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Abstract. In the white-box attack context, i.e., the setting where an im-
plementation of a cryptographic algorithm is executed on an untrusted
platform, the adversary has full access to the implementation and its
execution environment. In 2002, Chow et al. presented a white-box AES
implementation which aims at preventing key-extraction in the white-box
attack context. However, in 2004, Billet et al. presented an efficient prac-
tical attack on Chow et al.’s white-box AES implementation. In response,
in 2009, Xiao and Lai proposed a new white-box AES implementation
which is claimed to be resistant against Billet et al.’s attack. This paper
presents a practical cryptanalysis of the white-box AES implementation
proposed by Xiao et al. The linear equivalence algorithm presented by
Biryukov et al. is used as a building block. The cryptanalysis efficiently
extracts the AES key from Xiao et al.’s white-box AES implementation
with a work factor of about 232.

Keywords: white-box cryptography, AES, cryptanalysis, linear equiv-
alence algorithm.

1 Introduction

A white-box environment is an environment in which an adversary has complete
access to an implementation of a cryptographic algorithm and its execution
environment. In a white-box environment, the adversary is much more powerful
than in a traditional black-box environment in which the adversary has only
access to the inputs and outputs of a cryptographic algorithm. For example, in
a white-box environment the adversary can: (1) trace every program instruction
of the implementation, (2) view the contents of memory and cache, including
secret data, (3) stop execution at any point and run an off-line process, and/or
(4) alter code or memory contents at will. To this end, the adversary can make
use of widely available tools such as disassemblers and debuggers.

An example of a white-box environment is a digital content protection system
in which the client is implemented in software and executed on a PC, tablet,
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set-top box or a mobile phone. A malicious end-user may attempt to extract
a secret key used for content decryption from the software. Next, the end-user
may distribute this key to non-entitled end-users, or the end-user may use this
key to decrypt the content directly, circumventing content usage rules.

White-box cryptography was introduced in 2002 by Chow, Eisen, Johnson and
van Oorschot in [4,5], and aims at protecting a secret key in a white-box envi-
ronment. In [4], Chow et al. present generic techniques that can be used to design
implementations of a cryptographic algorithmthat resist key extraction in awhite-
box environment. Next, the authors apply these techniques to define an example
white-box implementation of the Advanced Encryption Standard (AES).

In 2004, a cryptanalysis of the white-box AES implementation by Chow et al.
was presented by Billet, Gilbert and Ech-Chatbi [1]. This attack is referred to as
the Billet Gilbert Ech-Chatbi (BGE) attack in the following. The BGE attack is
efficient in that a modern PC only requires a few minutes to extract the AES key
from the white-box AES implementation. In [7], James Muir presents a tutorial
on the design and cryptanalysis of white-box AES implementations.

The BGE attack motivated the design of other white-box AES implementa-
tions offering more resistance against key extraction. In [3], Bringer, Chabanne
and Dottax proposed a white-box AES implementation in which perturbations
are added to AES in order to hide its algebraic structure. However, the imple-
mentation in [3] has been cryptanalyzed by De Mulder, Wyseur and Preneel
in [8]. Recently, two new white-box AES implementations have been proposed:
one in 2010 by Karroumi based on dual ciphers of AES [6] and one in 2009 by
Xiao and Lai based on large linear encodings [10].

This paper presents a cryptanalysis of the Xiao – Lai white-box AES imple-
mentation proposed in [10], efficiently extracting the AES key from the white-box
AES implementation. The cryptanalysis uses the linear equivalence algorithm
presented by Biryukov, De Cannière, Braeken and Preneel in [2] as a building
block. In addition to this, the structure of AES and the structure of the white-box
implementation are exploited in the cryptanalysis. Key steps of the cryptanalysis
have been implemented in C++ and verified by computer experiments.

Organization of This Paper. The remainder of this paper is organized as
follows. Section 2 briefly describes the white-box AES implementation proposed
in [10] and the linear equivalence algorithm presented in [2]. Section 3 outlines the
cryptanalysis of the white-box AES implementation. Finally, concluding remarks
can be found in Sect. 4.

2 Preliminaries

2.1 AES-128

In this section, aspects of AES-128 that are relevant for this paper are described.
For detailed information, refer to FIPS 197 [9]. AES-128 is an iterated block
cipher mapping a 16 byte plaintext to a 16 byte ciphertext using a 128 bit
key. AES-128 consists of 10 rounds and has 11 round keys which are derived
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from the AES-128 key using the AES key scheduling algorithm. Each round of
the algorithm updates a 16 byte state; the initial state of the algorithm is the
plaintext and the final state of the algorithm is the ciphertext. In the following, a
state is denoted by [statei]i=0,1,...,15. A round comprises the following operations:

– ShiftRows is a permutation on the indices of the bytes of the state. It is
defined by the permutation (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11), i.e.
the first byte of the output of ShiftRows is the first byte of the input, the
second byte of the output is the fifth byte of the input, and so on.

– AddRoundKey is a bitwise addition modulo two of a 128 bit round key kr

(1 ≤ r ≤ 11) and the state.

