
Forward Secure Signatures on Smart Cards�

Andreas Hülsing, Christoph Busold, and Johannes Buchmann

Cryptography and Computeralgebra
Department of Computer Science

TU Darmstadt, Germany
{huelsing,buchmann}@cdc.informatik.tu-darmstadt.de,

christoph.busold@cased.de

Abstract. We introduce the forward secure signature scheme XMSS+

and present an implementation for smart cards. It is based on the hash-
based signature scheme XMSS. In contrast to the only previous imple-
mentation of a hash-based signature scheme on smart cards by Rohde et
al., we solve the problem of on-card key generation. Compared to XMSS,
we reduce the key generation time from O(n) to O(√n), where n is the
number of signatures that can be created with one key pair. To the best
of our knowledge this is the first implementation of a forward secure sig-
nature scheme and the first full implementation of a hash-based signature
scheme on smart cards. The resulting runtimes are comparable to those
of RSA and ECDSA on the same device. This shows the practicality of
forward secure signature schemes, even on constrained devices.

Keywords: forward secure signatures, smart cards, implementation,
hash-based signatures.

1 Introduction

In 1997 Anderson introduced the idea of forward secure signature schemes (FSS)
[3]. The idea behind FSS is the following: Even in the case of a key compromise,
all signatures issued before the compromise should remain valid. This is an im-
portant property for all use cases where signatures have to stay valid for more
than a short time period, including use cases like document signing or certifi-
cates. If for example a contract is signed, it is important that the signature stays
valid for at least as long as the contract has some relevance. The solutions used
today require the use of time stamps [13, 14]. This introduces the requirement
for a trusted third party and the overhead of requesting a time stamp for each
signature. FSS in turn already provide this property and thereby abandon the
need for time stamps. To fulfill the forward security property, a signature scheme
has to be key evolving, meaning, the private key changes over time. The lifetime
of a key pair is divided into time periods. While the public key stays the same,
the secret key is updated at the end of each time period. So far, it was shown

� Supported by grant no. BU 630/19-1 of the German Research Foundation
(www.dfg.de).

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 66–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Forward Secure Signatures on Smart Cards 67

that FSS can be efficiently implemented on PCs [6, 11]. As for common signa-
ture schemes, to be usable in practice, FSS must be efficiently implementable
on smart cards. This is even more important in the case of FSS, as it has to be
ensured that the secret key is updated and the former secret key is deleted. So
far there exists no implementation of FSS on smart cards.

A candidate FSS is the hash-based FSS XMSS [6] because of its strong security
guarantees (see Section 2). Moreover, XMSS benefits from hardware acceleration
for block ciphers, which is provided by many smart cards. A severe problem of
most FSS, including XMSS, is the costly key generation. XMSS key generation
requires time linear in the number of signatures that can be generated using the
same key pair. While this might be tolerable on PCs, it makes key generation
on smart cards impractical. The only existing implementation of a hash-based
signature scheme on smart cards [22] does not include on-card key generation
for this reason. But on-card key generation is necessary for most use cases that
benefit from the forward security property. I.e. to guarantee non-repudiation in
the case of document signing, a signature key pair has to be generated on the
smart card and must never leave this secure environment.

Our contribution. In this paper we introduce XMSS+ which is based on XMSS
and present an implementation on an Infineon SLE78 smart card. While the
strong security guarantees of XMSS are preserved, XMSS+ key generation re-
quires only time O(√n), for a key pair, that can be used to sign n messages.
Thereby we make on-card key generation practical. This means we present the
first implementation of a forward-secure signature scheme on a smart card. At
the same time, it is the first full (including key generation) smart card implemen-
tation of a hash-based signature scheme. To achieve this, we use the tree chaining
technique [9] and improve the idea of distributed signature generation [7]. To im-
prove the performance, we implemented all used (hash) function families based
on AES and exploit the hardware acceleration provided by the card. Using our
implementation, the generation of a key pair, that can be used to generate 220

signatures, can be done in 22.2s. For such a key pair, signature generation took
less than 106ms, verification took no more than 44ms. These timings are of the
same order of magnitude than the runtimes for RSA and ECDSA on the same
card using the asymmetric crypto co-processor.

Organization. We start with a description of XMSS in Section 2. XMSS+, that
enables key generation, is presented and analyzed in Section 3. We describe our
implementation and present parameters and runtimes in Section 4. Finally, we
give a conclusion in Section 5.

