
4

The Genesys Framework

The Genesys code generation framework is a reference implementation of
the ideas that constitute the Genesys approach presented in this book. As
mentioned in Sect. 3, the jABC framework and its underlying XMDD ap-
proach form the technical and conceptual basis for this implementation. At
the same time, jABC is also an appropriate domain for applying the Genesys
framework in case studies (see Chap. 5).

Constraints

Genesys Framework

jABC PluginDeveloper Tools Maven
Plugin

Generator
Developer

Generator
User

Generator Models

Services

Generator
Binaries

Testing Framework

Fig. 4.1. Genesys architecture and involved roles

Fig. 4.1 shows how the reference implementation is organized, the central
part being the actual framework, which consists of the following components:

S. Jörges: Construction and Evolution of Code Generators, LNCS 7747, pp. 75–100, 2013.
© Springer-Verlag Berlin Heidelberg 2013

76 4 The Genesys Framework

Services: The framework provides a library of services that cover typical
functionality required for most code generators, such as type conversion,
identifier generation, model transformations and code beautification (Re-
quirement G2 - Reusability and Adaptability). These services are available
as SIBs (cf. Sect. 3.2), so that they can be used as atomic building blocks
for code generator models built with jABC. Sect. 4.1 further elaborates
on this service library.

Generator Models: As described in Sect. 3.2, XMDD does not only sup-
port the reuse of services, but also of entire models (Requirement G2
- Reusability and Adaptability). Consequently, the framework contains a
library of code generator models which realize further typical function-
ality such as loading and traversing input models, e.g., jABC’s SLGs or
EMF models (cf. Chap. 7). Just like the atomic services mentioned above,
these models can be directly reused as macros when building a new code
generator (thus representing ready-made features in the sense of XMDD,
see Sect. 3.1). They can also serve as patterns which are instantiated or
adapted for new code generators. Furthermore, the model library contains
most code generators created in the case studies which will be presented
in Chap. 5–8. The rationale behind this is that each new code genera-
tor contributes to this library of models, so that the available repertoire
and the potential for reuse is growing continuously (Requirement G2 -
Reusability and Adaptability).

Generator Binaries: In order to be accessible by tools and users, the frame-
work also includes all code generators as compiled Java classes. For this
purpose, each modeled code generator is translated to an appropriate
Java class via the Genesys Code Generator Generator (see Sect. 5.2.6).

Testing Framework: As an addition to manually testing a code generator by
executing its models with the Tracer (cf. Sect. 3.3), the Genesys frame-
work also includes an approach for the automated model-driven testing of
code generators. In this approach, test cases as well as the corresponding
test inputs are also modeled as SLGs. Subsequently, dedicated code gen-
erators (again developed with Genesys) translate these SLGs into test
scripts or test programs running on a desired test platform. Sect. 6.3
elaborates on the details of this approach, which is currently realized for
jABC code generators, i.e., those which support SLGs as input models
(see Chap. 5). Accordingly, the provided facilities include a library of SIBs
for building test cases and test data models, a collection of standard test
cases covering the domain of jABC models as well as a testing strategy
for checking whether the execution semantics of a model is retained by
the code generation (cf. Sect. 6.3.1).

4 The Genesys Framework 77

Constraints: For verifying code generators via model checking, the framework
provides a library of global constraints which specify required properties
such as the complete processing of the input data or proper handling of
errors. These constraints are specified graphically as formula graphs and
then translated to temporal logics by the FormulaBuilder (cf. Sect. 6.2.1),
which is also an application of jABC and Genesys. Sect. 6.2 presents
examples of such global constraints for code generators and shows how
they are specified.

Above the framework, Fig. 4.1 shows tools that support the usage and the
development of code generators. The jABC plugin allows the configuration
and invocation of code generators within the jABC editor, and the Maven
Plugin enables the integration into a Maven-based project setup. Finally, the
developer tools bundle utilities that support the creation of code generators.
All tools will be presented in more detail in Sect. 4.3.

Fig. 4.1 also indicates the roles that are targeted by Genesys. First, Ge-
nesys addresses generator developers (left hand side of Fig. 4.1) by providing
facilities that support creating, adapting, verifying and testing code gen-
erators. For this purpose, they use a specific jABC bundle tailored to the
domain “code generation”, containing all services, models and tools depicted
in Fig. 4.1. In combination, the ready-made services and models form a DSL
for building code generators. Second, Genesys offers a library of ready-made
code generators which can be used without deeper knowledge of the Genesys
approach or the internals of the framework. Generator users (right hand side
of Fig. 4.1) may access these generators by means of the tools outlined above
(jABC plugin, Maven plugin), or integrate the generator binaries into their
own applications via API.

When Genesys is applied to jABC itself, i.e., used for developing a code
generator whose source language is given by SLGs, the above two roles can
be related to the jABC roles introduced in Sect. 3.2. In this specific scenario,
which is examined in greater detail in Chap. 5, the generator developer equals
the domain expert and the generator user is congruent with the application
expert. When creating a domain-specific jABC variant for the application
expert, the domain expert also has to define how SLGs are translated to
code in the target domain by creating new code generators with Genesys or
selecting existing ones. The application expert then uses the jABC variant
customized by the domain expert to model and to generate an application
for the target domain.

The following sections will elaborate on Genesys’ constituent parts, start-
ing with the atomic services for creating code generator models (Sect. 4.1).
In order to give an idea of modeling a code generator with Genesys, Sect. 4.2
describes a complete example of a simple code generator. Finally, Sect. 4.3
presents all tools provided by Genesys.

78 4 The Genesys Framework

4.1 Services for Building Code Generators

The Genesys framework is equipped with many ready-made atomic services
which are made available as SIBs, the most important building blocks for cre-
ating code generator models. Following the principles of service orientation,
these services are black boxes with very simple interfaces, and, in conse-
quence, easy to use without any knowledge of their actual implementation
(Requirement G3 - Simplicity). The availability of such ready-to-use services
saves the generator developer from having to start from scratch, thus speeding
up the overall development (Requirement G2 - Reusability and Adaptability).
The following sections present services which are especially relevant to the
code generation domain. As the description of all available SIBs (more than
200 Common SIBs and around 40 Genesys-specific SIBs) would go beyond
the scope of this book, there is a focus on those services which are essential
to most code generators. For an exhaustive list of all available SIBs please
refer to the documentation of the Common SIBs [TU10] and the Genesys
SIBs [Jör10].

