
Private Stream Search at Almost the Same

Communication Cost as a Regular Search

Matthieu Finiasz1 and Kannan Ramchandran2,�

1 CryptoExperts
2 UC Berkeley

Abstract. Private Stream Search allows keyword-based search queries
to be performed on streaming data (or on a database) without revealing
any information about the keywords being searched. Using homomorphic
encryption, Ostrovsky and Skeith proposed a solution to this problem in
2005. However, their solution requires the server to send an answer of size
O(mS logm) bits when m documents of S bits match the query, while a
regular (non-private) query only requires mS bits. Following this work,
some improved schemes have been proposed with the aim of keeping
the reply from the server linear in mS. In this work we propose two
new communication optimal constructions: both allow communication
linear in mS, but they also offer an expansion factor (compared to a
non-private query) asymptotically equal to 1 when m and S increase.
More precisely, our first scheme requires m(S+O(log t)) bits (where t is
the size of the database) and our second scheme m(S +C) where C is a
constant depending only on the chosen computational security level.

Keywords: privacy, keyword search, Reed-Solomon codes, LDPC codes.

1 Introduction

Internet search engines are able to gather a lot of information on users from the
content of the search queries they make. Most users don’t really care about this,
but more and more users would prefer the servers not to learn anything from
their query. This is the goal of Private Stream Search (PSS) algorithms: being
able to perform a keyword-based search query on a server, without disclosing any
information about the keywords in the query. However, even if the number of
users having concerns about privacy is growing, the number of these users that
are willing to trade efficiency for privacy is probably much smaller. Compared
to standard non-private search, PSS should not have a much higher latency
(response time) or bandwidth usage (response size) or be less reliable (miss
some matching documents). This is the main focus of this article.

The first PSS algorithm was introduced by Ostrovsky and Skeith [12,13] in
2005 and makes clever use of homomorphic encryption to hide the content of
the query while still allowing the server to perform some computations on it.

� This research was funded by the NSF grant CCF-0964018.

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 372–389, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

PSS at Almost the Same Communication Cost as a Regular Search 373

This scheme requires the use of a public dictionary of possible keywords and is
restricted to OR queries. These restrictions are not the main focus of our work,
but as we discuss later, the use of a fully homomorphic encryption scheme could
remove these restrictions from both the original Ostrovsky-Skeith construction
and the new schemes we present here. Following Ostrovsky and Skeith’s work,
some improvements have been proposed independently by Bethencourt, Song
and Waters [1,2] and by Danezis and Dı́az [4,5]. These improvements have the
same structure as the original scheme and are focused mainly on improving
the size of the response from the server (one of the main issues in the original
proposal) and the reliability of the scheme. However, they are suboptimal in
some aspects.

The main contribution of this paper is the proposal of two new PSS algorithms
combining the ideas of the Ostrovsky and Skeith construction with results from
coding theory, thus allowing for state of the art results that improve significantly
on current PSS schemes. Our first scheme uses Reed-Solomon codes [15] and
allows for a zero-error guarantee, while offering optimal communication rates. It
can however be computationally heavy at the server. Our second scheme is based
on irregular LDPC codes [6,10] and is asymptotically optimal, thus interesting
when a large number of documents (in practice, a few hundreds) match the query.
We also propose an offline-online scheme, with a higher offline computational
cost, but which allows the online step to be as efficient as a standard non-
private search: the response suffers no latency and the communication overhead
remains minimal.

This article is organized in 3 sections. Section 2 contains a description of the
original Ostrovsky-Skeith PSS construction and of the Bethencourt et al. and
Danezis and Dı́az improvements. Then, in Section 3, we present our two new
constructions and give some analysis of their performances. Finally, in Section 4,
we detail some further improvements that apply to our schemes, but also to the
previous PSS schemes.

2 Previous Constructions

2.1 Paillier’s Encryption Scheme

All known private stream search constructions require the use of homomorphic
encryption and the original Ostrovsky-Skeith construction relies on Paillier’s
cryptosystem [14]. The new schemes we present in Section 3 also rely on this
scheme. Of course, any other homomorphic encryption scheme could be used
instead, with only minor modifications to the PSS schemes.