– SubBytes applies the AES S-box operation to every byte of the state. AES
uses one fixed S-box, denoted by S, which is a non-linear, bijective mapping
from 8 bits to 8 bits

– MixColumns is a linear operation over GF
(
28
)
operating on 4 bytes of the

state at a time. The MixColumns operation can be represented by a 4 × 4
matrix MC over GF

(
28
)
. To update the state, 4 consecutive bytes of the

state are interpreted as a vector over GF
(
28
)
and multiplied by MC. Using

the notation and the representation of the finite field as in [9], we have:

⎛
⎜⎜⎝

state4i
state4i+1

state4i+2

state4i+3

⎞
⎟⎟⎠← MC ·

⎛
⎜⎜⎝

state4i
state4i+1

state4i+2

state4i+3

⎞
⎟⎟⎠ with MC =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ ,

for i = 0, 1, 2, 3.

There are several equivalent ways to describe AES-128. The following description
of AES-128 is the one used in this paper, where k̂r for 1 ≤ r ≤ 10 is the result
of applying ShiftRows to kr:

state ← plaintext
for r = 1 to 9 do

state ← ShiftRows (state)
state ← AddRoundKey(state,k̂r )
state ← SubBytes(state)
state ← MixColumns (state)

end for
state ← ShiftRows (state)
state ← AddRoundKey(state,k̂10)
state ← SubBytes(state)
state ← AddRoundKey(state,k11)
ciphertext ← state
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2.2 The White-Box AES Implementation

This section describes the white-box AES implementation proposed in [10]. As
the MixColumns operation is omitted in the final AES-128 round, the white-box
implementation of the final round differs from the white-box implementation of
the other rounds. However, as the final round is not relevant for the cryptanalysis
presented in this paper, the description of its implementation is omitted below.

First, the AddRoundKey and SubBytes operations of AES round r (1 ≤ r ≤ 9)
are composed, resulting in 16 8-bit bijective lookup tables for each round. In
the following, such a table is referred to as a T-box. If the 16 bytes of a 128 bit
round key are denoted by k̂ri (i = 0, 1, . . . , 15), then the T-boxes are defined as
follows:

T r
i (x) = S(x⊕ k̂ri ) for 1 ≤ r ≤ 9 and 0 ≤ i ≤ 15 .

Second, the 4× 4 matrix MC is split into two 4× 2 submatrices: MC0 is defined as
the first 2 columns of MC and MC1 is defined as the remaining 2 columns of MC.
Using this notation, the MixColumns matrix multiplication is given by:

⎛
⎜⎜⎝

state4i
state4i+1

state4i+2

state4i+3

⎞
⎟⎟⎠← MC0 ·

(
state4i

state4i+1

)
⊕ MC1 ·

(
state4i+2

state4i+3

)

for i = 0, 1, 2, 3.

TMCri

16
MCi mod 2

8

8
Lr
i

32 32
Rr

�i/2�
S

⊕
kr2i

T r
2i

kr2i+1

S
⊕

T r
2i+1

8

8

ˆ

ˆ

Fig. 1. Composition of T-boxes (T r
2i and T r

2i+1) and MixColumns operation (MCi mod 2)
resulting in 16-to-32 bit lookup table TMCri

For 1 ≤ r ≤ 9, the T-boxes and the MixColumns operations are composed as
depicted in Fig. 1. Observe that this results in 8 lookup-tables per round, each
table mapping 16 bits to 32 bits. To prevent an adversary from extracting the
AES round keys from these tables, each table is composed with two secret white-
box encodings Lr

i and Rr
�i/2� as depicted in Fig. 1. Each white-box encoding Lr

i

is a bijective linear mapping from 16 bits to 16 bits, i.e., it can be represented
by a non-singular 16 × 16 matrix over GF (2). Each white-box encoding Rr

�i/2�
is a bijective linear mapping from 32 bits to 32 bits, i.e., it can be represented
by a non-singular 32 × 32 matrix over GF (2). The resulting tables from 16 to
32 bits are referred to as TMCri (i = 0, 1, . . . , 7) in the following.
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Third, a 128 × 128 non-singular matrix M r over GF (2) is associated with
each round r (1 ≤ r ≤ 9). If SR denotes the 128× 128 non-singular matrix over
GF (2) representing the ShiftRows operation, then the matrix M r is defined as
follows:

M r = diag
(
(Lr

0)
−1, . . . , (Lr

7)
−1

)
◦ SR ◦ diag

(
(Rr−1

0 )−1, . . . , (Rr−1
3 )−1

)
, (1)

for r = 2, 3, . . . , 9, where ‘◦’ denotes the function composition symbol. The
matrix M1 associated with the first round has a slightly different structure and
is defined below.

Fourth, an additional secret white-box encoding is defined, denoted by IN.
This encoding is represented by a non-singular 128 × 128 matrix over GF (2),
and is applied to an AES-128 plaintext. Next, the non-singular 128×128 matrix
M1 over GF (2) is defined as follows:

M1 = diag
(
(L1

0)
−1, . . . , (L1

7)
−1

)
◦ SR ◦ IN−1 . (2)

...

