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Abstract. While active flow control is an established method for con-
trolling flow separation on vehicles and airfoils, the design of the actua-
tion is often done by trial and error. In this paper, the development of
a discrete and a continuous adjoint flow solver for the optimal control
of unsteady turbulent flows governed by the incompressible Reynolds-
averaged Navier-Stokes equations is presented. Both approaches are ap-
plied to testcases featuring active flow control of the blowing and suction
type and are compared in terms of accuracy of the computed gradient.
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1 Introduction

For many aerodynamic applications in aviation and automotive industry, flow
separation has to be taken into account. The lift of an airfoil at a high angle
of attack, for instance, decreases drastically, if the flow separates on the suction
side.

Many studies in the past decades have shown that the aerodynamic behaviour
of a body can be improved by using active flow control [4]. However, the choice of
the control parameters is very case-specific and not trivial. An efficient method
of finding the optimal set of actuation parameters is the gradient-based optimi-
sation, which requires the calculation of the gradient of the cost function with
respect to the control parameters. The control variables are then updated in an
iterative manner according to a descent direction, which can be obtained from
the gradient vector.
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A very efficient way of computing the gradient is by using adjoint methods.
Compared to simpler approaches such as Finite Differences or the Complex Tay-
lor Series Expansion (CTSE) [13], adjoint-based methods compute the gradient
vector at a fixed expense independent of the number of actuation parameters.
Adjoint methods are commonly divided into the continuous and the discrete
approach.

In the continuous adjoint method [10], first the optimality system for a given
objective function is derived and the resulting PDEs are then discretised and
solved numerically. This procedure is called first optimise then discretise. The
continuous approach is numerically efficient but it is known to suffer from consis-
tency problems. The gradient can become inaccurate for insufficient time steps
and grid spacing, which can be disadvantageous for complex configurations. Fur-
thermore, most statistical turbulence models required for the unsteady Reynolds-
averaged Navier-Stokes equations (URANS) are non-differentiable. The common
approach is to use the so-called constant eddy viscosity or frozen turbulence as-
sumption, i.e. the eddy viscosity is treated as independent of the control param-
eters and therefore taken from the primal solution. This assumption can lead to
significant errors in the computed gradient [1].

The concept of the discrete adjoint method [3,6,12] is to first discretise then
optimise, i.e. the discretised governing equations are used to derive the optimal-
ity system. This approach allows the generation of a fully consistent optimality
system independent of the grid size, time step and turbulence model, as it does
not require analytical differentiability [11]. Furthermore, Automatic Differentia-
tion (AD) techniques [8] can be used to develop the discrete adjoint solver for a
given simulation code in a semi-automatic fashion.

In this paper, we present the development of a continuous and a discrete
adjoint solver for the optimal control of unsteady turbulent flows governed by
the incompressible URANS equations. Both approaches, which are presented in
more detail in sections 3 and 4, are based on the same flow solver ELAN [16].
For the current study, the adjoint solvers are applied to testcases which feature
active flow control of the blowing and suction type.

2 Flow Model

Governing equations For this study, the unsteady, incompressible, turbulent flow
in the domain Ω is described by the Reynolds-averaged Navier-Stokes equations1

∂ui
∂xi

= 0 (1)

∂�ui
∂t

+
∂�uiuj
∂xj

+
∂p

∂xi
− ∂

∂xj

[
(μ+ μt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
= 0 , (2)

1 In the following, the Einstein summation convention is used, which implies summa-
tion from 1 to 3 over indices which appear twice in a single term. Indices, which
appear only once take the value 1, 2 and 3 individually.
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where ui and p are the Reynolds-averaged velocity and pressure, respectively.
The density � and the dynamic viscosity μ are constant for the cases shown here.
The eddy viscosity μt is obtained from the Wilcox-k-ω-model [15], which con-
sists of transport equations for the turbulent kinetic energy k and the turbulent
frequency ω.