2 The eXtended Merkle Signature Scheme XMSS

In this section we describe the FSS XMSS [6]. While there exist many proposals
for FSS, including [1,2,4,10,15–17,19,23], XMSS is the only FSS where the for-
ward security is based on minimal security assumptions. XMSS uses a function

68 A. Hülsing, C. Busold, and J. Buchmann

family F and a hash function family H. It is provably forward secure in the stan-
dard model, if F is pseudorandom and H second preimage resistant. As current
research suggests that these properties are not threatened by the existence of
quantum computers, XMSS+ is assumed to be resistant against quantum com-
puter based attacks. We first give a high level overview. XMSS is build on a
one-time signature scheme (OTS), a signature scheme where a key pair can only
be used once. To obtain a many-time signature scheme, many OTS key pairs
are used and their public keys are authenticated using a Merkle Tree. A Merkle
Tree is a binary hash tree. The leaves of the tree are the hash values of the OTS
public keys. The root of the Merkle Tree is the XMSS public key. To overcome
the need of storing all OTS key pairs, they are generated using a pseudorandom
generator (PRG). We start the detailed description with the parameters used
by XMSS, afterwards we give a description of the building blocks, namely, the
Winternitz-OTS, the XMSS Tree, the leaf construction, and the PRG. Then we
describe the algorithms for key generation, signature generation and verifica-

tion. In the following we write log for log2 and x
$←− X if the value x is chosen

uniformly at random from the set X .

Parameters. For security parameter n ∈ N, XMSS uses a pseudorandom func-
tion family Fn = {FK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n}, and a second preim-
age resistant hash function H, chosen uniformly at random from the family
Hn = {HK : {0, 1}2n → {0, 1}n|K ∈ {0, 1}n}. It is parameterized by the mes-
sage length m ∈ N, the tree height h ∈ N, the BDS parameter k ∈ N, k < h, k−h
is even, and the Winternitz parameter w ∈ N, w > 1. XMSS can be used to sign
2h message digests of m bits. The Winternitz parameter w allows for a trade off
between signature generation time and signature size. The BDS parameter k al-
lows for a time-memory trade-off for the signature generation. Those parameters
are publicly known.

Winternitz OTS. XMSS uses the Winternitz-OTS (W-OTS) from [5]. W-OTS
uses the function family Fn and a value X ∈ {0, 1}n that is chosen during
XMSS key generation. For K,X ∈ {0, 1}n, e ∈ N, and FK ∈ Fn we define
Fe

K(X) as follows. We set F0
K(X) = K and for e > 0 we define K ′ = Fe−1

K (X)
and Fe

K(X) = FK′(X). Also, define

�1 =

⌈
m

log(w)

⌉
, �2 =

⌊
log(�1(w − 1))

log(w)

⌋
+ 1, � = �1 + �2.

The secret signature key of W-OTS consists of � n-bit strings ski, 1 ≤ i ≤ �.
The generation of the ski will be explained later. The public verification key is
computed as

pk = (pk1, . . . , pk�) = (Fw−1
sk1

(X), . . . ,Fw−1
sk�

(X)),

with Fw−1 as defined above. W-OTS signs messages of binary length m. They
are processed in base w representation. They are of the form M = (M1 . . .M�1),

Forward Secure Signatures on Smart Cards 69

Mi ∈ {0, . . . , w− 1}. The checksum C =
∑�1

i=1(w− 1−Mi) in base w represen-
tation is appended to M . It is of length �2. The result is a sequence of � base w
numbers, denoted by (T1, . . . , T�). The signature of M is

σ = (σ1, . . . , σ�) = (FT1

sk1
(X), . . . ,FT�

sk�
(X)).

It is verified by constructing (T1 . . . , T�) and checking

(Fw−1−T1
σ1

(X), . . . ,Fw−1−T�
σ�

(X))
?
= (pk1, . . . , pk�).

The sizes of signature, public, and secret key are �n bits. For more detailed
information see [5].

XMSS Tree. The XMSS tree utilizes the hash function H. The XMSS tree is a
binary tree of height h. It has h+1 levels. The leaves are on level 0. The root is
on level h. The nodes on level j, 0 ≤ j ≤ h, are denoted by Ni,j , 0 ≤ i < 2h−j .
To construct the tree, h bit masks Bj ∈ {0, 1}2n, 0 < j ≤ h, are used. Ni,j , for
0 < j ≤ h, is computed as

Ni,j = H((N2i,j−1||N2i+1,j−1)⊕Bj).

Leaf Construction. The leaves of the XMSS tree are the hash values of the
W-OTS public keys. To avoid the need of a collision resistant hash function,
another XMSS tree is used to construct the leaves. It is called L-tree. The � leaves
of an L-tree are the � bit strings (pk0, . . . , pk�) from the corresponding verification
key. As � is not necessarily a power of 2, there might not be sufficiently many
leaves to get a complete binary tree. Therefore the construction is modified. A
left node that has no right sibling is lifted to a higher level of the L-tree until it
becomes the right sibling of another node. In this construction, the same hash
function as above but new bitmasks are used. The bitmasks are the same for all
L-trees. As L-trees have height �log �	, additional �log �	 bitmasks are required.