32

32 ⊕
32

32 ⊕

32

32 ⊕

32

32 ⊕

32

32

32

32

16

16

16

16

16

16

16

16

32

32

32

32

round r (2 ≤ r ≤ 9)

TMCr0

TMCr1

TMCr2

TMCr3

TMCr4

TMCr5

TMCr6

TMCr7 }

MrIN(plaintext)

32

32 ⊕ 32

32

32 ⊕ 32

32

32 ⊕ 32

32

32 ⊕ 32

16

16

16

16

16

16

16

16

}

round 1

128

TMC10

TMC11

TMC12

TMC13

TMC14

TMC15

TMC16

TMC17

M1

Fig. 2. White-box AES-128 implementation [10] of rounds r = 1, 2, . . . , 9

Using these notations and definitions, the structure of the first 9 rounds of
the white-box AES-128 implementation is depicted in Fig. 2. In the white-box
implementation, an operation M r is implemented as a matrix vector multiplica-
tion over GF (2) and an operation TMCri is implemented as a look-up table. Notice
that the output of two tables, which corresponds to the linearly encoded output
of MC0 and MC1, is added modulo two in the white-box implementation. After
the final AES round, a secret white-box encoding OUT is applied to the AES-128
ciphertext. OUT is represented by a non-singular 128 × 128 matrix over GF (2).
Observe that, with the exception of the encodings IN and OUT, the white-box
implementation of AES-128 is functionally equivalent to AES-128.

The main differences with the white-box AES-128 implementation presented
in [4] are the following: (i) all secret white-box encodings are linear over GF (2),
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and (ii) the secret white-box encodings operate on at least 2 bytes simultaneously
instead of at least 4 bits (in case of a non-linear encoding) or at least a byte (in
case of a linear encoding) in [4]. In [10], the authors argue that their white-box
AES-128 implementation is resistant against the BGE attack [1].

2.3 The Linear Equivalence Algorithm

Definition 1. Two permutations on n bits (or S-boxes) S1 and S2 are called
linearly equivalent if a pair of linear mappings (A,B) from n to n bits exists
such that S2 = B ◦ S1 ◦A.
A pair (A,B) as in this definition is referred to as a linear equivalence. Notice
that both linear mappings A and B of a linear equivalence are bijective. If
S1 = S2, then the linear equivalences are referred to as linear self-equivalences.

The linear equivalence problem is: given two n-bit bijective S-boxes S1 and
S2, determine if S1 and S2 are linearly equivalent. An algorithm for solving the
linear equivalence problem is presented in [2]. The inputs to the algorithm are
S1 and S2, and the output is either a linear equivalence (A,B) in case S1 and
S2 are linearly equivalent, or a message that such a linear equivalence does not
exist. The algorithm is referred to as the linear equivalence algorithm (LE), and
exploits the linearity of the mappings A and B. For an in depth description
LE, refer to [2]. Below we give a brief description of a variant of LE where it is
assumed that both given S-boxes map 0 to itself, i.e., S1(0) = S2(0) = 0. This
variant of LE will be used as a building block for the cryptanalysis in this paper.

S2

S1A? B?

=

A(x1), A(x2)x1, x2 y1, y2 B(y1), B(y2)
S1

S2

S−1
2

S−1
1 B(y3) =

B(y1)⊕B(y2)y1 ⊕ y2

y3 =
x3 A(x3)

guess

linear combination

lin
ea

r c
om

bi
na

tio
n

B?

A?

Fig. 3. Illustration how LE works

In case S1(0) = S2(0) = 0, at least two guesses for two points of A are
necessary in order to start LE; select two distinct input points x1 �= 0 and x2 �= 0
and guess the values of A(x1) and A(x2). Based on these two initial guesses and
the linearity of A and B, we incrementally build the linear mappings A and B
as far as possible. The initial guesses A(xi) for the points xi (i = 1, 2) provide
us with knowledge about B by computing yi = S1(A(xi)) and B(yi) = S2(xi),
which in turn gives us possibly new information about A by computing the
images of the linear combinations of yi and B(yi) through respectively S−1

1 and
S−1
2 . This process is applied iteratively, where in each step of the process the

linearity of the partially determined mappings A and B is verified by a Gaussian
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elimination. Figure 3 illustrates the process. In case neither for A nor for B a set
of n linearly independent inputs and outputs is obtained, the algorithm requires
an additional guess for a new point x of A (or B) in order to continue.

If n linearly independent inputs and n linearly independent outputs to A are
obtained, then a candidate for A can be computed. Similar reasoning applies to
B. If the candidate linear equivalence is denoted by (A∗, B∗), then the correctness
of this pair can be tested by verifying the relation S2 = B∗◦S1◦A∗ for all possible
inputs. If no candidate linear equivalence is found (due to linear inconsistencies
occurred during the process), or if the candidate linear equivalence is incorrect,
then the process is repeated with a different guess for A(x1) or for A(x2), or for
any of the possibly additional guesses made during the execution of LE.

