued, the simulator can use the pre-assigned leaf
node for ID∗. We can show that this simulation for node assignment is identically
distributed to that in the real protocol.

We describe the proposed RIBE scheme below.

Setup(λ,N): Randomly choose g, g2, u
′, u1, . . . , un, v

′, v $← G and α
$← Zp. Set

mpk = {g, g1 = gα, g2, u
′, u1, . . . , un, v

′, v}, msk = {gα2 }, RL = ∅, and st =
BT, where BT is a binary tree
with N leaves.

13 KGC can use a pseudorandom generator for this process.
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PKG(mpk,msk, ID, st): Randomly choose an unassigned leaf η from BT, and
store ID in the node η. For each node θ ∈ Path(η),

1. Recall gθ if it was defined. Otherwise, gθ
$← G and store (gθ, g̃θ = g2/gθ)

in the node θ.14

2. Choose rθ
$← Zp.

3. Compute (Dθ,0, Dθ,1) := (gαθ FWat(ID)rθ , grθ).
Return skID = {(θ,Dθ,0, Dθ,1)}θ∈Path(η).

KeyUp(mpk,msk, T, RL, st): Parse st=BT. For eachnode θ ∈ KUNode(BT, RL, T ),
1. Retrieve g̃θ (note that g̃θ is always pre-defined in the PKG algorithm).

2. Choose sθ
$← Zp.

3. Compute (D̃θ,0, D̃θ,1) := (g̃αθ FBB(T )
sθ , gsθ ).

Return kuT = {(θ, D̃θ,0, D̃θ,1)}θ∈KUNode(BT,RL,T ).

DKG(mpk, skID, kuT ): Parse skID = {(θ,Dθ,0, Dθ,1)}θ∈I and kuT = {(θ, D̃θ,0,

D̃θ,1)}θ∈J. If I ∩ J = ∅, then return ⊥. Otherwise, choose θ ∈ I ∩ J and

r, s
$← Zp and return

dkID,T = (Dθ,0 · D̃θ,0 · FWat(ID)r · FBB(T )
s, Dθ,1 · gr, D̃θ,1 · gs).

Enc(mpk, ID, T,M): Choose a random integer t
$← Zp and return

CT = (M · e(g1, g2)t, g−t, FWat(ID)t, FBB(T )
t).

Dec(mpk, dkID,T ,CT): Parse CT = (C0, C1, C2, C3) and dkID,T = (D1, D2, D3)
and return

C0

3∏

i=1

e(Ci, Di).

Revoke(mpk, ID, T,RL, st): Let η be the leaf node associated with ID. Update
the revocation list by RL← RL∪{(η, T )} and return the updated revocation
list.

We should check the correctness of our scheme: Assume that mpk, msk, M,
I, T , st, and RL are normally generated and fixed. Moreover, assume that
skID = {(θ,Dθ,0, Dθ,1)}θ∈Path(η) is a secret key of a non-revoked user ID on time

T and kuT = {(θ, D̃θ,0, D̃θ,1)}θ∈KUNode(BT,RL,T ). Then, for some θ ∈ Path(η) ∩
KUNode(BT, RL, T ), DKG should output

dkID,T = (Dθ,0 · D̃θ,0 · FWat(ID)r · FBB(T )
s, Dθ,1 · gr, D̃θ,1 · gs)

= (gα2 FWat(ID)rθ+rFBB(T )
sθ+s, grθ+r, gsθ+s).

For an encryption of M , CT = (M · e(g1, g2)t, g−t, FWat(ID)t, FBB(T )
t),

Dec(mpk, dkID,T ,CT)
= M · e(g1, g2)te(g−t, gα2 FWat(ID)rθ+rFBB(T )

sθ+s)e(FWat(ID)t, grθ+r)
·e(FBB(T )

t, gsθ+s)
= M.

14 As in the Libert-Vergnaud scheme, KGC can use a pseudorandom generator instead
of storing gθ.
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We provide a (polynomial-time) reduction to the Waters IBE scheme, which is
a non-revocable IBE secure under the DBDH assumption. Therefore, our scheme
is secure under the DBDH assumption.

Theorem 2. If there exists an adversary A attacking IND-RID-CPA security
of the proposed RIBE scheme, then there exists another adversary B breaking
IND-ID-CPA security of the Waters IBE scheme.