Pseudorandom Generator. The W-OTS key pairs are generated using two
pseudorandom generators (PRG). The stateful forward secure PRG FsGen :
{0, 1}n → {0, 1}n × {0, 1}n is used to generate one seed value per W-OTS key-
pair, using the function family Fn. Then the seed is expanded to the � W-OTS
secret key bit strings using Fn. FsGen starts from a uniformly random state

S0
$←− {0, 1}n. On input of a state Si, FsGen generates a new state Si+1 and

a pseudorandom output Ri:

FsGen(Si) = (Si+1||Ri) = (FSi(0)||FSi(1)).

The output Ri is used to generate the ith W-OTS secret key (sk1, . . . , sk�):

skj = FRi(j − 1), 1 ≤ j ≤ �.

70 A. Hülsing, C. Busold, and J. Buchmann

Key Generation. The key generation algorithm takes as input all of the above
parameters. Then the whole XMSS Tree has to be constructed to obtain the
value of the root node. We now detail this procedure. First, the bitmasks
(B1, . . . , Bh+�log ��) and the value X are chosen uniformly at random. Then,
the initial state of FsGen, S0 is chosen uniformly at random and a copy of it is
stored as part of the secret key SK. The tree is constructed using the TreeHash
algorithm, listed as Algorithm 1 below. Starting with an empty stack Stack and
S0, all 2

h leaves are successively generated and used as input to the TreeHash
algorithm to update Stack. This is done by evaluating FsGen on the current
state Si, obtaining Ri and replacing Si with Si+1. Then Ri is used to compute
the W-OTS public key, which in turn is used to compute the corresponding leaf
using an L-tree. The leaf and the current Stack are then used as input for the
TreeHash algorithm to obtain an updated Stack. The W-OTS key pair and Ri

are deleted. After all 2h leaves were processed by TreeHash, the only value on
Stack is the root of the tree, which is stored in the public key PK.

Algorithm 1. TreeHash

Input: Stack Stack, node N1

Output: Updated stack Stack

1. While top node on Stack has same height as N1 do
(a) t← N1.height() + 1
(b) N1 ← H ((Stack.pop()||N1)⊕Bt)

2. Stack.push(N1)
3. Return Stack

The XMSS signature generation algorithm uses as subroutine the BDS al-
gorithm [8] that is explained there. The BDS algorithm uses a state StateBDS

which is initialized during the above computation of the root. For details see [8].
The initial XMSS secret key SK = (S0, StateBDS) contains the initial states of
FsGen and the BDS algorithm. The XMSS public key consists of the bitmasks
(B1, . . . , Bh+�log ��), the value X , and the root of the tree. As shown in [6], key

generation requires 2h(�+ 1) evaluations of H and 2h(2 + �(w + 1)) evaluations
of functions from Fn.

Signature Generation. The signature generation algorithm takes as input a mes-
sage M , the secret key SK and the index i. It outputs an updated secret key SK′

and a signature Σ on the message M . To sign the ith message (we start counting
from 0), the ith W-OTS key pair is used. The signature Σ = (i, σ,Auth) con-
tains the index i, the W-OTS signature σ, and the authentication path for the
leaf N0,i. The authentication path is the sequence Auth = (Auth0, . . . ,Authh−1)
of the siblings of all nodes on the path from N0,i to the root. Figure 1 shows the
authentication path for leaf i. We now explain how a signature is generated. On
input of the ith message, SK contains the ith state Si of FsGen. So, FsGen is

Forward Secure Signatures on Smart Cards 71

evaluated on Si to obtain Si+1, which becomes the updated secret key, and Ri.
Ri is used to generate the ith W-OTS secret key, which in turn is used to gener-
ate the one-time signature σ on M . Then the authentication path is computed
using the BDS tree traversal algorithm from [8] which we explain next.

j = h

j = 0
i

Fig. 1. The authentication path for leaf i

The BDS algorithm uses TreeHash to compute the nodes of the authenti-
cation path. The computation of a node on level i takes 2i leaf computations
and 2i evaluations of TreeHash. If all this computation is done when the au-
thentication path is needed, the computation of an authentication path requires
2h − 1 leaf computations and evaluations of TreeHash in the worst case. The
BDS algorithm reduces the worst case signing time to (h − k)/2 leaf compu-
tations and evaluations of TreeHash. More specifically, the BDS algorithm
does three things. First, it uses the fact that a node that is a left child can be
computed from values that occurred in an authentication path before, spending
only one evaluation of H. Second, it stores the right nodes from the top k levels
of the tree during key generation. So these nodes, that are most expensive to
compute, do not have to be computed again during signature generation. Third,
it distributes the computations for right child nodes among previous signature
generations. This is done, using one instance of TreeHash per tree level. The
computation of the next right node on a level starts, when the last computed
right node becomes part of the authentication path. The BDS algorithm uses a
state StateBDS of 2(h−k) states of FsGen and at most

(
3h+

⌊
h
2

⌋− 3k − 2 + 2k
)

tree nodes. StateBDS is initialized during key generation. After initialization, it
contains the right nodes on the k top levels, the first authentication path (for
N0,0) and the second right node on each level. To compute the authentication
paths, the BDS algorithm spends only (h− k)/2 leaf computations and evalua-
tions of TreeHash to update its state per signature. This update is done such
that at the end of the ith signature generation, StateBDS already contains the
authentication path for leaf i+ 1. For more details see [8].