Paillier’s cryptosystem is a public key cryptosystem: in our PSS applications,
a user and a server will communicate, and all encryptions will be done with
respect to the user’s key. We shall denote by E : ZN �→ ZN2 Paillier’s encryp-
tion function and by D : ZN2 �→ ZN the associated decryption function. As the
encryption is randomized, the same message can have different associated cipher-
texts, decrypting to the same value. We thus introduce the notation y ≡ y′ which

374 M. Finiasz and K. Ramchandran

is equivalent to D(y) = D(y′): y and y′ are encryptions of the same message.
With these notations, the homomorphic property can be expressed as:

E(x1)× E(x2) ≡ E(x1 + x2) and E(x)c ≡ E(c× x) for any c ∈ ZN .

Additionally, Paillier’s cryptosystem is semantically secure, so the server cannot
distinguish between E(0) and E(1). For simplicity, we will consider that N is 1024
bits long, but it should of course be chosen according to the required security
level.

The Damg̊ard-Jurik Extension. Semantic security requires a randomized
encryption, which necessarily induces a message expansion: the ciphertext is
larger than the associated message. Paillier’s cryptosystem has a constant ex-
pansion factor of 2, for small messages of logN bits, but also for longer messages
spanning several encrypted blocks.

To improve this, Damg̊ard and Jurik [3] proposed a variant of Paillier’s ho-
momorphic encryption scheme which works very similarly but takes a message
in ZNs (for any value of s) and outputs a ciphertext in ZNs+1 . For a message of
s logN bits, the expansion factor is only s+1

s , which tends to 1 when the mes-
sage size increases. However, the price to pay for this smaller expansion rate is
a factor O(s2) on the cost of encryption/decryption.

Using the Damg̊ard-Jurik encryption scheme with a modulus N of 1024 bits,
the communication overhead is 1024 bits whatever the message size. More gen-
erally, this overhead is a constant C depending only on the required security
level.

2.2 The Ostrovsky-Skeith Construction

A private stream search algorithm works in three steps: first the user builds
a query and sends it to the server, then the server executes the query which
outputs a result that it sends back to the user, finally the user extracts the
queried documents from the result he received. Here is the description of these
three algorithms for the original PSS scheme from Ostrovsky and Skeith [12,13].

Query Construction. Let Ω = {w1, w2, . . . , w|Ω|} be the dictionary of possible
keywords and K ⊆ Ω be the set of keywords the user wants to query. The
query is Q = {q1, q2, . . . , q|Ω|}, where qj = E(1wj∈K) and 1 denotes the indicator
function. The user thus sends an encrypted bit for each element in the dictionary:
this bit is 1 if the keyword is part of the user’s search, 0 otherwise. As each
encryption is independently randomized and due to the semantic security of
Paillier’s cryptosystem, the server cannot tell which of these encrypted bits are
1 and 0.

As part of the query, the user also sends m, the expected number of matching
documents, and γ, a reliability parameter (a larger γ gives a better probability
of recovering all matching documents).

PSS at Almost the Same Communication Cost as a Regular Search 375

Query Execution. Upon receiving the query (Q,m, γ), the server first creates a
buffer B of size � = γm and initializes each of its positions to the value 1 ≡ E(0).

Let us assume the database contains t documents. Then, for each document
fi ∈ ZN in the database, the server computes the set Wi ⊆ Ω of keywords in the

dictionary that match document fi. It then computes Fi =
(∏

wj∈Wi
qj
)fi ≡

∏
wj∈Wi

E(1wj∈K)fi . Thanks to the homomorphic property of E , we also have:

Fi ≡ E(fi
∑

wj∈Wi
1wj∈K

)
. Denoting ci =

∑
wj∈Wi

1wj∈K the number of key-

words of K that match fi, we then have Fi = E(cifi). The server then selects
γ random positions bi = {bi,1, . . . , bi,γ} ⊂ [1,mγ] of the buffer B and updates
each of these γ positions by multiplying its current value by Fi.