Boundary Conditions At the farfield boundaries (Γi), ui, k and ω were pre-
scribed. On the body surface (Γb), ui and ∂k/∂n were set to zero, whereas a
high-Re boundary condition [16] was used for the turbulent frequency. At the
outflow (Γo), the gradient of the turbulent quantities normal to the boundary
was set to zero. For the Navier-Stokes equations, we want the sum of normal
and friction forces to vanish at the outlet, i.e.

−pni + (μ+ μt)

(
∂ui
∂xj

+
∂uj
∂xi

)
nj = 0 . (3)

At the control segment (Γc), the actuation velocity ci(bj) as well as the turbu-
lent quantities were prescribed. The dependence of ci(bj) on the vector of the
actuation parameters, bj , is case-specific and is given in the testcase descriptions.

3 Continuous Adjoint Approach

Let J be the objective function to be minimised. Then the optimisation problem
can be stated as

J(ui, p, ci(bj)) � min over (ui, p, ci(bj)) subject to R(ui, p, ci(bj)) = 0 , (4)

where R represents the state equations including the boundary conditions. In
the cases presented here, the objective function can be written as2

J = − 1

T

T∫
0

∫
Γb,c

[
(μ+ μt)

(
∂ui
∂xj

+
∂uj
∂xi

)
nj − pni − �uiujnj

]
ei dAdt

+
γ

u∞
1

T

T∫
0

∫
Γc

�u2
√
(uini)2 + ε dAdt . (5)

If the unity vector ei is parallel to the mean flow, eq. 5 is the time-averaged drag.
If ei is oriented normal to the mean flow, eq. 5 represents the time-averaged
downforce. The second integral is a penalty term which accounts for the energy
consumption of the actuation and can be scaled by the factor γ. The parameter
ε is only required for the differentiability of the penalty term, i.e. 1 � ε > 0.

2 Note, that the negative sign of the first integral is a result of the convention that
the normal vector ni is directed out of the wall-adjacent control volume, i.e. into the
body surface.
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To solve the minimisation problem, one first introduces the Lagrange function

L(ui, p, ci(bj), vi, q) = C J(ui, p, ci(bj))+

T∫
0

∫
Ω

qR� dV dt+

T∫
0

∫
Ω

viRu dV dt , (6)

where the Lagrange multipliers vi and q are the adjoint velocity and pressure,
respectively, and C is a scaling factor to fix the units. By setting the variation of
L with respect to the state variables, ∂L

∂uk
δuk and ∂L

∂p δp, to zero, one can obtain
the adjoint equations. First the variations δuk and δp have to be separated from
other terms by using integration by parts and the boundary conditions have to be
applied to the boundary integrals. As the resulting equations have to be fulfilled
for any variation δuk and δp, all integrals have to vanish individually, which gives
the adjoint equations and boundary conditions. Setting the variation of L with
respect to the control to zero and using the same procedure gives the equation
for the gradient calculation. Due to the page limitation, a detailed derivation
has to be omitted and the adjoint system can only be summarised. The adjoint
PDEs read

∂vi
∂xi

= 0 Ω

−∂�vi
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∂uj
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− ∂
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(
∂vi
∂xj

+
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)]
= 0 Ω

vi = 0 Γi

�viujnj − qni + (μ+ μt)

(
∂vi
∂xj

+
∂vj
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)
nj = 0 Γo

vi +
C

T
ei = 0 Γb,c ,

(7)
with the initial condition vi = 0 at t = T . The gradient w.r.t. the actuation
parameters can be evaluated from

dJ

dbn
=
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0

∫
Γc

[
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+
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T∫
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∫
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[
�ckck√

cinicjnj + ε
clnlnm + 2�cm

√
cinicjnj + ε

]
∂cm
∂bn

dAdt .

(8)
Note, that the frozen turbulence assumption has been used, i.e. an adjoint tur-
bulence model is not required.