Please note that the following descriptions focus on the parameters when
explaining the structure of the SIBs. This is due to the fact that all presented
SIBs provide the same two branches: default, meaning that the service has
been executed successfully, and error, indicating that the execution of the
service has failed.

4.1.1 Contributions to the Common SIBs

During the development of Genesys, many SIBs had to be created, in partic-
ular at the very beginning of the project. At this time, Genesys significantly
pushed the development of jABC’s Common SIBs (cf. Sect. 3.2.1), thus con-
tributing to the availability of general jABC services. Any created SIB which
was suitable to be used with a broader scope than code generation has been
added to the Common SIBs.

The following SIB bundles have been heavily influenced by Genesys and
thus are used in nearly any code generator:

Basic SIBs: The SIBs contained in this bundle provide very basic func-
tionality which is required by nearly any application modeled in jABC
(especially by any Genesys code generator). This mainly includes build-
ing blocks for manipulating the execution context (see Sect. 3.3.2), e.g.,
creating, modifying, removing or copying context entries, as well as for
thread-safe access, and locking or unlocking context entries. Furthermore,
the bundle provides SIBs that realize control flow patterns such as con-
ditional constructs (“if” and “switch”) and loops. There are also building
blocks for the basic support of application-level logging and performance
measurement. Due to their elementary character, most SIBs in this bun-
dle are very generic and represent rather fine-grained functionality.

4.1 Services for Building Code Generators 79

Graph Model SIBs: This bundle provides building blocks for handling SLGs
and hence is relevant to code generators that are built for jABC (cf.
Chap. 5). It includes SIBs for loading and traversing hierarchical SLGs
as well as for retrieving information from contained SIBs (e.g., SIB labels,
parameters, branches, outgoing edges, successors in the SLG, or user ob-
jects). Due to this reflective character, the bundle can be considered a
metamodel API for accessing SLGs and their constituent parts. The more
than 60 SIBs of this bundle were originally a part of Genesys, but have
been contributed to the Common SIBs in order to enable SLG accessi-
bility for other jABC applications. Please note that in order for a code
generator to be able to deal with another modeling language than SLGs,
another SIB bundle suitable for the new modeling language has to be em-
ployed. This is exemplified by the case study presented in Chap. 7, which
required the development of a SIB bundle for accessing EMF models.

IO SIBs: These SIBs mainly support dealing with files and directories, e.g.,
creating and scanning directories or writing text files. It is used by Ge-
nesys for writing generated code to actual files. Furthermore, the bundle
contains simple building blocks for exception and error display on the
console.

Script SIBs: This is a set of more specialized SIBs that enable the execu-
tion of scripts as well as the integration of template engines, the latter
being particularly relevant to Genesys. Currently, the template engines
Velocity [Apa10], StringTemplate [Par04]1 and FreeMarker [Fre11b] are
supported. Consequently, the generator developer can freely decide upon
an appropriate template engine by just using the corresponding SIB (Re-
quirement G1 - Platform Independence). It is also possible to mix several
template engines in one code generator model, e.g., in order to benefit
from a specific feature of a template language without having to use the
corresponding engine for the entire code generator.

Apart from those very general SIBs, which can be used in any jABC ap-
plication and mostly realize small, fine-grained tasks, there are also services
specifically designed for the code generation domain. Several examples of
those SIBs, which are part of the Genesys framework (cf. Fig. 4.1) and form
a bundle called “Genesys SIBs” [Jör10], are presented in the following sections.

4.1.2 Type Mapping

An essential task of a code generator is mapping the data types found in
the source language to corresponding data types of the target language. In
middleware techniques like CORBA and Web Services [Pap08], data type
mapping usually includes the use of intermediate exchange formats such as
the Common Data Representation (CDR) for CORBA or XML dialects like
1 The RunStringTemplate SIB described in Sect. 3.2 is also contained in the “Script

SIBs”.

80 4 The Genesys Framework

SOAP [W3C07] for Web Services. Thus marshalling and unmarshalling is
required, i.e., the conversion of the data types into the exchange format
and vise versa. In the case of Web Services, e.g., this conversion is per-
formed by XML binding libraries like the Java Architecture for XML Bind-
ing (JAXB) [Jav09a].

Type Mapping Scenarios:

For code generators, this task is usually much simpler, as it involves a di-
rect unidirectional translation of the data type to a corresponding text-based
representation (e.g., an initializer) in the target language. The overall com-
plexity of this task strongly depends on the given combination of source and
target language. For this book, the following cases are distinguished:

1. Identity: The exact same data type exists in the source language as well
as in the target language. For instance, when translating jABC’s SLGs
to Java, the data type java.lang.String exists in both languages, due
to the fact that SIBs are realized as Java classes.

2. Direct Mapping: The data type can be mapped to an equivalent type
in the target language without any loss or omission of information. For
instance, when generating Java code from EMF models, the data type
EString in Ecore (cf. Sect. 7.2) can be directly mapped to the Java data
type java.lang.String. Such a mapping does not necessarily have to be
injective, as it is possible to map several data types which are different
in the source language to one single data type in the target language.

3. Reductive Mapping: If the data type has no direct equivalent in the target
language, it possibly can be reduced, provided that the source data type
contains information that is not required for the generated result. For in-
stance, the built-in data type ContextKey in jABC’s SLGs (cf. Sect. 3.2.1)
has no direct counterpart in any target language. However, it contains a
context scope, which might be omitted if the target language does not
support a stacked execution context. In this case, ContextKey can be
reduced to the name of the context key, which can be easily represented
by a simple string in the target language. This method only works if the
omitted information is irrelevant, otherwise a solution without informa-
tion loss is preferable. An additive counterpart of the reductive mapping
is imaginable, but as no practically relevant examples have been found
in the context of Genesys, this case is not considered here.

4. New Data Type: There is no equivalent counterpart for a source data type
in the target language, neither for a direct nor for a reductive mapping.
In this case, a possible solution is the introduction of a new data type in
the target language. The corresponding code of the new data type has
to be emitted by the code generator. As will be presented in Sect. 5.2,
this solution is applied by the code generator which translates SLGs to
plain Java code. For every complex jABC data type (cf. Sect. 3.2.1), such
as ContextKey or ListBox which are not built-in Java types, the code
generator emits a corresponding counterpart.