Signature Verification. The signature verification algorithm takes as input a
signature Σ = (i, σ,Auth), the message M and the XMSS public key PK. To
verify the signature, the values (T0, . . . , T�) are computed as described in the

72 A. Hülsing, C. Busold, and J. Buchmann

W-OTS signature generation, usingM . Then the ith verification key is computed
using the formula

(pk1, . . . , pk�) = (Fw−1−T1
σ1

(X), . . . ,Fw−1−T�
σ�

(X)).

The corresponding leaf N0,i of the XMSS tree is constructed using an L-tree.
This leaf and the authentication path are used to compute the path (P0, . . . , Ph)
to the root of the XMSS tree, where P0 = N0,i and

Pj =

{
H((Pj−1||Authj−1)⊕Bj), if

⌊
i/2j

⌋ ≡ 0 mod 2
H((Authj−1||Pj−1)⊕Bj), if

⌊
i/2j

⌋ ≡ 1 mod 2

for 0 ≤ j ≤ h. If Ph is equal to the root of the XMSS tree given in the public
key, the signature is accepted. Otherwise, it is rejected.

3 XMSS+: On-Card Key Generation

In [22], a hash-based signature scheme similar to XMSS is implemented on smart
cards. But they did not implement on-card key generation, because of the heavy
computations required. In this section we introduce XMSS+, which allows for
fast on-card key generation. The techniques used are based on the tree chaining
technique introduced in [9] and distributed signature generation from [7]. The
basic idea is the following. To obtain an instance of XMSS+ that can be used to
make 2h signatures, we use two levels of XMSS key pairs with height h/2 instead
of one key pair with height h: One key pair on the upper level (U) of height h/2
is used to sign the roots of 2h/2 key pairs on the lower level (Ls) of height h/2.
The root of U becomes the public key and the Ls are used to sign the messages.
During key generation, U and the first L are generated. The generation of the
remaining Ls is distributed among signature generations. As a result, the time
to generate a key pair, that can be used to sign 2h messages, goes down from
O(2h) to O(2h/2).

A signature always contains the current index, the signature of the message
using the current L, and the signature of the root of L under U . To decrease the
worst case signing time, the authors of [7] propose to equally distribute the costs
for signing the roots of the Ls among the message signatures. For XMSS+ we
propose a new approach to distribute these costs. We use the observation that
the BDS algorithm does not always use all updates it receives. These unused
updates can be used to compute the signatures of the roots from the Ls. Thereby
we reduce the worst case signing time, again. We use the same bit masks and the
same X value for all trees. Thereby the public key size is reduced, as it contains
less bit masks. To generate the secret keys, we select a random initial state for
FsGen for each key pair, just in time. Now we describe the key generation,
signature generation and signature verification algorithms in detail.

Key generation. The XMSS+ key generation algorithm takes as inputs the se-
curity parameter n, the message length m, the hash function H, the function

Forward Secure Signatures on Smart Cards 73

family F , and the overall height h, h is even. We set the internal tree height
h′ = h/2. In contrast to the last section, it takes two Winternitz parameters
wu, wl and two BDS parameters ku, kl such that h′−ki is even for i ∈ {l, u} and
(h′ − ku)/2 + 1 ≤ 2h

′−kl+1. As for XMSS, the bitmasks and the X are chosen
uniformly at random, but this time h′+max{log �u, log �l} bitmasks are chosen.
Both, the bitmasks and the X are used for both levels. Then the two XMSS key
pairs L and U are generated. This is done as described in the last section. For
L, wl, kl, and the message length m are used. For U , wu and ku are used. The
message length for U is n, because this is the size of the root nodes of the Ls.
Next, the root of L is signed using the first W-OTS keypair of U . Then, a FsGen
state for the next L is chosen uniformly at random, and a new TreeHash stack
Stacknext is initialized.

The XMSS+ secret key SK consists of the two FsGen states Sl and Su and the
BDS states StateBDS,l and StateBDS,u for U and L and the signature on the root
of L. Additionally, it contains a FsGen state Sn, a TreeHash stack Stacknext
and a BDS state StateBDS,n for the next L. The public key PK consists of the
h′ +max{log �1, log �2} bitmasks, the value X and the root of U .