After processing all the documents in the database, the j-th buffer position

will be equal to Bj =
∏

i F
1j∈bi

i ≡ E(∑i 1j∈bicifi
)
, that is, the encryption of

a linear combination of documents in the database. This linear combination is
sparse if only few documents match the query K, meaning most of the ci are
equal to 0. The server then sends the buffer B back to the user.

In practice, everything happens as if the server had a random binary matrix
H of size γm× t with γ ones in each column and it was computing B ≡ E(H ×
(cifi)i∈[1,t]).

Document Extraction. When receiving the encrypted buffer B, the user starts
by decrypting each buffer position to get D(Bj) =

∑
i 1j∈bicifi. He then scans

the γm decrypted buffer positions for what we call singletons : buffer positions
that contain only one file, that is, positions such that 1j∈bici = 0 for all but
one value of i. The user discards all buffer positions that are not singletons and
extracts the value fi of one document from each singleton.

Asymptotic Cost. The encrypted buffer that is sent back by the server to the
user has size γm. In order for the user to recover the m matching documents
with a high probability of success, γ must be of the order of O(logm). If docu-
ments are S bits long, using Paillier’s cryptosystem, encrypted buffer positions
should be 2S bits long and the answer is thus of order 2mSO(logm). It can
be reduced to m(S + 1024)O(logm) using the Damg̊ard-Jurik extension (with
a 1024-bits modulus N). The expansion factor is only logarithmic in m, but
some improvements are needed to keep the buffer size linear in the number of
matching documents.

2.3 The Danezis-D́ıaz Improvement

In [4,5], Danezis and Dı́az propose to modify slightly Ostrovsky and Skeith’s
construction, allowing them to dramatically decrease the size of the buffer B.
Their algorithm works exactly like the Ostrovsky-Skeith scheme, but with the
following modifications:

– the query Q is the same, but the user chooses a target buffer size � (typically
� = 2m),

376 M. Finiasz and K. Ramchandran

– before processing the query, the server embeds the index i of each document
inside fi,

– when processing the query, instead of adding the document to γ random
buffer positions, the server now uses a public hash function/pseudo-random
number generator h, seeded by the index i, to deterministically choose a
set of d positions where the document fi will be added. The integer d is a
parameter of the system. In terms of matrices, H is such that its i-th column
is Hi = h(i), a binary vector of Hamming weight d.

The main change that Danezis and Dı́az bring is a new document extraction
algorithm. As in the Ostrovsky-Skeith construction, the user starts by looking
for singletons and extracts the value of some documents from these singletons.
However, now, each document also contains its index i, and from i, the user
can generate Hi = h(i) and know exactly where this document was added in the
buffer. He can thus completely remove any document he recovers from the buffer,
thereby uncovering new singletons. This simple iterative decoding algorithm al-
lows for a much smaller buffer than in the original scheme, while maintaining a
decoding cost linear in the buffer size.

This algorithm was only empirically tested by Danezis and Dı́az, but their
experimental results show that a buffer size of � = 2m is sufficient to recover a
high percentage of the m matching documents. However, they do not give any
formal analysis.

2.4 The Bethencourt-Song-Waters Construction

In [1,2], Bethencourt, Song and Waters propose a completely different angle to
improve on the Ostrovsky-Skeith scheme. Their approach is useful when docu-
ments are long (more than logN bits), which will be the case in many appli-
cations. In the previous schemes, the expansion ratio between the number of
matching documents and the buffer size was independent of the document size.
Meaning that even for large documents, the expansion would be logm for the
Ostrovsky-Skeith scheme and 2 for the Danezis-Dı́az variant.

Bethencourt et al. propose to use a similar scheme, but with 3 different buffers.
The first buffer will contain the value of the documents (and will thus scale with
the size of the documents), and the two other buffers are independent of the
document size and are used to send the values of the ci and the indexes i of the
matching documents.