4.1 Services for Building Code Generators 81

5. Data Type Exclusion: If neither of the above cases is applicable, a source
data type may be excluded from the mapping, at the expense of no longer
being able to translate any inputs containing that data type. In most
cases, this solution is only a compromise and thus should be avoided.
For instance, the ContextExpression data type in jABC’s SLGs (cf.
Sect. 3.3.2) requires an implementation for resolving EL expressions,
which is not available for non-Java languages such as Objective-C [Koc09].
Instead of spending effort on providing such an implementation, the ex-
clusion of the ContextExpression data type might be a pragmatic al-
ternative.

...

Conversion Controller

register register
in

qu
ire

Ecore → C#

CollectionConverter

StringConverter

SibParameterConverter

...

SLG → Objective-C

SetUpSlgTypesForObjectiveC

EListConverter

EStringConverter

EIntConverter

...

SetUpEcoreTypesForC# GenerateTypeName

re
tr

ie
ve

 ty
pe

 n
am

e

GenerateInitializer

in
qu

ire
re

tr
ie

ve
 in

iti
al

iz
er

Fig. 4.2. Data type mapping infrastructure in Genesys

Type Mapping Services:

Genesys provides a simple infrastructure for establishing data type mappings,
which is depicted in Fig. 4.2. For each combination of source and target
language, a mapping has to be specified by means of a set of converters.
A converter is responsible for one or more source data types and is able to
produce corresponding type names, initializers etc. for the target language.
For instance, Fig. 4.2 shows a data type mapping from SLGs to Objective-C,
containing a String Converter. For a given String instance found in an SLG,
this converter is, among other things, able to produce a corresponding type
name (NSString) or initializer (@"myStringValue"2), which is used by the
code generator.

All registered converters are managed by the Conversion Controller (bot-
tom of Fig. 4.2). Given a concrete primitive value or object instance found in
the source language, the controller determines the responsible converter, ap-
plies it and returns the result. In order to keep the determination mechanism
2 @"myStringValue" is Objective-C’s way of creating a new constant string object

with the value myStringValue.

82 4 The Genesys Framework

simple, each possible data type in the source language has to be assigned
to exactly one converter. While multiple data types may be handled by one
converter, it is not allowed to assign more than one converter to a data type.

From the perspective of the generator developer, the data type mapping
infrastructure is accessed via simple services shown at the top of Fig. 4.2. In
the initialization phase of the code generator, the system has to be set up by
registering required converters, which is performed by a dedicated, usually
parameterless, SIB (e.g., SetUpSlgTypesForObjectiveC). Such a SIB and
its corresponding converters have to be created for every new combination of
a source and a target language, either by the generator developer himself or
by a SIB expert. Technically (and transparent to the generator developer),
the SIB registers all required converters with an instance of the conversion
controller, which is then stored in the execution context (cf. Sect. 3.3.2) so
that it can be accessed by other SIBs.

After this initialization step, the generator developer may use the SIBs
GenerateTypeName and GenerateInitializer to apply the data type map-
pings for the code generation. Table 4.1 shows the parameters of those ser-
vices that are available to the generator developer. Besides context keys for
the input and output, especially the GenerateTypeName SIB provides several
additional configuration flags that, e.g., allow the omission of any package
or namespace information in the resulting type name. Except for the case in
which the generator developer writes converters by himself, everything below
the dashed line in Fig. 4.2 is transparent to him and virtualized by the SIBs.

Table 4.1. Services for data type mapping

GenerateInitializer Generates an initializer string for the
given object/primitive value.

Parameters object Context key for reading the object.
initializer Context key for storing the generated ini-

tializer.
GenerateTypeName Generates a type name string for the

given object/primitive value.
Parameters object Context key for reading the object.

typeName Context key for storing the generated
type name.

generateSimple-
TypeName

If this flag is set to true, the simple type
name (without the package or namespace
information) will be generated.

preferInterface If this flag is set to true, the type name
for a preferred interface will be gener-
ated (e.g., java.util.List instead of
java.util.ArrayList), which is useful
for declarations.

4.1 Services for Building Code Generators 83

4.1.3 Identifier Generation

Another important task of code generators is the output of valid identifiers.
Identifiers are tokens that name elements in programming languages such as
classes, variables, labels or methods. The generation of appropriate identi-
fiers depends on the given target language, as each programming language
defines its own syntactic restrictions for correct identifiers. For instance, a
valid identifier in Java is composed of characters such as lowercase or up-
percase ASCII Latin letters, digits, underscores or dollar signs, but must not
begin with a digit, contain any blanks or have the same spelling as a reserved
language keyword such as “public” [Gos+05]. Furthermore, some program-
ming languages even assign semantics to single characters in identifiers. In
Perl, identifiers beginning with a dollar sign ($) indicate scalars, and those
starting with the percent sign (%) denote hashes [Wal00]. As another exam-
ple, in Ruby, variables with identifiers that start with an upper case letter are
considered immutable [FM08]. Thus with each new target language, identifier
generation needs to be specified appropriately.

Apart from the syntactic restrictions, a central characteristic of identifiers
is their uniqueness. For example, in most programming languages it is forbid-
den to declare two variables with the same identifier within the same scope.
When generating code from models, identifiers are often produced from the
names of model elements, which usually are subject to various syntactic re-
strictions, or which are not regulated at all. For instance, the labels of SIB
instances in jABC’s SLGs are not restricted and thus may contain blanks, or
even may equal reserved keywords of a target language. Simply using such
names as identifiers and ignoring the rules of the target languages may lead
to faulty generation results, such as code which is not compilable or which
yields unexpected execution behavior.

In order to cope with this recurring task, the Genesys framework provides
a backend for identifier generation, which can be accessed by corresponding
services. In essence, this backend keeps track of a blacklist of reserved and
previously used identifiers. When a new identifier is given, this blacklist is
checked: If the new identifier is already on the blacklist, then it is unified,
e.g., by adding a suffix like “_<serial number>”, and finally added to the
blacklist. Otherwise, the unmodified identifier is added to the blacklist. For
instance, if “public” is given as an identifier and it is contained in the blacklist
due to being a reserved keyword, it will be unified to “public_1”, which can
be safely used in generated code.