Signature generation. The signature generation algorithm takes as input a mes-
sage M , the secret key SK, and the index i. First, M is signed. This is done as
described in the last section, using Sl and StateBDS,l as secret key for L and i

mod 2h
′
as index. During this signature generation, BDS receives (h′ − kl)/2

updates. If not all of these updates are used to update StateBDS,l, the remaining
updates are used to update StateBDS,u. Then one leaf of the next lower tree is
computed and used as input for TreeHash to update Stacknext. The signature
Σ = (σu,Authu, σl,Authl, i) contains the one-time signatures from U and L and
the two authentication paths, as well as the index i.

If i mod 2h
′
= 2h

′ − 1 the last W-OTS key pair of the current L was used.
In this case, Stacknext now contains the root of the next L. Now, U is used to
sign this root. The key pair consists of Su and StateBDS,u. The used index is

�i/2h′	. In contrast to the signing algorithm from the last section, BDS receives
no updates at this time. The updates needed to compute the next authentication
path are received during the next 2h

′
message signatures. In SK StateBDS,l, Sl,

and the signature of the root of the L are replaced by StateBDS,n, Sn and the
new computed signature, respectively. Afterwards, the data structures for the
next L are initialized and used to replace the ones in SK.

Signature verification. The signature verification algorithm takes as input a
signature Σ = (σu,Authu, σl,Authl, i), the messageM and the public key PK. To
verify the signature, M and σl are used to construct the corresponding W-OTS
public key, and then the corresponding leaf node. This leaf node, Authl and the
index j = i mod 2h

′
are used to compute the root of L. This root in turn, is

used together with σu to compute the W-OTS public key and the corresponding
leaf node of U . This leaf node, Authu and the index j = �i/2h′� are used to
compute a root for U . The root computations are done as described in the last

74 A. Hülsing, C. Busold, and J. Buchmann

section. If the resulting root equals the root node included in the public key, the
signature is accepted and rejected otherwise.

3.1 Analysis

In the following we provide an analysis of XMSS+. We show that the distributed
authentication path computation works and revisit the security of the scheme.
We start with key and signature sizes and the runtimes of the algorithms. A
theoretical comparison with XMSS will be included in the full version of this
paper.

Sizes and Runtimes. First we look at the sizes. The signature size grows by the
size of one W-OTS signature and is (h+�u+�l)n bits. The public key size slightly
decreases, as the number of bitmasks decreases and is (h+2max{log �u, log �l}+
2)n bits. The secret key stays about the same size, depending on the parameter
choices, and is at most (7.5h−7kl−5ku+2kl +2ku + �u)n bits. For the runtimes
we only look at the worst case times and get the following. The key generation
time is reduced to 2h/2(�u+ �l+2)tH+2h/2(4+ �u(wu+1)+ �l(wl+1))tF, where
tH and tF denote the runtimes of one evaluation of H and F, respectively. The
worst case signing time also decreases because the trees are smaller and requires
less than maxi∈{l,u}{(((h′− kl +2)/2) · (h′− ki+ �i)+h′)tH +(((h′− kl +4)/2) ·
(�i(wi +1))+ h′− kl)tF} (Recall that h′ = h/2). Signature verification increases
by the costs of verifying one W-OTS signature and computing the corresponding
leaf. It requires (�u + �l + h)tH + (�uwu + �lwl)tF.

Correctness. In the following we show, that the unused updates from L suffice to
compute the authentication paths and to sign the next root. For the computation
of the ith authentication path Authi in U and the signature on the (i+1)th root,
all unused updates from the (i − 1)th L can be used. The signature algorithm
spends (h′ − kl)/2 updates per signature. Hence, the BDS algorithm receives
(h′− kl)2

h′−1 updates while the (i− 1)th L is used. For all authentication paths
of L, the BDS algorithm has to compute all right nodes of the tree, that are
on a height < h′ − kl, besides the two first right nodes on every height as these
nodes are already stored during initialization. The number of required updates
for 2 ≤ kl ≤ h′ is

h′−kl−1∑
i=0

(2h
′−i−1 − 2)2i = (h′ − kl)2

h′−1 − 2h
′−kl+1

so there are (h′−kl)2
h′−1−(h′−kl)2

h′−1+2h
′−kl+1 = 2h

′−kl+1 unused updates.
As (h′−ku)/2+1 ≤ 2h

′−kl+1, the BDS algorithm for the U receives all (h′−ku)/2
updates to compute Authi before it is needed and one update is left for the
signature on the next root. Doing the same computation for kl = 0 there are
even more (3·2h′−1) unused updates. For kl = h′, it follows from (h′−ku)/2+1 ≤
2h

′−kl+1 that ku = h′ and therefore all nodes of both trees are stored.

Forward Secure Signatures on Smart Cards 75

Security. In [6], an exact proof is given which shows that XMSS is forward
secure, if F is a pseudorandom function family andH a second preimage resistant
hash function family. The tree chaining technique corresponds to the product
composition from [19]. In [19] the authors give an exact proof for the forward
security of the product composition if the underlying signature schemes are
forward secure. It is straight forward to combine both security proofs to obtain
an exact proof for the forward security of XMSS+.