The original linear equivalence algorithm LE exits after finding one single
linear equivalence which already proves that both given S-boxes S1 and S2 are
linearly equivalent. However, by running LE over all possible guesses, i.e., both
initial guesses as well as the possibly additional guesses made during the execu-
tion of LE, also other linear equivalences (A,B) can be found. The work factor of
this variant is at least n3 ·22n, i.e., a Gaussian elimination (n3) for each possible
pair of initial guesses (22n).

3 Cryptanalysis of the White-Box AES Implementation

In this section, we elaborate on the cryptanalysis of the white-box AES-128 im-
plementation proposed in [10] and described in Sect. 2.2. The goal of the crypt-
analysis is the recovery of the full 128-bit AES key, together with the external
input and output encodings, IN and OUT respectively.

The cryptanalysis focusses on extracting the first round key k̂1 contained
within the 8 key-dependent 16-to-32 bit lookup tables TMC1i (i = 0, . . . , 7) of the
first round. Each table TMC1i , depicted in Fig. 4(a), is defined as follows:

TMC1i = R1
�i/2� ◦ MCi mod 2 ◦ S‖S ◦ ⊕(k̂1

2i‖k̂1
2i+1)

◦ L1
i , (3)

where ‖ denotes the concatenation symbol, ⊕c denotes the function ⊕c(x) =
x ⊕ c, and S‖S denotes the 16-bit bijective S-box comprising two AES S-boxes
in parallel. Given (3), the adversary knows that both S-boxes S1 = S‖S and
S2 = TMC1i are affine equivalent by the affine equivalence (A,B) = (⊕(k̂1

2i‖k̂1
2i+1)

◦
L1
i , R

1
�i/2� ◦ MCi mod 2) such that S2 = B ◦ S1 ◦ A. As one can notice, only A is

affine where the constant part equals the key-material contained within TMC1i .
Hence by making TMC1i key-independent (see Lemma 1 below), we can reduce
the problem to finding linear instead of affine equivalences, for which we apply
the linear equivalence algorithm (LE).

Lemma 1. Given the key-dependent 16-to-32 bit lookup table TMC 1
i (defined

by (3) and depicted in Fig. 4(a)), let xi
0 be the 16-bit value such that TMC 1

i (xi
0) =

0, and let TMC
1

i be defined as TMC
1

i = TMC 1
i ◦ ⊕xi

0
. If S is defined as the 8-bit

bijective S-box S = S ◦ ⊕‘52’ where S denotes the AES S-box, then:
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16

8

8

32 32
L1
i MCi mod 2 R1

�i/2�
S

S

8

8

⊕

⊕

8

8

TMC1i

k12i

k12i+1

ˆ

ˆ

(a) Key-material (k̂1
2i and k̂1

2i+1)

16

8

8

32 32
L1
i MCi mod 2 R1

�i/2�

8

8

TMC
1
i

S

S

(b) No key-material

Fig. 4. Key-dependent table TMC1i versus key-independent table TMC
1
i

TMC
1

i = R1
�i/2� ◦ MCi mod 2 ◦ S‖S ◦ L1

i , (4)

where S‖S denotes the 16-bit bijective S-box comprising two S-boxes S in parallel.

The key-independent 16-to-32 bit lookup table TMC
1

i is depicted in Fig. 4(b).

Proof. Given the fact that TMC1i is encoded merely by linear input and output
encodings L1

i and R1
�i/2� (see (3)) and that S(‘52’) = 0, the 16-bit value xi

0, for

which TMC 1
i (xi

0) = 0, has the following form:

xi
0 = (L1

i )
−1

(
(k̂12i ⊕ ‘52’) ‖ (k̂12i+1 ⊕ ‘52’)

)
, (5)

In the rare case that xi
0 = 0, it immediately follows that both first round key

bytes k̂12i and k̂12i+1 are equal to ‘52’. Now, based on xi
0, one can construct the

key-independent 16-to-32 bit lookup table TMC
1
i as follows:

TMC
1
i = TMC1i ◦ ⊕xi

0
= R1

�i/2� ◦ MCi mod 2 ◦ S‖S ◦ ⊕(k̂1
2i‖k̂1

2i+1)
◦ ⊕L1

i (x
i
0)
◦ L1

i

= R1
�i/2� ◦ MCi mod 2 ◦ S‖S ◦ ⊕(‘52’‖‘52’) ◦ L1

i

= R1
�i/2� ◦ MCi mod 2 ◦ S‖S ◦ L1

i .

The 8-bit bijective S-box S maps 0 to itself, i.e. S(‘00’) = ‘00’, since S(‘52’) =

‘00’. Given (4), it also follows that TMC
1
i (0) = 0.