In the initialization phase of a code generator, reserved identifiers such as
keywords of the target language can be added to the blacklist via the SIB
RegisterReservedKeywords. At this point it is necessary to distinguish be-
tween two kinds of identifiers that occur in code generation: those which are
derived from the code generator’s input (generated identifiers) and those which
are fixed, e.g., because they are hard-coded in a template (fixed identifiers). In
contrast to generated identifiers, fixed identifiers are static at generation time

84 4 The Genesys Framework

Table 4.2. Services for identifier generation

RegisterReservedKeywords Creates a blacklist containing keywords
and prefixes which are forbidden to be
used for identifiers in generated code.

Parameters reservedKeywords Set containing the reserved keywords.
reservedPrefixes Set containing prefixes for reserved key-

words. All words starting with one of
these prefixes are not allowed.

UnifyString Unifies a given string.
Parameters string Context key for reading the string that

should be unified.
uniqueString Context key for storing the unified

string.
GenerateJavaIdentifier Converts a given string into a valid

Java identifier.
Parameters string Context key for reading the string that

should be converted.
identifier Context key for storing the resulting

identifier.
GenerateUniqueJavaIdentifierForSlg Generates a unique Java identifier for

the given SLG, derived from its name.
Parameters model Context key for reading the SLG.

uniqueIdentifier Context key for storing the resulting
unique identifier.

and are specified by the generator developer when modeling a code generator.
In order to avoid clashes between such generated and fixed identifiers, the gen-
erator developer might add each fixed identifier to the blacklist as a separate
reserved keyword. As this is rather uncomfortable, it is, apart from prohibit-
ing entire words, also possible to define reserved prefixes. Each identifier start-
ing with a reserved prefix is treated as if it would already be contained in the
blacklist. Consequently, as a convention for the generator developer, any fixed
identifier has to start with such a reserved prefix (e.g., “cg_”).

After initializing the blacklist, any given string may be unified by using the
SIB UnifyString. This SIB expects a string in the execution context, invokes
the backend for identifier generation to unify it, and finally stores the resulting
unique string in the execution context for further usage. However, before a
string can be unified, it has to be converted to a valid identifier, adhering to
the rules of the target language for which the code is generated. Consequently,
for each different target language, a corresponding specific service is required.

For instance, the SIB GenerateJavaIdentifier converts a given string
into a Java identifier according to the rules outlined above. Just as with
the converters for data types described in Sect. 4.1.2, such a specific SIB
has to be created if it does not exist yet, either by the generator developer
himself, or by a SIB expert. However, once the SIB has been created, it can

4.1 Services for Building Code Generators 85

be reused for every code generator that targets the corresponding language
(Requirement G2 - Reusability and Adaptability), which is a major benefit of
service orientation.

Optionally, even more specific SIBs may be added as desired, e.g., to pro-
vide more convenient identifier generation for specific combinations of source
and target languages (Requirement S1 - Domain-Specificity). As an example,
the SIB GenerateUniqueJavaIdentifierForSlg creates an identifier from a
given SLG by extracting the name of the SLG, converting it to a Java iden-
tifier and then unifying it in one step. Furthermore, it additionally caches all
identifiers that have already been generated for SLGs, so that executing the
service repeatedly for the same SLG always yields the same identifier. This
is very useful if the identifier occurs at multiple places in the generated code.

Table 4.2 sums up the services presented in this section.

4.1.4 Variant Management

When reusing existing code generators as drafts or templates for building
new ones, it is an obvious approach to start with a code generator that is as
similar as possible to the one that should be developed. For instance, in the
context of code generators for jABC, it was easy to derive a code generator
for Java Servlets [Jav11b] from an existing code generator for ordinary Java
classes with only few modifications (cf. Sect. 5.4.1), as the structure and
generated output of both is very similar.

Genesys is designed to facilitate software product line engineering [CN01;
PBL05] (Requirement S3 - Variant Management and Product Lines). Using
the terminology established in this realm, the models and services contained
in the Genesys framework are core assets that form the basis for building
product lines and deriving variants .

Accordingly, appropriate tool support is required that enables specifying
and managing variability, e.g., via the definition of variation points [PBL05,
p. 62]. The Genesys framework enables this by offering a dedicated service.
Please note that as its implementation was driven by the demands raised
during the realization of Genesys, this service does not exploit the full poten-
tial of applying product line engineering in jABC yet – Sect. 10 elaborates
on further prospects and possibilities.

The service enables the specification of variants on the basis of aspect ori-
entation (AO) [Kic+97] provided by jABC’s hierarchical modeling facilities.
As described in Sect. 3.2.2, hierarchical modeling is performed in jABC via
macros, which enable embedding SLGs into each other. On this basis, mod-
els can act as reusable aspects (Requirement G4 - Separation of Concerns):
For managing variability, macros are used as variation points (or joinpoints
in AO nomenclature) to which multiple submodels may be assigned, each of
them representing a single variant. This is an extension of jABC’s standard

86 4 The Genesys Framework

Default
Variant

Servlet
Variant

Servlet
Variant

+ Debug

servletGenerator

servletGenerator
Debug

CG

Fig. 4.3. Specifying variants via hierarchical modeling

semantics for hierarchical models, which normally only allows assigning ex-
actly one submodel to a macro.

Fig. 4.3 shows a simplified and schematic example of this concept. On the
left hand side, there is a simple model that represents the generation of a Java
class: First, the header of the class is generated, followed by the content, and
finally the remainder of the class is added. The SIB for generating the class
content is a macro and thus a potential variation point.

In order to obtain a complete model that is well-formed in terms of exe-
cutability, at least one submodel, which represents the default behavior, has
to be assigned to the macro. In Fig. 4.3, this submodel is labeled “Default
Variant” and generates the content of an ordinary Java class, consisting of a
constructor and a main method3.

The modeler may now specify further variants, which are kept apart by
unique names. The example in Fig. 4.3 shows two variants. The first (“Servlet
Variant”) with the unique name servletGenerator produces the content of
a Servlet class by generating a doGet and a doPost method4 instead of the
main method defined in the default behavior. The second (“Servlet Variant +
Debug”) with the unique name servletGeneratorDebug extends the Servlet
variant by adding extra code for debugging.