4 Implementation

In this section we present our smart card implementation. First we give a descrip-
tion of our implementation. Then we present our results and give a comparison
with XMSS, RSA and ECDSA. At the end of the section we discuss an issue
regarding the non-volatile memory (NVM).

Implementation Details. For the implementation we use an Infineon SLE78
CFLX4000PM offering 8 KB RAM and 404 KB NVM. Its core consists of
a 16-bit CPU running at 33 MHz. Besides other peripherals, it provides a
True Random Number Generator (TRNG), a symmetric and an asymmetric
crypto co-processor. We use the hardware accelerated AES implementation of
the card to implement the function families F and H. As proposed in [6], we use
plain AES for F . To implement H we build a compression function using the
Matyas-Meyer-Oseas construction [20] and iterate it using the Merkle-Darmgard
construction [12, 21]. As the input size of H is fixed, we do not require M-D
strengthening. Figure 2 shows the whole construction. As shown there, the con-
struction requires two AES evaluations per evaluation of HK ∈ H. All random
inputs of the scheme are generated using the TRNG. Besides XMSS+, we also
implemented XMSS for comparison.

AES AES

M1 M2

K HK(M)

Fig. 2. Construction of H using AES with the Matyas-Meyer-Oseas construction in
M-D Mode

Results. Tables 1 and 2 show the runtimes of our implementation with different
parameter sets. We use the same k and w for both trees. The last column shows
the security level for the given parameter sets. Following the updated heuristic
of Lenstra and Verheul [18] the configurations with a security level of 81 (85,
86) bits are secure until the year 2019 (2025, 2026). In Appendix A we explain

76 A. Hülsing, C. Busold, and J. Buchmann

how the security level is computed. Please note that these numbers represent a
lower bound on the provable security level. A successful attack would still require
an adversary to either find a second preimage in a 128 bit hash function or to
launch a successful key retrieval attack on AES 128. This would result in 128 bit
security for all parameter sets. In Table 1, the signature time is the worst case
time over all signatures of one key pair. The secret key size in the table differs
from the values we would obtain using the theoretical formulas from the last
section. This is because it includes all data that has to be stored on the card to
generate signatures, including the bitmasks and X .

Table 1. Results for XMSS and XMSS+ for message length m = 256 on an Infineon
SLE78. We use the same k and w for both trees. b denotes the security level in bits.
The signature times are worst case times.

Timings (ms) Sizes (byte)
Scheme h k w KeyGen Sign Verify Secret key Public key Signature b

XMSS+ 16 2 4 5,600 106 25 3,760 544 3,476 85
XMSS+ 16 2 8 5,800 105 21 3,376 512 2,436 81
XMSS+ 16 2 16 6,700 118 22 3,200 512 1,892 71
XMSS+ 16 2 32 10,500 173 28 3,056 480 1,588 54
XMSS+ 20 4 4 22,200 106 25 4,303 608 3,540 81
XMSS+ 20 4 8 22,800 105 21 3,920 576 2,500 77
XMSS+ 20 4 16 28,300 124 22 3,744 576 1,956 67
XMSS+ 20 4 32 41,500 176 28 3,600 544 1,652 50

XMSS 10 4 4 14,600 86 22 1,680 608 2,292 92
XMSS 10 4 16 18,800 100 17 1,648 576 1,236 78
XMSS 16 4 4 925,400 134 23 2,448 800 2,388 86
XMSS 16 4 16 1,199,100 159 18 2,416 768 1,332 72

We used parameter sets with two heights. A key pair with h = 16 allows to
generate more than 65, 000, one with h = 20 to generate more than one million
signatures. Assuming a validity period of one year, this corresponds to seven
signatures per day and two signatures per minute, respectively. The runtimes
show, that XMSS+ key generation can be done on the smart card in practical
time. For all but one used parameter set, the key generation time is below 30
seconds. The times for signature generation and verification are all below 200 ms
and 30 ms, respectively. The size of the secret key is around four kilo byte and
signatures are around two kilo byte, while the public keys are around 500 bytes.
Increasing the tree height for XMSS almost doubles key generation time. For
XMSS+ the key generation time is almost doubled if one increases the height by
two, as this means that the height of each internal tree is increased by one.

The results show that we can reduce the signature size by increasing the
Winternitz parameter w. The behavior of the implementation reflects the theory.
The factor for the reduction of the W-OTS signature size is only logarithmic in
w. The increase of the runtime is negligible for small w. This can be explained

Forward Secure Signatures on Smart Cards 77

by the following. While the length of the single function chains increases, the
number of chains decreases. For w > 16 the increase of the runtime becomes
almost linear. So from this point, w = 16 seems to be a good choice. On the
other hand, the provable security level also decreases almost linearly in w. While
this only reflects a provable lower bound on the security of the scheme, it is still
another reason to keep w small.