With this technique, Bethencourt et al. are able to achieve an asymptotic
expansion rate of 1 (using the Damg̊ard-Jurik cryptosystem), but their technique
suffers a few drawbacks:

– recovering the indexes i of matching documents relies on Bloom filters and
requires the reply to be of size O(m log t

m) to have a good probability of
success. This dependence in the size t of the database is not desirable and,
as we will see, not necessary.

– recovering the document values requires to solve a linear system of size m×
m, which can be quite expensive compared to the rest of the document
extraction process. Other algorithms have a linear cost in the buffer size.

PSS at Almost the Same Communication Cost as a Regular Search 377

3 Two New PSS Constructions

Building on the original Ostrovsky-Skeith scheme, we propose two new commu-
nication optimal constructions. The key idea is to consider that the job of the
server is simply to compute a sparse encrypted vector E(cifi) and then compress
it in the encrypted domain. Thanks to the homomorphic property of Paillier’s
cryptosystem it is possible to compute the syndrome of this vector with respect
to the parity check matrix H of an error correcting code. Using two optimal code
constructions (Reed-Solomon codes [15] and irregular LDPC codes [6,10]) we ob-
tain our two new PSS schemes. Of course, the idea of using a linear function to
compress a sparse vector is not new, but homomorphic encryption allows to do
this in the encrypted domain too. This is also what previous PSS schemes were
doing, without explicitly stating it, and using sub-optimal linear compression.

3.1 A Zero-Error Construction Using Reed-Solomon Codes

Apart from the communication overhead, one drawback of the existing PSS
constructions is that they have a non-zero probability of failure. This is true even
for very large expansion rates. In particular, when the number m of matching
documents is small, the failure probability of all previous schemes becomes higher
for a given expansion rate. We thus propose a deterministic algorithm that will
guarantee that the document extraction will never fail if the number of matching
documents is known. This algorithm uses Reed-Solomon codes and exploits their
MDS (maximum distance separable) property in the following way:

– Reed-Solomon codes can correct up to m errors using 2m syndromes,
– they can also correct m erasures (errors at a known position) using only m

syndromes.

Description of the Construction. A direct application of this would consist
in replacing the matrix H in the PSS algorithm by the parity check matrix of
a Reed-Solomon code over ZN . Then, recovering the value of any m documents
would be equivalent to correcting m errors with the code and would only require
� = 2m buffer positions. However, it is possible to do better than this. Indeed,
this straightforward application allows documents of logN bits, but also allows
a database of up to N elements. In practice the database is much smaller than N
(which for security reasons will be at least 21024), and using a Reed-Solomon code
on ZN is a waste. The server can encode the values of the ci (and their positions)
as errors in a smaller Reed-Solomon code, and then encode the documents as
erasures, which can be efficiently recovered once the ci are known. Here is how
the algorithm works.

Query Construction. This step is the same as for the other algorithms (described
in Section 2.2). Along with the query Q, the user sends an expected number of
results m.

378 M. Finiasz and K. Ramchandran

low weight bits

Fig. 1. Embedding of two Reed-Solomon codes and of fi inside an element of ZN .
|Ω| and t are the dictionary and the database sizes: the zero-paddings allow to avoid
overflows when computing linear combinations of f ′

j,i.

Query Execution. As in the previous constructions, for each document fi, the
server computes the encryption E(ci) of the number of queried keywords match-
ing fi. Then, instead of simply computing E(ci)fi , the server will embed several
values in an integer f ′

j,i ∈ ZN as shown in Fig. 1. This requires two different

Reed-Solomon codes RS and RS′. The code RS will be used to recover the ci
and is defined on Zpt where pt is the smallest prime greater than the database
size t (it should also be greater than the dictionary size |Ω|) and the coefficients
of its parity check matrix are thus defined as RSj,i = ij mod pt. Similarly, RS′

will be used to recover the values of fi and is defined over Zpf
where pf is

the largest prime that can fit in the remaining bits of one plaintext (Paillier or
Damg̊ard-Jurik). We have RS′j,i = ij mod pf . Thus, for each of the m positions
of buffer B, the server multiplies Bj by E(ci)f ′

j,i . Once the whole database has

been processed, Bj ≡ E(∑t
i=1 cif

′
j,i

)
.