Linear Equivalence Algorithm (LE). Given (4), the adversary knows that
the 16-bit bijective S-box S1 = S‖S and the key-independent 16-to-32 bit lookup

table S2 = TMC
1
i (which is a bijective mapping from GF

(
216

)
to a 16-dimensional

subspace of GF
(
232

)
) obtained through Lemma 1, are linearly equivalent by the

linear equivalence (A,B) = (L1
i , R

1
�i/2� ◦ MCi mod 2). His goal is to recover this

linear equivalence which contains the secret linear input encoding L1
i he needs in

order to extract both first round key bytes k̂12i and k̂12i+1 out of the 16-bit value
xi
0 given by (5). The described problem is exactly what the linear equivalence

algorithm (LE) tries to solve.
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Since in this case both S-boxes S1 = S‖S and S2 = TMC
1
i map 0 to itself, at

least two initial 16-bit guesses A(xn) for two distinct points xn �= 0 (n = 1, 2)
of A are necessary to execute LE, and hence the work factor becomes at least
244, i.e., n3 · 22n for n = 16. Furthermore, 128 linear equivalences (A,B) =
(As ◦ L1

i , R
1
�i/2� ◦ MCi mod 2 ◦ Bs) can be found, where (As, Bs) denotes the 128

linear self-equivalences of S‖S (see Appendix A):

S‖S = Bs ◦ S‖S ◦As →
TMC

1
i = R1

�i/2� ◦ MCi mod 2 ◦Bs ◦ S‖S ◦As ◦ L1
i = B ◦ S‖S ◦A .

The desired linear equivalence, i.e., the linear equivalence that the adversary
wants to obtain, is denoted by (A,B)d = (L1

i , R
1
�i/2� ◦MCi mod 2) and corresponds

to the one with the linear self-equivalence (As, Bs) = (I16, I16), where I16 denotes
the 16-bit identity matrix over GF (2).

Our Goal. In the following sections, we present a way how to modify the linear

equivalence algorithm when applied to S1 = S‖S and S2 = TMC
1
i , such that only

the single desired linear equivalence (A,B)d = (L1
i , R

1
�i/2� ◦MCi mod 2) is given as

output. At the same time, the work factor decreases as well. This modification
exploits both the structure of AES as well as the structure of the white-box
implementation.

3.1 Obtain Leaked Information about the Linear Input Encoding
L1

i

Due to the inherent structure of the white-box implementation, partial informa-

tion about the linear input encoding L1
i of the key-independent tables TMC

1
i of the

first round is leaked. For each L1
i , this leaked information comprises four sets of

16-bit encoded values for which the underlying unencoded bytes share a known
bijective function. In the next section, we show how to modify the linear equiva-
lence algorithm based on this leaked information. Here, we elaborate on how this

information is extracted for L1
i∗ of a given table TMC

1
i∗ for some i∗ ∈ {0, 1, . . . , 7}.

Below, the following description is used: given an AES state by [staten]n=0,1,...,15,
then each set of 4 consecutive bytes [state4j , state4j+1, state4j+2, state4j+3] for
j = 0, . . . , 3 is referred to as column j.

First, one builds an implementation which only consists of the single key-

independent table TMC
1
i∗ followed by the matrix multiplication over GF (2) with

M2 given by (1) for r = 2. This implementation is in detail depicted in Fig. 5
for i∗ = 4, where the internal states U, V and Y are indicated as well: the 2-byte
state U = (u0‖u1) corresponds to the 2-byte input to S‖S and the 4-byte state
V = (v0‖v1‖v2‖v3) corresponds to the 4-byte output of MCz where z = i∗ mod 2.
Since each byte vl (l = 0, . . . , 3) of V is an output byte of MCz , the relation
between U and V is given by mczl,0⊗S(u0)⊕mczl,1⊗S(u1) = vl for l = 0, . . . , 3,

where ⊗ denotes the multiplication over the Rijndael finite field GF
(
28
)
and
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u0 u1

S S
MC0

v0 v1 v2 v3

0 0 0 0 0 0 0 0 v0 v1 v2 v3 0 0 0 0

ShiftRows (SR)
0 0 v2 0 0 v1 0 0 v0 0 0 0 0 0 0 v3

16
0 1 2 3 4 5 6 7

16 16 16 16 16 16 16

32

16

venc0venc1venc2 venc30 0 0 0

{

{ 0 0 0

State Y

State SR(Y)

State V

State U

{ { { {column 0 column 1 column 2 column 3

output

L1
4

TMC
1
4

R1
2

(R1
2)

−1 (R1
3)

−1(R1
1)

−1(R1
0)

−1

32 32

x

(L2)−1 (L2)−1 (L2)−1 (L2)−1 (L2)−1 (L2)−1 (L2)−1 (L2)−1

M2

Fig. 5. Example of the implementation associated to TMC
1
i∗ with i∗ = 4: identifying the

four values venc
l for l = 0, . . . , 3 in order to build the corresponding sets Si∗

l

the pair (mczl,0,mczl,1) corresponds to the MixColumns coefficients on row l of

the 4× 2 submatrix MCz over GF
(
28
)
, i.e. (mczl,0,mczl,1) ∈ SMC with:

SMC = {(‘02’, ‘03’), (‘01’, ‘02’), (‘01’, ‘01’), (‘03’, ‘01’)} . (6)

Then, the 16-byte input to M2 is provided as follows: three 4-byte 0-values
for columns j �= �i∗/2� (in our example: j = 0, 1, 3) and the 4-byte output of

TMC
1
i∗ for column j = �i∗/2� (in our example: j = 2). This ensures that the

three columns j with j �= �i∗/2� of the state Y remain zero, whereas column
j = �i∗/2� equals the 4-byte state V . The ShiftRows operation ensures that
the four bytes vl (l = 0, . . . , 3) of V are spread over all four columns of the
internal state SR(Y ), which are then each encoded by a different linear encod-
ing (L2

2((�i∗/2�−l) mod 4)+�l/2�)
−1. Hence the output state contains four 16-bit

0-values, whereas the other four 16-bit output values vencl (l = 0, . . . , 3) each
correspond to one of the 4 bytes vl of V in a linearly encoded form.