Because of space constraints, we relegate the proof of Theorem 2 in the full
version. Note that the reduction loss in our security proof is 2q|T |. Since the
security proof to show that the Waters IBE scheme is secure under DBDH as-
sumption losses O(nq) [38], our RIBE scheme is secure under DBDH assumption
with O(nq2|T |) reduction loss. Although our proof is loose, we note that the pre-
vious adaptively secure LV-RIBE scheme lose the same factor O(nq2|T |) in the
security proof.

5 Discussion

In this section, we discuss several issues related to RIBE schemes.

Short Public Parameters: In high level explanation, our technique is to add the
revocation capability to the IBE scheme without sacrificing efficiency, and we
show that the underlying IBE scheme supporting key re-randomization can be
provably secure against decryption key exposure. In fact, we essentially used the
Water IBE as the underlying IBE scheme of our RIBE construction. Therefore,
we may construct an RIBE scheme from other IBE schemes. We expect that a
scalable RIBE scheme with decryption key exposure resilience can be constructed
from the Lewko-Waters IBE [25], which supports key re-randomization. Then, we
can reduce the size of public parameter, though we need to use composite-order
bilinear groups and other complexity assumptions. Note that Lewko have shown
a Lewko-Waters IBE scheme under the prime-order group setting [24], however,
this scheme does not support key-rerandomization. It would be interesting to
construct a RIBE scheme with decryption key exposure resilience and short
public parameters in the prime-order group setting.

Better Efficiency from Random Oracle Heuristic: In our construction, we used
two level hierarchical construction by combining the Water IBE and the Boneh-
Boyen IBE, where both schemes are secure in the standard model. Both schemes
use hash functions FWat and FBB, respectively. The role of both hash functions
is to apply partitioning technique; that is, in the security proof, the simulator
divides the domain of hash functions into two subsets, one for the challenge
query and the other for key extraction queries. By changing these two hash
functions into cryptographic hash functions that are modeled as random oracles,
we can achieve better efficiency since the random oracles allow such a partitioning
technique but require low computational cost. Furthermore, by using one more
hash function and standard techniques for random oracle model schemes, we
can reduce the security of the random oracle model RIBE scheme to the BDH
problem.
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Revocable Identity-Based Signature (RIBS): We basically used two level hierar-
chical construction and it is not difficult to extend our construction to three level
hierarchical construction (but revocation capability is allowed only for the first
level). Therefore, we can apply the well-known Naor transformation from an IBE
scheme to a signature scheme. More precisely, from the three level hierarchical
construction, we can obtain a scalable identity-based signature scheme, where
the first level is for identity, the second level is for time period, and the third
level is for message. For better efficiency, we can apply the same transformation
used in the previous paragraph to here, and then obtain an efficent RIBS scheme
in the random oracle model.

Chosen Ciphertext Security: Due to the property of the underlying Waters IBE
scheme, we can extend our RIBE scheme to a HIBE scheme with efficient revo-
cation only for the first level users. There is a well-known transformation from
a two-level HIBE scheme to a CCA-secure IBE scheme [9]. Therefore, we can
obtain CCA-secure RIBE scheme by applying this transformation.

6 Conclusion

We revisited both the security model and construction methodology for RIBE
schemes. First, we pointed out a gap between the Boldyreva et al. security model
and the trivial but non-scalable BF-RIBE construction. We introduced a new
security model for RIBE scheme by capturing realistic threat, called decryption
key exposure, and proposed the first scalable RIBE construction in the new
security model.

There are several interesting remaining problems. From a theoretical point of
view, one natural question is how to construct a generic transformation from
IBE to RIBE. In the practice, revocation is a necessary functionality in the pub-
lic key encryption schemes. Therefore, finding efficient revocation methods in
other encryption schemes such as (hierarchical) inner-product encryption [35]
and attribute-based encryption [36] are also important. In this paper, we only
focused on the pairing-based schemes, but it is interesting to construct schemes
based on other mathematical structure such as lattice that are secure in our
security model. Recently, a revocable hierarchical IBE (RHIBE) scheme is pro-
posed, but its security is proven only in the weaker security notion, selective
security [37]. Achieving full security in RHIBE construction is a direct open
problem. To the best of our knowledge, all scalable RIBE use the Complete Sub-
tree [32] method for revocation capability. Therefore, it is interesting to combine
IBE with different revocation methods such as the Subset Difference [32].
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