Please note that the unique name of a variant does not necessarily refer
to one single variant model only. Instead it globally identifies a variant (or
product line) of an entire SLG hierarchy (or even several hierarchies). For
instance, the variant name servletGeneratorDebug in Fig. 4.3 may refer to
a set of variant models that are associated with variation points distributed
over the SLGs hierarchy.

As the assignment of multiple submodels to a macro is not supported by
jABC, this feature is added by the Genesys jABC plugin (see Sect. 4.3.2).
Please note that technically, only the submodel that represents the default
behavior is a physical part of the model hierarchy. All other variants assigned
to a macro are just attached to it as additional information, but are not
incorporated into the model hierarchy.
3 main is a dedicated method used for starting the execution of Java programs.
4 See the Servlet specification [Jav11b] for details on the doGet and doPost meth-

ods.

4.2 Simple Example: Documentation Generator 87

Table 4.3. Service for the generation of variants

BuildVariant Builds the variant identified by the given
name for the given models.

Parameters models Context key for reading the models that
will be transformed.

variantName The unique name of the variant that will
be built.

transformedModels Context key for storing the transformed
models.

For achieving this, the specified variants are automatically generated by
means of an accordingly equipped generator generator. To this end, the gen-
erator generator needs to incorporate the BuildVariant SIB (see Table 4.3),
which builds a variant via a simple model-to-model transformation. As its
input, the service requires the unique name of the variant that will be built
along with the list of models to be transformed. For each macro contained
in each of the given models, the service checks whether a variant with the
given unique name is assigned to it. If so, the detected variant is set as the
default submodel of the macro (thus now representing the new default be-
havior). Otherwise the macro is not modified, leaving the default behavior
unchanged. The role of this model-to-model transformation is very much com-
parable to the one of aspect weavers [Kic+97] in AO, except that the weaving
is performed on the model level (model weaving [Béz+04]). After this trans-
formation step, the generator generator translates the models, which now
represent the desired variant of a code generator, to code.

The current implementation of the variant management service imposes
one restriction on models in order to be suitable as variants: They have to
provide the same model interface (i.e., model parameters and branches) as the
default variant. This is due to the fact that there is currently no support for
separately parametrizing variants – the implementation of a corresponding
GUI will remove this restriction (cf. Sect. 10 for details).

A more complex example showing the application of variant management
is the Java Class Generator for jABC, which will be presented in detail in
Sect. 5.2. This generator offers different generation strategies, each of them
realized by a corresponding variant.

4.2 Simple Example: Documentation Generator

In order to give the reader an idea of modeling a code generator with Ge-
nesys, the following sections present a complete example of a simple code
generator called the “Documentation Generator”. For the most part, this

88 4 The Genesys Framework

example is based on a tutorial introduction which originally has been pub-
lished in [JSM10]. The Documentation Generator is designed to be used in
jABC, i.e., SLGs are its source language. The generator’s task is to pro-
duce an HTML documentation website (comparable to the output of Java’s
Javadoc Tool) from those models according to the following requirements:

1. The generator should process all models in a given directory.
2. For each model, a separate HTML page should be generated, containing

the following information:
• the documentation of the model and
• a list of all SIB instances contained in that model. Each list entry

should display the corresponding SIB’s label. Furthermore, each en-
try should be linked to a detail page (described in 3) containing the
documentation of the particular SIB instance, as well as to the cor-
responding online SIB documentation (e.g., [TU10]).

3. For each SIB instance in each SLG, a detail HTML page will be generated,
displaying the SIB instance’s documentation. This page should be linked
to the corresponding model page.

4. An index page should be generated, listing all processed models along
with links to their respective model pages.

5. Each generated HTML page should contain a timestamp in order to retain
the time of the last generation.

Based on these requirements, the code generator is modeled by a genera-
tor developer who has to have knowledge of using jABC and Genesys, of
SLGs (the source and implementation language) along with their associated
concepts such as SIBs and branches, and of the HTML format (the target
language). The following sections will show how to model the complete Doc-
umentation Generator, which is built almost entirely on the basis of jABC’s
Common SIB library. For the sake of simplicity, not all the parameterizations
of the employed SIBs will be explained in detail, but instead the descriptions
will focus on which SIBs are used to solve the task and how they are con-
nected to each other. For each employed SIB, the corresponding class will be
named, so that it can be easily related to the online documentation [TU10],
which contains detailed information for all SIBs. If no class is given, then the
name of the SIB class equals the SIB label displayed in the model.

4.2.1 Structuring the Generation Process

Modeling a code generator with Genesys usually proceeds top-down. Ac-
cordingly, as the first step of modeling the Documentation Generator, the
generation process is divided into two abstract coarse-grained phases: the
initialization phase and the generation phase. In the initialization phase, the
code generator will set up the generation by verifying the input parameters
and loading the input SLGs, and in the generation phase the actual HTML
website is produced.

4.2 Simple Example: Documentation Generator 89

CG

Fig. 4.4. The Docu Generator main model (topmost hierarchy level)

Fig. 4.4 shows the resulting model, containing the SIB Initialize Docu
Generator for the initialization phase and Generate Documentation for the
generation phase. Both SIBs are macros (SIB class MacroSIB), and both
phases will be refined and concretized in the following. Please note that all
models of the Documentation Generator only use MacroSIBs (cf. Sect. 3.3.3)
as macros, i.e., a flat execution context is employed (cf. Sect. 3.3.2). Along
with the two macros, the model contains two other SIBs emitting either a
success message (Print Success, SIB class PrintConsoleMessage) when
the two phases have been finished successfully, or an error message (Print
Exception) if anything failed during the execution of the code generator.

Note that in this example, the error handling is in most cases delegated
to the main model depicted in Fig. 4.4 (error delegation). All SIBs used
in the Documentation Generator’s models have “error” branches, most of
which lead to the SIB Print Exception, either as direct edges in the main
model, or as model branches in all the other models. Consequently, Print
Exception is the central (though very simple) error handling step for the
entire generator. Another (but more rare) way of handling errors is in-place
handling, whereby the handling is usually performed by subsequent SIBs (or
even models) in the same model. This distinction between in-place handling
and error delegation is very much comparable to exception handling in Java,
where a caught exception may either be handled directly or thrown again in
order to be handled somewhere else.