Table 2. Results for XMSS+ for message length m = 256 on an Infineon SLE78 for
different values of k. We use the same k and w for both trees. The table shows the
worst case signing times, as well as the average case times.

Timings (ms) Size (byte)
Scheme h k w KeyGen Sign (w.c.) Sign (avg.c.) Secret key

XMSS+ 16 0 16 6,700 133 96 3,312
XMSS+ 16 2 16 6,700 118 96 3,200
XMSS+ 16 4 16 6,700 97 83 3,232
XMSS+ 16 6 16 7,000 95 67 4,352
XMSS+ 16 8 16 8,000 94 53 10,112

Table 2 shows two things. On the one hand, it is possible to decrease the
average case signing time spending more storage for the secret key state, by
increasing k. This is what one assumes given the theory. On the other hand, the
worst case signing time can only be reduced up to a certain limit. For the given
parameters this limit is 94ms, the worst case signing time, when both trees are
completely stored. These 94ms are mainly caused by the write operations, when
one key pair on the lower level is finished. While all the computations are done
in previous rounds, the data structures for the next lower level key pair have
to be copied to the data structure for the current lower level key pair. Further
the new data structures for the next lower level key pair must be initialized.
Choosing k = 4 seems to be the most reasonable choice for h = 16.

Comparison. The last rows of Table 1 show the results for classical XMSS. The
results show that XMSS key generation can be done on the smart card, but is
impractical as it already takes more than 15 minutes for h = 16. Increasing the
height by one almost doubles the runtime of key generation. Generating a key
with XMSS+ is already for h = 16 almost 200 times faster than with XMSS.
While XMSS+ signature generation is slightly faster for comparable parameters,
verification is faster for XMSS. The faster key generation is paid by slightly
bigger secret keys and signatures, while the XMSS+ public keys are smaller,
because of the reused bitmasks.

Now we compare XMSS+ with RSA 2048 and ECDSA 256 on the same smart
card. The key generation performance of XMSS+ is similar to RSA 2048, which
needs on average 11 seconds, but slower than ECDSA 256 (95ms). Signature
generation is comparable to RSA 2048 (190ms) and ECDSA 256 (100ms). Only

78 A. Hülsing, C. Busold, and J. Buchmann

verification takes slightly longer than with RSA 2048 (7ms), but it is faster than
with ECDSA 256 (58ms). The security level of RSA 2048 and ECDSA 256 is 95
and 128 bits, respectively. In contrast to the security level shown in Table 1, these
numbers are not based on a security proof, but on the best known attacks. As
mentioned above, the security level of XMSS+ is 128 bit, when we only assume
the best known attacks.

NVM. The changing key presents a challenge for the implementation of XMSS+

and XMSS on smart cards. NVM is organized in sectors and pages. Due to phys-
ical limitations only complete pages can be written (erased and reprogrammed)
at once. Furthermore they wear out and cannot be programmed anymore after a
certain number of write cycles, depending on the technology (about 500, 000 in
our case). However, as write operations are distributed over all 33 physical pages
of a sector, the complete available cycles are around 16.5 million per sector.

Generating a key takes only a few hundred write cycles, but its state has to
be updated after each signature step. Overall, one million available signatures
require one million write cycles for the modification of the state. Using careful
memory management, layout and optimization, we managed to keep the number
of write cycles below five million for a key pair with h = 20, which is far below
the 16.5 million available per sector. This includes key generation and all 220

signatures. It should be noted, that this affects only one NVM sector of the
card. To use multiple keys, they can be placed in different sectors in order to
preserve NVM quality.

5 Conclusion

We presented the first smart card implementation of a forward secure signa-
ture scheme. The results presented in Section 4 show that the implementation is
practical and that key generation can be done on the card in less than a minute.
This is in contrast to previous implementations of similar schemes, that did not
achieve on-card key generation. To achieve this, we introduced XMSS+, an im-
proved version of XMSS. Besides the improved key generation, the worst case
signing time is also reduced. While the presented improvement is necessary for
an implementation on smart cards, it might also show to be useful for imple-
mentations on other hardware (At least in cases, where key generation time or
worst case signing time are critical).

Given the results of the last section, we propose the parameter set h = 16,
w = 16 and k = 4. These parameters seem to lead the optimal performance as
long as 65, 000 signatures per key pair are enough. The provable lower bound
on the security level of 71 bits is too low from a theoretical point of view. But
if we compute the security level according to the best known attacks - as it is
common practice - we get a security level of 128 bit. This leads to interesting
directions for future work. One would be to either tighten the security proofs or
find better reductions from different security assumptions. Another one would
be to implement XMSS+ with co-processors for block ciphers with a bigger block

Forward Secure Signatures on Smart Cards 79

size than AES. Alternatively, it would be possible to use hash functions with a
digest length of more than 128 bit, using the constructions from [6] to construct
the PRF.