4 Discrete Adjoint Approach

If we consider the discrete implementations of the objective function J and the
state equations R, the discrete optimisation problem can be stated as:

Jd(y, bi) � min over (y, bi) subject to Rd(y, bi) = 0 , (9)
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where y = (ui, p) is the discrete state vector and Jd, Rd denote the discrete
implementations of J and R. Note, that in the discrete realisation the actuation
variables bi are chosen as independent variables. The gradient of Jd with respect
to the actuation parameters bi can be computed from

dJd
dbi

=
∂Jd
∂bi

− ψ� ∂Rd

∂bi
, (10)

where the adjoint vector ψ can be determined by solving the adjoint system(
∂Rd

∂y

)�
ψ =

∂Jd
∂y

. (11)

One way of constructing the adjoint system is by computing ∂Rd/∂y and ∂Jd/∂y
using Finite Differences. The linear system of equations is then hand-coded and
solved by an iterative method (e.g. GMRES). The resulting adjoint variables are
used to calculate the gradient vector in eq. 10. A more promising way of devel-
oping the adjoint system is by employing the reverse mode of AD, which has the
major advantage that it constructs the adjoint system consistently and computes
the gradient vector dJd/dbi accurate to machine precision. In the present work,
the discrete adjoint solver is developed by employing the AD tool TAPENADE
[9] in reverse mode of differentiation.

If the reverse mode of AD is applied in a black-box fashion, the resulting
adjoint code will have tremendous memory requirements. In order to reduce the
excessive memory demands, we apply the reverse accumulation and checkpoint-
ing strategies for the Automatic Differentiation of the underlying flow solver.
The solution strategy for the incompressible URANS equations mainly consists
of two iterative loops: the time evolution step and the iterations for the velocity-
pressure coupling scheme. Inside each time step, the velocity-pressure coupling
iterations are performed, which are commonly known as outer iterations in the
CFD community. It may be noted, that the outer iterations for the velocity-
pressure coupling scheme converge to a fixed point in each time step. If AD is
applied to these outer iterations in a black-box fashion, the flow solutions at each
outer iteration of the primal solver must be saved for the adjoint part. However,
the adjoint iterations require only the converged primal solution. Therefore, a lot
of memory and run time can be saved, if we make use of the iterative structure
and store only the converged flow solution in each physical time step. This can
be achieved by employing the reverse accumulation approach [2,5], the details
of which are presented in the following.

Consider the total derivative of a discrete objective function Jd with respect
to the control bi at the converged state solution y∗ for any time step:

dJd(y
∗, bi)

dbi
=
∂Jd(y

∗, bi)
∂bi

+
∂Jd(y

∗, bi)
∂y∗

dy∗

dbi
. (12)

On the other hand, if we have a fixed point for the state solution y∗ = G(y∗, bi) ⇔
Rd (y

∗, bi) = 0, we get

dy∗

dbi
=
∂G(y∗, bi)

∂bi
+
∂G(y∗, bi)

∂y∗
dy∗

dbi
=

(
I − ∂G(y∗, bi)

∂y∗

)−1
∂G(y∗, bi)

∂bi
. (13)
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Multiplying on both sides with ∂Jd(y
∗,bi)

∂y∗
�
, we obtain

(
∂Jd(y

∗, bi)
∂y∗

)�
dy∗

dbi
=

(
∂Jd(y

∗, bi)
∂y∗

)� (
I − ∂G(y∗, bi)

∂y∗

)−1

︸ ︷︷ ︸
:=y∗�

∂G(y∗, bi)
∂bi

. (14)

From the definition of y∗� in equation (14) and making use of equation (13),
the adjoint fixed point iteration can be written as

y∗� = y∗�
∂G(y∗, bi)

∂y∗
+

(
∂Jd(y

∗, bi)
∂y∗

)�
. (15)

The first term on the right hand side of the above equation is the adjoint of a
single outer iteration. This can be generated by applying the reverse mode of
AD to the wrapper subroutine G, which combines all the steps done within one
outer iteration of the flow solver. The gradient vectors ∂Jd/∂y

∗ and ∂Jd/∂bi
come from the adjoint of the post-processor, which is computed only once for
each time iteration.