4.2.2 The Initialization Phase

Subsequently, the initialization phase is concretized. Basically, this phase has
to verify the input parameters provided by the user and to set up the genera-
tion process. The Documentation Generator will have two input parameters:

outputFolder, the absolute path to the output directory for the generated
HTML files, and

modelPath, a list of absolute paths to directories containing the jABC models
for which the documentation should be generated.

Fig. 4.5 shows the refined model for the initialization phase.

90 4 The Genesys Framework

CG

Fig. 4.5. The Initialize Docu Generator model (second hierarchy level)

The generator starts by processing the parameter “outputFolder”, whose
value is first put into the execution context (Put Output Folder, SIB class
PutFile) in order to be accessible by the following SIBs. Afterwards, the SIB
Check Output Folder (SIB class CheckPath) verifies this value: If it does
not denote a proper (i.e., existent and writeable) directory, the following
step Throw Exception issues an error. Otherwise, the initialization phase
continues with handling the second input parameter “modelPath” (macro
Load Models), which is again performed in a submodel.

Referring to the different error handling techniques described above, the
SIB Throw Exception is an example for in-place handling of errors. In this
case, the exit branch of a preceding step (Check Output Folder in Fig. 4.5)
reflects an undesired result. When such an error is detected, it is directly
handled by Throw Exception, which performs the error handling in-place at
the service level, rather than delegating it to a higher model hierarchy level.

The submodel referenced by Load Models is displayed in Fig. 4.6. As load-
ing SLGs is a standard task for many code generators (at least for those dealing
with SLGs as their source language), this model is, among many others, con-
tained in the Genesys framework and thus can be entirely reused for the Docu-
mentation Generatorwithout any changes.A detailed discussion of this loading
process is not required at this point: The generator developer does not have to
know the technical details of loading SLGs anyway, as from his perspective, the
model is used just like a ready-made service in a black box fashion.

4.2.3 The Generation Phase

For modeling the generation phase, the macro Generate Documentation in
the main model (Fig. 4.4) is refined. Fig. 4.7 shows the resulting model.
The generation process starts with producing the static header of the in-
dex page (Generate Index Header) using StringTemplate (see Sect. 2.4.2).
Please note that all SIBs with “ST” on their icon are instances of the SIB
class RunStringTemplate described in Sect. 3.2.1. The header of the index
page only consists of static text, for instance, containing the opening html and
body tags for the document. Afterwards, a time stamp is generated (Generate
Time Stamp, SIB class GetTimeStamp), which is inserted into the footer of

4.2 Simple Example: Documentation Generator 91

CG

Fig. 4.6. The Load Models model (third hierarchy level)

each generated HTML page. The generation of the index page content and
the detail pages for the models and the contained SIBs is again modeled in a
submodel (referenced by the macro Generate Model Pages). After the detail
pages are produced, the generator finalizes the index page. For this purpose,
the SIB Generate Index Footer is parameterized with the following simple
template:

<hr>
<i>Generated : $timeStamp$</i>

</body>
</html>

Besides some closing tags, this template contains a placeholder called “time-
Stamp”, which is enclosed by dollar signs. When the generator is executed,
StringTemplate replaces this placeholder by the timestamp produced by the
step Generate Time Stamp. The generation phase finishes with writing the
index page to a file (Write Index Page, SIB class WriteTextFile).

CG

Fig. 4.7. The Generate Documentation model (second hierarchy level)

The submodel that refines the macro Generate Model Pages is depicted
in Fig. 4.8. It starts by iterating over all input SLGs that have been loaded
in the initialization phase (Next Model, SIB class IterateElements). Please

92 4 The Genesys Framework

note that the Documentation Generator produces HTML pages for all SLGs
in a given directory, which particularly includes all referenced submodels.
Consequently, we do not need to expand the macros or to use any recursion -
a simple iteration of the models is sufficient. As long as there are still models
left to be processed, the “next” branch of the SIB will be used. Otherwise,
the execution proceeds with the parent model (Fig. 4.7), which is connected
via a model branch (i.e., the “exit” branch of Next Model is exported as a
model branch that leads to the parent model). The following step Update
Model Counter (SIB class UpdateCounter) keeps track of a model number
that is incremented each time the SIB is executed. This number is required to
construct the names for the model detail pages. Then the generator extracts
some information from the current model. The SIB Get Model Name stores
its name in the execution context, and the SIB Convert Content to Html
reads annotated documentation and converts it to proper HTML markup,
which is also stored in the execution context. Now the generator has collected
enough information for generating an index page entry for the current model
(basically the model name, linked to the model detail page, step Generate
Index Entry) as well as the header of the model detail page containing the
model’s documentation and name.

CG

Fig. 4.8. The Generate Model Pages model (third hierarchy level)

In order to generate the list of SIBs in the current model along with the
SIB detail pages, the generator retrieves all contained SIB instances (Get
SIB Graph Cells) and then again delegates the production of all SIB-specific
HTML markup to a submodel (macro Generate Markup for SIBs). Finally,
the footer of the detail page is generated (Generate Model Page Footer)
and the entire page is written to a file (Write Model Page).

The last model required for the Documentation Generator refines the
macro Generate Markup for SIBs and is depicted in Fig. 4.9. In the first
step, it iterates over all SIB instances contained in the current model (Next
SIB Graph Cell, SIB class IterateElements), which works just like the
Next Model step in Fig. 4.8. Furthermore, analogous to the model detail
pages, the SIB Update SIB Counter (SIB class UpdateCounter) keeps track
of a SIB counter that is used for the file names of the resulting SIB detail
pages. Then again, some information is collected from the current SIB found

4.2 Simple Example: Documentation Generator 93

CG

Fig. 4.9. The Generate Markup for SIBs model (fourth hierarchy level)

in the execution context: its class name (Get SIB Class Name), unique iden-
tifier (Get SIB Class Name) and instance label (Get SIB Label).

The following SIB Generate Documentation Link differs from the other
SIBs used in the Documentation Generator, as it is the only one that calls
a remote functionality, in this case a Web Service. This Web Service takes a
SIB’s class name and UID (cf. Sect. 3.2.1) as input and uses this information
to construct the URL of the online documentation [TU10] that describes the
SIB class. As such a SIB was not provided by the Common SIBs, it had to
be created by implementing an appropriate service adapter (cf. Sect. 3.2.1),
that realizes the communication with the already existing Web Service. This
implementation was an easy one-time task.