Document Extraction. As usual, the user starts by decrypting the buffer B. He
then splits each plaintext he obtains in 3 parts: the first part corresponding to∑

i ciRS
′
j,ifi, the second to

∑
i ciRS2j,i and the third to

∑
i ciRS2j+1,i. These

linear combinations have been computed in the encrypted domain by the server,
with no reduction modulo pt or pf : this is why some zero-padding is required
(see Fig. 1) to avoid overflows. The user thus starts by reducing the last two
elements modulo pt for each j ∈ [1,m], and gets 2m syndrome positions in RS
of the sparse vector (ci). This is enough to recover the values and positions of
the m non-zero ci elements using the Reed-Solomon error correcting algorithm.

Then, the user reduces the first part of each plaintext modulo pf to obtain m
syndrome positions in RS′ of the sparse vector (cifi). As the non-zero ci elements
are known, the positions of the non-zero cifi are also known, and the user has
to solve an erasure problem. The m syndrome positions are enough to recover
the values of cifi, and thus also of fi.

Computational Cost. Compared to the Ostrovsky-Skeith construction, the
use of Reed-Solomon codes has an heavy impact on the server side computations.
As all the lines of a Reed-Solomon parity check matrix are different, the server
has to compute a modular exponentiation E(ci)f ′

j,i for each coefficient in the
matrix, that is mt exponentiations instead of t in the other algorithms.

PSS at Almost the Same Communication Cost as a Regular Search 379

However, on the user side, the computational cost remains similar and will be
dominated by the buffer decryption step. Reed-Solomon decoding costs O(m2)
multiplications in Zpt and Zpf

, which can be upper bounded by O(m2(logN)2).
Decryption costs O(m(logN)3), which will dominate as long as m is smaller
than a few thousands. The document extraction process is thus no longer linear
in m, but the quadratic component is negligible in practice.

Communication Cost. With this scheme, a buffer of size m is enough to
recover m matching documents, which is optimal. However, part of each buffer
position is reserved for the recovery of the ci and for zero-padding. For each
document, an overhead of 5 log t + 3 log |Ω| bits has to be transmitted. The
3 log t + 3 log |Ω| padding bits1 are wasted bits that are due to the structure
of the Paillier encryption scheme: using a different homomorphic encryption
scheme could improve this. The remaining 2 log t bits are however necessary to
get a deterministic zero-error algorithm: the user has to solve an error correction
problem, meaning he will have to learn both the value and the position of the
errors, leading to an overhead of O(log t) bits per document. Overall, for m
matching documents of S bits, this scheme requires 2m(S +O(log t)) bits using
the original Paillier cryptosystem or m(S+1024+O(log t)) using the Damg̊ard-
Jurik extension. Asymptotically, when S tends to infinity, this corresponds to
an expansion ratio (compared to a non-private search) of 2 using Paillier and 1
using Damg̊ard-Jurik.

For non-asymptotic parameters, suppose we take a database of 1 000 billion
documents, a dictionary with 1 million keywords and a query for 5 keywords
returning 200 results, and we use the smallest possible zero-paddings of logm+
log |K| bits. The reply from the server would be 200× 2 048 = 409 600 bits long,
and would consist of 204 800 bits of randomness (added by Paillier’s encryption),
11×3×200 = 6 600 bits of padding, 40×2×200 = 16 000 bits to recover the ci, and
the remaining 182 200 bits to contain the information. This gives an expansion
ratio of only 2.25 for these small parameters, and this ratio will improve when
the document size increases.

Note that this analysis is valid only if the user knows in advance the number
m of matches to expect. This can be the case in some scenarios, but not in a
typical keyword search. In this case, the user will query for m positions and
will receive a syndrome of size m: if less than m documents match the query
he will be able to extract all of them with probability 1, but if more than m
documents match the query he will not be able to decode and will not get any
document. This gives another way of looking at the zero-error property: the
user knows when he misses something, whereas in the Ostrovsky-Skeith scheme,
the user will usually be able to extract at least a few documents, but has no
information whether he got all the documents or not. With our Reed-Solomon
scheme, it is possible to imagine an interactive protocol2 where the user can

1 In practice, this can be reduced to 3 logm+3 log |K| bits, but having a dependency
on m is not really convenient and revealing |K| to the server leaks some information.