We now focus our attention on adjoining the time iterations. In general, the
computation of the unsteady adjoint solution over the time interval [0, T ] with
N time steps requires the storage of flow solutions at time steps T0 to TN−1. The
stored solutions are then used in solving the adjoint equations from TN to T0.
For many practical aerodynamic configurations with millions of grid points and a
large number of unsteady time steps, the storage costs may become prohibitively
expensive.

One way of circumventing the excessive storage cost is by employing a check-
pointing strategy [8], where the flow solutions are stored only at selective time
steps known as checkpoints. These are then used to recompute the intermediate
states that have not been stored. In the present example, we chose r (r � N)
checkpoints. We then have 0 = T0 = TC1 < TC2 < · · · < TCr−1 < TCr < TN = T .
Here, TCr represents the time step at rth checkpoint. During the adjoint compu-
tation over the subinterval [TCr , TN ], required flow solutions at intermediate time
steps are recomputed by using the stored solution at TCr as the initial condition.
The above procedure is then repeated over other subintervals

[
TCr−1 , TCr

]
until

all adjoints are computed. It may be noted, that the checkpoints can be reused
when they become free. We designate them as intermediate checkpoints.

Various checkpointing strategies have been proposed based on the storage
criteria. If all the checkpoints are stored in main memory, it is called single-
stage checkpointing. In yet another approach called multi-stage checkpointing
[14], the checkpoints are stored both in main memory and on hard-disk, thus
reducing the number of flow recomputations. In the present work, we have used
the single-stage binomial checkpointing strategy, which is implemented in the
algorithm revolve [7] and generates the checkpointing schedules in a binomial
fashion, so that the number of flow recomputations is proven to be optimal.
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5 Numerical Results

5.1 Cylinder with Pulsed Blowing and Suction

The first application is the unsteady laminar flow around a circular cylinder at
a Reynolds-number of Re = 100, based on the cylinder diameter D and the
freestream velocity u∞. The objective is to reduce the drag by applying pulsed
blowing or suction according to

cn = ua sin [2πf (t− t0)]− ua (16)

on 15 slits, which are equidistantly distributed in 75% of the cylinder surface,
see fig. 1(a). In eq. 16, cn is the actuation velocity normal to the slit surface

Velocity Magnitude: 0.0 1.2

(a) Snapshot of actuated flow

pm: -0.4 0.4

base flow

actuated flow

(b) Time-averaged pressure field

Fig. 1. Contour plots for the cylinder flow

and ua, f and t0 are the amplitude, frequency and phase shift, respectively. The
actuation mode, i.e. blowing or suction, is set by the sign of the amplitude. For
the case studied here, the actuation amplitudes at all slits are the parameters
to be optimised, while the frequency and phase shift were fixed to f = 1 u∞/D
and t0 = 0D/u∞, respectively.

Only the continuous adjoint flow solver was applied to this testcase in order
to test its accuracy in the unsteady laminar mode, i.e. without the influence of
the frozen turbulence assumption. A numerical mesh consisting of about 25000
control volumes (CV) and a time step of Δt = 0.04D/u∞ was used for the
computations. In every iteration of the optimisation, which was performed with
the steepest descent method, the primal solution was integrated over 15000 time
steps. For the calculation of the objective function and the gradient, the first
5000 time steps were neglected to remove the initial transient. The optimisation
was terminated when all sensitivities had dropped by two orders of magnitude.

As can be seen from fig. 2(a), the drag coefficient of the cylinder decreases from
cd = 1.336 to cd = 0.899 when actuated with the optimal control parameters,
which is a reduction of more than 30%. The comparison of the sensitivities at
the first optimisation step shows a good agreement of the adjoint-based gradient
with Finite Differences, see fig. 2(b). There are only small deviations, which can
be attributed to the insufficient grid spacing and time step. Note, that only the
slits on the upper half of the cylinder are shown, as the optimisation leads to
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Fig. 2. Optimisation results for the cylinder flow

a symmetric actuation. The same holds for the optimal amplitude distribution,
which is presented in fig. 2(c). The blowing and suction at slits one to four
generates a symmetric vortex pair which is pushed away from the rear of the
cylinder by the blowing at slits five to eight. As is obvious in fig. 1(b), this
increases the pressure level behind the cylinder, thus reducing the pressure drag.