In the following step, the code generator reads the documentation an-
notated to the current SIB (Convert Content To Html). Depending on
whether such a documentation could be found, a list entry for the current
SIB on the model page is generated. In case a documentation exists, this
entry is linked to a SIB detail page which is generated in the step Generate
SIB Page. This SIB is parameterized with the following template:
<html>

<body>
$sibDoc$
<a hre f="model_$modelCounter$. html">back to "$modelName$"
<hr>
<i>Generated : $timeStamp$</i>

</body>
</html>

Again, the static text contains placeholders that are replaced by StringTem-
plate, using information collected by the code generator:

sibDoc: The current SIB’s HTML documentation retrieved by the Convert
Content To Html step in Fig. 4.9.

modelCounter: The number of the current model assigned by the SIB Update
Model Counter in Fig. 4.8.

94 4 The Genesys Framework

Fig. 4.10. The model hierarchy of the Documentation Generator

modelName: The name of the current model retrieved by the SIB Get Model
Name in Fig. 4.8.

timeStamp: The time stamp produced by the SIB Generate Time Stamp in
Fig. 4.7.

The usage of this information in the template shows how SIB instances in
submodels can easily access information left in the execution context by SIB
instances at arbitrary levels of the model hierarchy, which is due to the flat
nature of the execution context.

Finally, if a SIB detail page has been generated, it is also written to a file
(Write SIB Page).

4.2.4 Finalizing the Generator

In summary, the demonstrated models constitute a complete code generator
according to the requirements listed above. The resulting generator consists
of six models (five new, one could be reused from Genesys’ model library),
containing 43 instances of 23 different SIBs. Only one SIB had to be im-
plemented, as the rest of the required functionality could be covered with
existing ones. The resulting model hierarchy (see Fig. 4.10) spans four levels.

While modeling a code generator, it is possible at any time to execute,
debug and test it using jABC’s Tracer (Sect. 3.3). However, for productive
use of the code generator, it should be translated to code itself, for instance
in order to be able to use it via the Genesys jABC Plugin or to integrate it
into a Maven-based tool-chain (both options will be described in more detail

4.2 Simple Example: Documentation Generator 95

HTMLSLG

SLG

 Documentation Generator

JavaSLG

Java

Genesys Code Generator Generator

HTMLSLG
Documentation Generator

Java

1

2

3

Fig. 4.11. Translating the SLGs of the Documentation Generator to Java code

in Sect. 4.3.2). This finalization of the code generator usually consists of two
steps: editing the generator’s metadata and finally generating the generator.
The former includes metadata such as the generator’s name, version, author
and usage documentation, and is edited via a corresponding GUI that is part
of Genesys’ developer tools presented in Sect. 4.3.1.

In the second step, a corresponding generator generator is responsible
for translating the generator models into code. The T-diagram depicted in
Fig. 4.11 shows that for the Documentation Generator, this translation is per-
formed by means of the Genesys Code Generator Generator (see Sect. 5.2.6).
It translates a set of given generator models to Java code that contains all
necessary information (e.g., metadata and corresponding interface implemen-
tations) to be useable with the appropriate tools named above.

4.2.5 General Remarks on the Example

The example above demonstrated how a code generator is modeled with Ge-
nesys. Several aspects of the example are particularly noteworthy as they
illustrate some characteristics of the general approach. In particular, the
SLGs of the Documentation Generator show that there is a strict separa-
tion between the generation logic and the output description (cf. Sect. 2.4),
as demanded by Requirement S4 - Clean Code Generator Specification. The
generation logic is given by the code generator SLGs, and the output descrip-
tion is given by the templates, which are parameters of dedicated SIBs such
as RunStringTemplate.

In order to achieve this strict separation, it is not advisable to describe
parts of the generation logic in the templates. This would be easily possible,
as most template languages also support control structures like conditionals,
loops or function calls (cf. Sect. 2.4.2). However, describing parts of the gen-
eration logic in the code generator SLG and other parts in the templates has
several serious drawbacks. First, the models are more difficult to understand
as the generation logic of the code generator cannot be fully grasped by just

96 4 The Genesys Framework

looking at the flow of actions in the SLGs. Second, as parts of the genera-
tion logic are hidden in templates and not modeled explicitly, they are not
considered by tools such as a model checker (see Sect. 3.4), thus impeding a
proper verification of the code generator.

Consequently, the use of templates in Genesys is mostly restricted to those
facilities of a template language that allow accessing data (e.g., placeholders
or simple expressions). Employing advanced control structures is discour-
aged, as they most likely would be used to describe logic which should rather
be modeled explicitly by means of corresponding SIBs provided by Genesys.
Likewise, templates should not be misapplied for making function calls. In-
stead either an existing SIB realizing the function should be used or, if no such
SIB exists yet, a new one should be created in order enable the reusability of
the function.

Accordingly, the templates shown in the previous sections are not partic-
ularly simple examples. Instead they are characteristic of how templates are
generally used in Genesys.

The Documentation Generator also exemplifies the mixed application of
source-driven and target-driven transformation. The generator is target-
driven as, apart from the actual templates, its generation logic roughly follows
the structure of the output. For instance, the headers of the single HTML
pages are always generated before the footers (see, e.g., Fig. 4.7 and 4.8).
At the same time, the generator can be considered source-driven, because its
generation logic avoids multiple traversals: Each model and each contained
SIB is only visited once, and when processing a model or SIB, all required
output is produced at once, so that no additional visit is necessary. This is,
e.g., visible in the SLG shown in Fig. 4.9, which generates an entry for the
model detail page as well as the SIB detail page for a particular SIB instance.

Furthermore, this flexibility of structuring the transformation allows the
Documentation Generator to produce multiple output files without any prob-
lems, thus overcoming the typical inefficiencies attributed to template-based
code generators (cf. Sect. 2.4.2).

4.3 Genesys Tooling

As outlined at the beginning of this chapter and depicted in Fig. 4.1, Genesys
provides tools supporting generator developers as well as generator users. The
following sections briefly introduce those tools.