2 Special care has to be taken when designing such an interactive protocol, so as not
lose too much privacy by disclosing the actual number of matches to the server.

380 M. Finiasz and K. Ramchandran

query for additional syndrome positions when the decoding fails, thus allowing
him to choose a small m at first and still be sure to get all the documents in the
end.

3.2 An Asymptotically Optimal Construction Using Irregular
LDPC Codes

Description of the Construction. In order to improve the asymptotic com-
munication cost and remove any dependency on the database size t, it is neces-
sary to use a randomized scheme (thus with a non-zero probability of failure):
in that case, it is well known that (irregular) LDPC codes can offer much better
performance than Reed-Solomon codes. However, the error correction problem
also has to be transformed into an erasure correction problem. This is possible
by combining the following ideas (which is similar to what Danezis and Dı́az
proposed):

– instead of using a fix LDPC matrix, generate it from the documents fi
themselves,

– use a decoding algorithm similar to the erasure correction algorithm pro-
posed by Luby and Mitzenmacher for verification codes [8].

Query Construction. This step is the same as for the Ostrovsky-Skeith con-
struction. Instead of m and γ, the user sends the desired buffer length � to the
server.

Query Execution. The server first initializes a buffer B of size � to E(0) in every
position. Then, for each document fi it proceeds as follows:

– compute f ′
i from fi as shown in Fig. 2, adding a padding (with a single 1

between some zeros) and a small non-linear checksum of fi itself (a crypto-
graphic hash of 64 bits can be used),

– compute E(cif ′
i) exactly as in the original scheme,

– using a pseudo-random number generator seeded by fi, generate
3 an integer

d following a given distribution (the best choice for this distribution is dis-
cussed at the end of this section) and generate a uniformly random binary
column vector Hi of length � and Hamming weight d,

– for every non-zero position in Hi, multiply the corresponding position in
buffer B by E(cif ′

i).

In the end, B = E(H × (cif
′
i)) contains the encrypted syndrome of the sparse

(cif
′
i) vector with respect to the parity check matrix H of an irregular LDPC

code.

3 Note that Danezis and Dı́az use the document index i to generate the column Hi,
which requires to number documents. Using the document itself as the seed makes
application to streaming data more natural.

PSS at Almost the Same Communication Cost as a Regular Search 381

Fig. 2. Embedding of fi, a padding and a checksum of fi inside an element of ZN . |Ω| is
the dictionary size (a bound on ci) and the paddings avoid overflows when multiplying
f ′
i by ci. In practice, this padding can be reduced to log |K| bits, so just a couple of
bits for queries with a few keywords.

Document Extraction. When receiving buffer B, the user starts by decrypting
it and looks for singletons. The detection of singletons is made easy by the
structure of f ′

i (see Fig. 2). The isolated 1 allows to read the value of ci directly
and divide cif

′
i by it: if it is indeed a singleton, the checksum will be valid and

the value of fi can be recovered, otherwise the checksum will not be valid (with
high probability).

With every singleton the user gets the value of one document fi and can
now regenerate (using the same PRNG as the server) the corresponding column
Hi. Knowing Hi (and ci) it is possible to remove document fi from the other
syndrome positions where it has been added, thus uncovering new singletons,
which in turn can reveal new documents fi. This gives an iterative algorithm
which we analyse asymptotically here.

Choosing an Optimal Column Weight Distribution. In order to analyze
the decoding algorithm, the matrix H can be transformed into a bipartite graph.
On the left of the graph there are m information nodes (the non-zero (cif

′
i)

elements) and on the right there are � parity nodes (the decrypted syndromes).
These nodes are connected by edges: each 1 in H is an edge in the graph, linking
an information node and a parity node. For each edge in the graph, its left degree
is the number of edges connected to its information node and its right degree
the number of edges connected to its parity node. Then the decoding algorithm
consists in repeating the following steps:

– select all edges with right degree 1 (edges connected to singletons),
– remove these edges from the graph as well as the associated left and right

nodes,
– remove all other edges that were connected to the left nodes (no other edges

were connected to the right nodes).