If vencl = 0, then the associated byte vl = ‘00’ as well, such that we have a
known bijective function f i∗

l between the bytes u0, u1 of U , which is defined as:

u1 = f i∗
l (u0) with f i∗

l =
(
S
)−1 ◦ ⊗(mczl,1)

−1 ◦ ⊗mczl,0
◦ S , (7)

where z = i∗ mod 2. This function follows out of the equation mczl,0 ⊗ S(u0) ⊕
mczl,1 ⊗ S(u1) = ‘00’ and is depicted in Fig. 6.

Now, for the linear input encoding L1
i∗ of TMC

1
i∗ , four sets Si∗l (l = 0, . . . , 3)

are built as follows. First associate one of the four values vencl with each set Si∗l .

Then, for each set Si∗l , store the 16-bit value x, given as input to TMC
1
i∗ , for which

the associated output value vencl = 0. Do this for all x ∈ GF
(
216

)
. This results
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S

S

L1
i∗

u0

u1

S(u0)

S(u1)

⊗(mczl,1)
−1 ◦ ⊗mczl,0

f i∗
l

x ∈ Si∗l

Fig. 6. How the known bijective function f i∗
l between u0 and u1 is defined

in that each set Si∗l is composed of 28 16-bit encoded values x for which the
underlying unencoded bytes u0, u1 share the known bijective function f i∗

l given
by (7) and depicted in Fig. 6:

Si∗l = {x ∈ GF
(
216

) | L1
i∗(x) = u0‖u1 ∧ u1 = f i∗

l (u0)} with |Si∗l | = 28 . (8)

So with each set Si∗l (l = 0, . . . , 3), a known bijective function f i∗
l is associated.

3.2 Finding the Desired Linear Equivalence (A,B)d: Obtain the
Full Linear Input Encoding L1

i

So far, for the secret linear input encoding L1
i of each table TMC

1
i (i = 0, 1, . . . , 7)

of the first round, four sets Sil (l = 0, . . . , 3) defined by (8) are obtained. For each
element x ∈ Sil , the underlying unencoded bytes u0, u1 share a specific known
bijective function f i

l given by (7) and depicted in Fig. 6. Now, by exploiting this
leaked information about L1

i , we present an efficient algorithm for computing
the desired linear equivalence (A,B)d = (L1

i , R
1
�i/2� ◦MCi mod 2). This enables the

adversary to obtain the secret linear input encoding A = L1
i of TMC

1
i , which also

corresponds to the linear input encoding of TMC1i .

Algorithm for Finding (A,B)d. Since A = L1
i in the desired linear equiva-

lence, we exploit the leaked information about L1
i in order to make the two initial

guesses A(xn) for two distinct points xn �= 0 (n = 1, 2) of A. Only two out of
four sets Sil are considered, i.e., those where the pair of MixColumns coefficients
(mczl,0,mczl,1) of the associated function f i

l equals (‘01’, ‘02’) or (‘02’, ‘03’). We

choose one of both sets and simply denote it by Si.
Now, select two distinct points xn �= 0 (n = 1, 2) out of the chosen set,

i.e., xn ∈ Si. Based on definition (8) of Si, these points are defined as xn =
(L1

i )
−1

(
un‖f i(un)

)
for some unknown distinct 8-bit values un ∈ GF

(
28
) \ {0},

where f i denotes the known function associated with Si. Now, based on this
knowledge and the fact that we want to find A = L1

i , the two initial guessesA(xn)
are made as follows: A(xn) = an‖f i(an) for all an ∈ GF

(
28
) \ {0} (n = 1, 2).

Hence although A(xn) is a 16-bit value, we only need to guess the 8-bit value an
such that the total number of guesses becomes 216 (i.e. 22

n
2 with n = 16). For

each possible pair of initial guesses
(
A(xn) = an‖f i(an)

)
n=1,2

, LE is executed

on S1 = S‖S and S2 = TMC
1
i . All found linear equivalences are stored in the

set SLE.