5.2 NACA0015 Airfoil with Synthetic Jet Actuation

The second application is the lift maximisation for the unsteady turbulent flow
around a NACA0015 airfoil at Re = 106, based on the cord length c and the
freestream velocity u∞. The angle of attack (AoA) is α = 20o, leading to a mas-
sive separation on the suction side. In this case, sinusoidal blowing and suction
(also called synthetic jet), which can be modelled according to

ci = uari sin [2πf (t− t0)] , ri =

(
cos (β − θ)
sin (β − θ)

)
, (17)

is applied at four slits on the suction side of the airfoil with a constant frequency
of f = 1.28 u∞/c. Compared to the pulsed actuation (eq. 16) the blowing angle
β can now be varied. The angle of the slit surface, θ, is fixed by the geometry
of the airfoil. Computations with the discrete and the continuous adjoint solver
were performed on a coarse mesh with 9500 CV and Δt = 0.005 c/u∞ over 100
time steps, including the initial transient.

The comparison of the sensitivity gradients, summarised in tab. 1, reveals an
excellent agreement between the forward and reverse mode AD, giving only very
small differences of approx. 1× 10−5.

Compared to the AD-based solver, the results of the continuous adjoint code
are significantly less accurate. One reason for this is the insufficient grid spac-
ing, which is known to cause consistency problems with the continuous adjoint
approach [11]. Furthermore, this can also be attributed to the frozen turbulence
assumption. The active flow control modifies the separation on the suction side
of the airfoil considerably, which has a strong impact on the turbulence field.
This is completely neglected by the frozen turbulence assumption.
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Table 1. Comparison of the sensitivities for the NACA0015 testcase

control parameter forward mode AD reverse mode AD continuous adjoint
amplitude slit 1 0.132843488475446 0.132869414677547 0.070114751633607
amplitude slit 2 0.167065662623720 0.167070460770784 0.091718158272631
amplitude slit 3 0.181252126166289 0.181247271988999 0.103029635268416
amplitude slit 4 0.155843813170431 0.155844489164031 0.078944639252318
angle slit 1 0.005209720130677 0.005212791392634 0.000849278587241
angle slit 2 0.006705398122871 0.006697219503597 0.000654244527370
angle slit 3 0.006841527973356 0.006841492789784 0.002024334722777
angle slit 4 0.007246750396135 0.007246751418587 0.001287773996372
phase slit 1 0.204178681978258 0.204246051913213 0.278962118275295
phase slit 2 0.244693324906123 0.244791572866917 0.295707942189874
phase slit 3 0.244819168327026 0.244817849004966 0.304905513643976
phase slit 4 0.125955476539906 0.125957535080716 0.150374244523809

6 Summary and Outlook

In this paper, the development of a continuous and a discrete adjoint flow solver
for the optimal control of unsteady, turbulent flows governed by the incompress-
ible URANS equations was presented. For the continuous adjoint approach, the
wide-spread frozen turbulence assumption was used, while the AD-based discrete
approach is fully consistent independent of the grid size, time step and turbulence
model, as it does not require analytical differentiability. The numerical efficiency
of the discrete solver has been improved by employing the reverse accumulation
technique and the binomial checkpointing, which allows the application of the
discrete adjoint solver to practical configurations.

The numerical results of the drag reduction of the cylinder flow showed, that
the continuous adjoint method works well for unsteady laminar flows. However,
it gives fairly inaccurate sensitivity gradients when applied to the turbulent flow
around a NACA0015 airfoil at a high Re-number due to the frozen turbulence
assumption and insufficient grid spacing. In contrast to this, the sensitivities
obtained from the AD-based adjoint solver are of excellent accuracy and match
the forward mode AD nearly perfectly.

In future studies, the different approaches will be applied to more complex
geometries such as multi-element high-lift configurations or simplified car mod-
els, aiming at a more detailed comparison of the adjoint methods in terms of
accuracy and numerical efficiency.
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