4.3.1 Developer Tools

The developer tools provide facilities that assist the generator developer in
building code generators. They are realized as jABC plugins, but are not
necessarily restricted to code generators for jABC (i.e., having SLGs as their
source language).

4.3 Genesys Tooling 97

Fig. 4.12. Left hand side: Inspector for editing a code generator’s metadata, Right
hand side: Setting up a benchmark

Descriptor Inspector:

The Descriptor Inspector allows the generator developer to add metadata to
a code generator. This includes information such as the name of the code
generator, a short and a long description, the author’s name, a version, the
category of the code generator as well as an icon. This metadata is attached
to the topmost model of the code generator as a user object (cf. Sect. 3.2.2)
and serves multiple purposes. First, generator generators may incorporate
the metadata into a generated version of the code generator and thus may
allow tools using the code generator to display the information to users.
For instance, when translating a code generator for jABC using the Genesys
Code Generator Generator (see Sect. 5.2.6), any metadata is added to the
resulting Java class. When using a code generator translated this way in
jABC, the information is displayed to the user by means of the Genesys jABC
Plugin presented in the next section. Second, the metadata may be used to
automatically generate documentation (e.g., an HTML website) for the code
generator. Fig. 4.12 (left hand side) shows the contents of the Descriptor
Inspector for the Documentation Generator presented in Sect. 4.2.

Benchmark Framework:

By means of the benchmark framework , a generator developer is able to com-
pare different code generators or generator variants in terms of the perfor-
mance of their generated results. For instance, one could compare the two
Servlet Generator variants exemplified in Sect. 4.1.4 in order to examine
whether the addition of extra debugging code negatively influences the per-
formance of generated results. The benchmark framework performs this com-
parison by

1. using each participating code generator to translate a set of input models
which act as objects of investigation,

98 4 The Genesys Framework

Fig. 4.13. Benchmark results visualized in tabular or bar chart form

2. executing the result of each generation (after eventually compiling it, if
necessary),

3. measuring the time duration of each execution and
4. finally visualizing the measurements.

For setting up a benchmark, the generator developer first creates a config-
uration for each participating code generator. Such a configuration includes
information such as the code generator that will be used, the input models
which are translated to code as well as a so-called execution runner that spec-
ifies how the generated code is executed. The latter strongly depends on the
code generator that is used, as, e.g., a Java class with a main method is exe-
cuted in a different way than a Servlet. Technically, an execution runner is a
Java class following a simple interface, which has to be implemented for every
generation result that should be supported by the benchmark framework.

Furthermore, the generator developer may also specify the number of runs
for a configuration. This avoids benchmarks which execute so fast that they
are hardly observable, e.g., due to small input models or very high-end host
machines. Another motivation for repeated executions is dealing with sta-
tistical deviations which might prevent reliable comparison of results, e.g.,
resulting from possible effects of memory caching, just-in-time compilation
or hot-spot optimizations. Fig. 4.12 (right hand side) shows the graphical
interface for setting up a benchmark, which contains prepared configurations
for different variants of a code generator for Java classes (cf. Sect. 5.3).

After this preparatory configuration, the benchmark can be executed. The
benchmark framework follows the procedure described above and then dis-
plays the results. As shown in Fig. 4.13, the measurements can be viewed in
either tabular form or as bar charts.

Please note that although only the execution time of the generated artifacts
is measured, it is nevertheless possible to similarly benchmark the execution

4.3 Genesys Tooling 99

performance of the code generators. For setting up such a benchmark, the
used code generator has to be a generator generator, that is then applied to
the models of the code generators whose performance is to be measured.

VTL Editor:

As many Genesys users choose Velocity (cf. Sect. 2.4.2) as their template
engine, the Developer Tools provide a textual editor for templates written in
the Velocity Template Language (VTL). This editor allows in-place editing
of Velocity templates in jABC with line numbering and syntax highlighting.
Please note that although Velocity is specifically supported that way, Genesys
is not restricted to any particular template engine.

4.3.2 User Tools

jABC Plugin:

The Genesys Plugin for jABC provides a graphical interface, depicted in
Fig. 4.14, for configuring and executing code generators in order to translate
SLGs to code. For an existing jABC project, a user may create an arbitrary
number of code generator configurations. After selecting the desired code gen-
erator, the metadata specified by the generator developer (see Sect. 4.3.1) is
displayed and the generator can be configured (e.g., its input models and
output directory). The code generation can then be started via this configu-
ration. An integrated console informs the user about the generation progress
and about any errors.

Furthermore, apart from generator users in jABC, this jABC plugin is
also useful for generator developers. The graphical interface allows them to
conveniently generate their code generator models by creating a configuration
for an appropriate generator generator. In order for a code generator to be
usable with the Genesys Plugin for jABC, it has to be generated with the
Genesys Code Generator Generator , which is described in more detail in
Sect. 5.2.6.

Maven Plugin:

Apache Maven [Apa11b] is a popular and powerful tool for creating build
environments. It supports, among other things, building and deploying arti-
facts, dependency management, automatic testing and release management.
All these activities are realized as plugins. In a special XML file, the so-called
Project Object Model (POM), such plugins are configured and assigned to
particular phases of a build lifecycle managed by Maven.

As code generators are often integral parts of such build environments they
need to be compatible with corresponding management tools (Requirement
S6 - Tool-Chain Integration). For being able to integrate a code generator
developed with Genesys into a Maven-based tool-chain, Genesys provides a

100 4 The Genesys Framework

Fig. 4.14. Creating a configuration for using a code generator in jABC

corresponding Maven plugin. In analogy to the Genesys jABC plugin, this
Maven plugin is able to execute any code generator that has been translated
with the Genesys Code Generator Generator . Like any other Maven plugin,
it is configured and added to a build environment via a project’s POM.

As code generators produced by the Genesys Code Generator Generator
are just plain Java classes, it is moreover easy to use them with other build
management tools such as Apache Ant [Apa11a] or GNU make [Fre11a].

	The Genesys Framework
	Services for Building Code Generators
	Contributions to the Common SIBs
	Type Mapping
	Identifier Generation
	Variant Management

	Simple Example: Documentation Generator
	Structuring the Generation Process
	The Initialization Phase
	The Generation Phase
	Finalizing the Generator
	General Remarks on the Example

	Genesys Tooling
	Developer Tools
	User Tools