Cryptanalysis of the Xiao – Lai White-Box AES Implementation 45

It is assumed that at least (A,B)d = (L1
i , R

1
�i/2� ◦ MCi mod 2) ∈ SLE, which

occurs when an = un for n = 1, 2. It is possible that one or more linear equiv-
alences (A,B) = (As ◦ L1

i , R
1
�i/2� ◦ MCi mod 2 ◦ Bs) with As �= I16 (see the in-

troducing part of Sect. 3) can be found as well such that |SLE| > 1. In that
case, the procedure needs to be repeated for two new distinct points x∗

n �= 0
(n = 1, 2) out of the chosen set Si, which are also distinct from the original
chosen points xn �= 0 (n = 1, 2). This results in a second set S∗LE. Assuming that

all possible linear equivalences between S1 = S‖S and S2 = TMC
1
i are given by

(A,B) = (As ◦ L1
i , R

1
�i/2� ◦ MCi mod 2 ◦ Bs), it can be shown that for both con-

sidered sets, it is impossible that a linear equivalence with As �= I16 is given as
output during both executions of the procedure. Hence taking the intersection
of both sets SLE and S∗LE results in the desired linear equivalence (A,B)d.

Algorithm 1 gives a detailed description of the whole procedure. It has an
average case work factor of 229, i.e., 2 · n3 · 22n

2 for n = 16.

Algorithm 1. Finding the desired linear equivalence (A,B)d

Input: S1 = S‖S, S2 = TMC
1
i , Si, f i

Output: (A,B)d = (L1
i , R

1
�i/2� ◦ MCi mod 2)

1: select two distinct points x1, x2 ∈ Si with xn �= 0 (n = 1, 2)
2: call search-LE(x1, x2) → SLE

3: if |SLE| > 1 then
4: select two distinct points x∗

1, x
∗
2 ∈ Si with x∗

n �= 0, x∗
n �= xm (n = 1, 2 ; m = 1, 2)

5: call search-LE(x∗
1, x

∗
2) → S∗

LE

6: SLE ← SLE ∩ S∗
LE

7: end if
8: return SLE

where
Procedure search-LE (Input: x1, x2 – Output: SLE)

1: SLE ← ∅

2: for all a1 ∈ GF
(
28
) \ {0} do

3: A(x1)← a1‖f i(a1)
4: for all a2 ∈ GF

(
28
) \ {0} do

5: A(x2)← a2‖f i(a2)

6: call LE on S1 = S‖S and S2 = TMC
1
i with initial guesses A(x1), A(x2)→ SLE

7: end for
8: end for

Choice of Set Si. To each of the four sets Sil (l = 0, . . . , 3), a pair of
MixColumns coefficients (mczl,0,mczl,1) ∈ SMC (see (6)) of the associated func-

tion f i
l is related. Let us denote this relation by Sil ↔ (mczl,0,mczl,1). Here, we

elaborate on the fact that not all four sets are equally suitable to be used in
Algorithm 1.
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Sil ↔ (‘01’, ‘01’): in this case, the associated function f i
l becomes the identity

function such that the pair of initial guesses becomes
(
A(xn) = an‖an

)
n=1,2

with an ∈ GF
(
28
) \ {0}. When executing LE on S1 = S‖S and S2 = TMC

1
i

for any such pair, we only find at most 8 linearly independent inputs and
output to A (or B). This is explained by the fact that linear combinations
of an‖an (or of S(an)‖S(an)) span at most an 8-dimensional space. In order
to continue executing LE, an additional guess for a new point x of A (or B)
is required which increases the work factor. Hence we avoid using this set;

Sil ↔ {(‘01’, ‘02’), (‘02’, ‘03’), (‘03’, ‘01’)}: computer simulations show that all
three remaining sets can be used in Algorithm 1 without requiring an addi-
tional guess during the execution of LE. However, in the worst case scenario,
using the set Sil ↔ (‘03’, ‘01’) requires that the procedure ‘search-LE’ needs
to be executed 4 times in total in order to find the single desired linear equiv-
alence (A,B)d, instead of at most 2 times in case of the set Sil ↔ (‘01’, ‘02’)
or the set Sil ↔ (‘02’, ‘03’). Note that Algorithm 1 assumes that one of the
latter sets is chosen.

Implementation. Algorithm 1 has been implemented in C++ and tests have
been conducted on an Intel Core2 Quad @ 3.00GHZ. For the conducted tests,
we chose the set Sil where (mczl,0,mczl,1) = (‘02’, ‘03’). We ran the implementation

3000 times in total, each time for a different randomly chosen L1
i and R1

�i/2�.
Only 4 times the procedure ‘search-LE’ needed to be repeated since 2 linear
equivalences were found during the first execution. The implementation always
succeeded in finding only the single desired linear equivalence (A,B)d, which
required on average ≈ 1min. It should be noted that the implementation was
not optimized for speed, hence improvements are possible. The implementation
also showed that each pair of initial guesses as defined above were sufficient in
order to execute LE, i.e., no additional guesses were required.

3.3 Extracting the Full 128-Bit AES Key and the External Input
and Output Encodings IN and OUT

At this point in the cryptanalysis, we extracted the 16-bit secret linear input
encodings L1

i of all 8 16-to-32 bit tables TMC1i (i = 0, . . . , 7) of the first round.