One topic we did not address in this work is the side channel resistance. But
the forward security property already protects against the most common attack
vector for side channel attacks. If a user looses her smart card and revokes her
key pair, an attacker can not gain any advantage of a successful side channel
attack. The secret key the adversary learns is revoked from this time on and
it is not possible to learn the keys of prior time periods. Nevertheless, as there
exist other attack vectors, it would be interesting to analyze the side channel
resistance of our implementation.

References

1. Abdalla, M., Miner, S.K., Namprempre, C.: Forward-Secure Threshold Signature
Schemes. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 441–456.
Springer, Heidelberg (2001)

2. Abdalla, M., Reyzin, L.: A New Forward-Secure Digital Signature Scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000)

3. Anderson, R.: Two remarks on public key cryptology. Relevant Material Presented
by the author in an Invited Lecture at the 4th ACM Conference on Computer and
Communications Security, CCS, pp. 1–4. Citeseer (1997) (manuscript)

4. Bellare, M., Miner, S.K.: A Forward-Secure Digital Signature Scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

5. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the Security of
the Winternitz One-Time Signature Scheme. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011)

6. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - A Practical Forward Secure
Signature Scheme Based on Minimal Security Assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011)

7. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
Signatures with Virtually Unlimited Signature Capacity. In: Katz, J., Yung, M.
(eds.) ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007)

8. Buchmann, J., Dahmen, E., Schneider, M.: Merkle Tree Traversal Revisited. In:
Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78.
Springer, Heidelberg (2008)

9. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS
– An Improved Merkle Signature Scheme. In: Barua, R., Lange, T. (eds.) IN-
DOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)

10. Camenisch, J., Koprowski, M.: Fine-grained forward-secure signature schemes
without random oracles. Discrete Applied Mathematics 154(2), 175–188 (2006);
Coding and Cryptography

11. Cronin, E., Jamin, S., Malkin, T., McDaniel, P.: On the performance, feasibility,
and use of forward-secure signatures. In: Proceedings of the 10th ACM Conference
on Computer and Communications Security, CCS 2003, pp. 131–144. ACM, New
York (2003)

12. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

80 A. Hülsing, C. Busold, and J. Buchmann

13. ETSI. XML advanced electronic signatures (XAdES). Standard TS 101 903, Eu-
ropean Telecommunications Standards Institute (December 2010)

14. ETSI. CMS advanced electronic signatures (CAdES). Standard TS 101 733, Euro-
pean Telecommunications Standards Institute (March 2012)

15. Itkis, G., Reyzin, L.: Forward-Secure Signatures with Optimal Signing and Veri-
fying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001)

16. Kozlov, A., Reyzin, L.: Forward-Secure Signatures with Fast Key Update. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 241–256.
Springer, Heidelberg (2003)

17. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
Proceedings of the 7th ACM Conference on Computer and Communications Secu-
rity, CCS 2000, pp. 108–115. ACM, New York (2000)

18. Lenstra, A.K.: Key lengths. Contribution to the Handbook of Information Security
(2004)

19. Malkin, T., Micciancio, D., Miner, S.K.: Efficient Generic Forward-Secure Sig-
natures with an Unbounded Number Of Time Periods. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)

20. Matyas, S., Meyer, C., Oseas, J.: Generating strong one-way functions with cryp-
tographic algorithms. IBM Technical Disclosure Bulletin 27, 5658–5659 (1985)

21. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

22. Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast Hash-
Based Signatures on Constrained Devices. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 104–117. Springer, Heidelberg (2008)

23. Song, D.X.: Practical forward secure group signature schemes. In: Proceedings of
the 8th ACM Conference on Computer and Communications Security, CCS 2001,
pp. 225–234. ACM, New York (2001)

A Security Level

We compute the security level in the sense of [18]. This allows a comparison of
the security of XMSS+ with the security of a symmetric primitive like a block
cipher for given security parameters. Following [18], we say that XMSS+ has
security level b if a successful attack on the scheme can be expected to require
approximately 2b−1 evaluations of functions from Fn and Hn. Following the
reasoning in [18], we only take into account generic attacks on Hn and Fn. A
lower bound for the security level of XMSS was computed in [6]. For XMSS+, we
combined the exact security proofs from [6] and [19]. Following the computation
in [6], we can lower bound the security level b by

b ≥ max {n− h/2− 4− wu − 2log(�uwu), n− h− 4− wl − 2log(�lwl)}

for the used parameter sets.

	Forward Secure Signatures on Smart Cards
	Introduction
	The eXtended Merkle Signature Scheme XMSS
	XMSS+: On-Card Key Generation
	Analysis

	Implementation
	Conclusion
	References