Extracting the Full 128-bit AES Key. Given the 16-bit value xi
0 of each table

TMC1i defined by TMC1i (x
i
0) = 0 (see (5)), the adversary can extract both first

round key bytes k̂12i and k̂12i+1 contained within each key-dependent table TMC1i
as follows:

k̂12i ‖ k̂12i+1 = L1
i (x

i
0)⊕

(
‘52’ ‖ ‘52’) .

By doing so for each table TMC1i (i = 0, 1, . . . , 7) and taking into account the data
flow of the white-box implementation of the first round, the adversary is able
to obtain the full 128-bit first round key k̂1, which after applying the inverse
ShiftRows operation to it results in the actual first round key k1. According to
the AES key scheduling algorithm, k1 corresponds to the 128-bit AES key k.
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Extracting the External Input and Output Encodings IN and OUT. By knowing
all 8 linear input encodings L1

i (i = 0, 1, . . . , 7) of the first round, the external
128-bit linear input encoding IN can be extracted out of the 128 × 128 binary
matrix M1 given by (2) as follows: IN−1 = SR−1 ◦ diag(L1

0, . . . , L
1
7) ◦M1.

The external 128-bit linear output encoding OUT can be extracted once both
the AES key k and IN have been recovered. Let us take the canonical base
([ei])i=0,...,127 of the vector space GF (2)

128
and calculate for each 128-bit base

vector ei the 128-bit value yi = WBAESk
(
IN

(
AES−1

k (ei)
))
, where WBAESk

denotes the given white-box AES implementation defined by WBAESk = OUT ◦
AESk◦IN−1 and AES−1

k denotes the inverse standard AES implementation, both
instantiated with the AES key k:

yi = OUT(AESk(IN
−1

︸ ︷︷ ︸
WBAESk

(IN(AES−1
k (ei))))) = OUT(ei) .

As one can notice, yi corresponds to the image of ei under the external 128-bit
linear output encoding OUT. Hence OUT is completely defined by calculating all
pairs (ei, yi) for i = 0, . . . , 127.

3.4 Work Factor

The overall work factor of our cryptanalysis is dominated by the execution of
Algorithm 1 in order to obtain the linear input encodings L1

i of all 8 16-to-32
bit tables TMC1i (i = 0, . . . , 7) of the first round. The algorithm has a work factor

of about 229. Thus, executing the algorithm on S1 = S‖S and S2 = TMC
1
i for

i = 0, 1, . . . , 7 leads to an overall work factor of about 8·229 = 232. Once obtained
L1
i for i = 0, 1, . . . , 7, the AES key together with the external encodings can be

extracted as explained in Sect. 3.3.

4 Conclusion

This paper described in detail a practical attack on the white-box AES imple-
mentation of Xiao and Lai [10]. The cryptanalysis exploits both the structure
of AES as well as the structure of the white-box AES implementation. It uses
a modified variant of the linear equivalence algorithm presented by Biryukov
et al. [2], which is built by exploiting leaked information out of the white-box
implementation. The attack efficiently extracts the AES key from Xiao et al.’s
white-box AES implementation with a work factor of about 232. In addition to
extracting the AES key, which is the main goal in cryptanalysis of white-box
implementations, our cryptanalysis is also able to recover the external input and
output encodings. Crucial parts of the cryptanalysis have been implemented
in C++ and verified by computer experiments. The implementation furthermore
shows that both the 128-bit AES key as well as the external input and output
encodings can be extracted from the white-box implementation in just a few
minutes on a modern PC.
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S = S ◦ ⊕‘52’. If Φl denotes the set of exactly #l = 8 linear self-equivalences
(α, β) of S such that S = β ◦ S ◦ α, and is defined as:

Φl =
{
(α = [c] ◦Qi, β = A ◦Q−i ◦ [c] ◦A−1) | (i, c) ∈ Sl

}
with

Sl = {(0, ‘01’), (1, ‘05’), (2, ‘13’), (3, ‘60’),
(4, ‘55’), (5, ‘f6’), (6, ‘b2’), (7, ‘66’)} ,

where [c] denotes the 8 × 8 binary matrix representing a multiplication by c
in GF

(
28
)
and Q denotes the 8 × 8 binary matrix that performs the squaring

operation in GF
(
28
)
(both considered the Rijndael finite field), then the 16-

bit bijective S-box comprising two identical S-boxes S in parallel, i.e. S‖S, has
2 ·#2

l = 128 trivial linear self-equivalences denoted by the pair of 16-bit bijective
linear mappings (As, Bs) such that S‖S = Bs ◦ S‖S ◦ As, with the following
diagonal structure:

As =

(
α1 08×8

08×8 α2

)
, Bs =

(
β1 08×8

08×8 β2

)
or

As =

(
08×8 α1

α2 08×8

)
, Bs =

(
08×8 β2

β1 08×8

)
, (9)

for any combination [(α1, β1), (α2, β2)] where both (α1, β1), (α2, β2) ∈ Φl. In (9),
08×8 denotes the 8× 8 binary zero-matrix over GF (2).

The linear equivalence algorithm (implemented in C++) has been executed with
S1 = S2 = S‖S and found exactly these 128 linear self-equivalences (As, Bs) of
the form (9).
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