Decoding is successful if, at the end, all the edgeshavebeen removed fromthegraph.
Studying the probability of success of this algorithm for given parameters m

and � is difficult, however, as proven in [9], if the left and right degree distribution
of edges remains constant andm and � tend to infinity, the asymptotic proportion
of edges removed at each step can be computed.

382 M. Finiasz and K. Ramchandran

c

v

c’

Fig. 3. Local view of the bipartite graph as a tree. The dashed lines correspond to
nodes/edges removes at the end of step j. The edge between v and c will be removed
at step j + 1 as one son c′ of v is a singleton (it has no sons remaining at the end of
step j).

Let λ(x) =
∑

i λix
i−1 and ρ(x) =

∑
i ρix

i−1, where λi (resp. ρi) denote the
probability that an edge of the graph has left (resp. right) degree i. Also, let bj
denote the proportion of edges of the graph that are still present after step j
of the algorithm. Then b0 = 1 (all the edges are present before the algorithm
starts) and:

bj+1 = λ(1 − ρ(1− bj)). (1)

We will not prove this formula here (please refer to [9,11] for the complete proof),
but the intuition is the following. During the decoding process, the neighborhood
around the edge (v, c) between a message node v and a parity node c, can be seen
as a tree (see Fig. 3). The decoding process then consists in letting information
flow from the leaves of the tree to its root: the (v, c) edge will be removed from
the graph at step j + 1 if the value of v can be determined at step j + 1 and it
can thus send its value to c. As can be seen on Fig. 3, the value of the message v
can be determined if it has a son c′ that is a singleton at the end of step j of the
algorithm, meaning one of the sons of v is a leaf. The probability this happens
can easily be computed if the distributions λ and ρ are known. The parity node
c′ is connected to k edges with probability ρk and it is a singleton at the end of
step j if its k − 1 sons in the Fig. 3 tree have been removed: this happens with
probability Psingleton =

∑
k ρk(1− bj)

k−1 = ρ(1 − bj).
Similarly, node v has k′ neighbors (and thus k′−1 sons) with probability λk′ , so

one of them will be a singleton with probability 1−∑
k′ λ′

k(1−Psingleton)
k′−1 =

1−λ(1−Psingleton). The edge (v, c) is thus removed at step j+1 with probability
1− λ(1 − ρ(1− bj)), which leads to formula (1).

Asymptotically, the decoding algorithm is successful if bj
j→∞−→ 0, which will

be the case if:

∀x ∈ [0, 1], λ(1− ρ(1 − x)) ≤ x.

Of course, for finite values ofm and �, the algorithm can fail even if this condition
is verified. The sequence of bj represents the expected evolution of the number
of edges in the graph, but the algorithm will deviate from the average from time
to time.

PSS at Almost the Same Communication Cost as a Regular Search 383

Table 1. Minimal expansion rates asymptotically allowing recovery of all the docu-
ments, for specific values of d, in the algorithm of Danezis and Dı́az

d 2 3 4 5 6 7 8 9

minimal �
m

2 1.2218 1.2949 1.4249 1.5697 1.7189 1.8692 2.0192

Application to Danezis and Dı́az’s Algorithm. In [4], Danezis and Dı́az propose
to use a constant weight d for the columns of H . This means that λ(x) = xd−1.
The distribution ρ is a little more complicated as it is induced by λ. A row of H
will have a weight following a binomial distribution: it is the sum of m random

coins equal to 1 with probability d
� . We thus have ρi =

i�
md

(
m
i

)(
d
�

)i(
1 − d

�)
m−i

and so, when m is large, ρ(x) = exp
(− md

� (1− x)
)
.

The best rate �
m one can achieve for a given d is given in Table 1 and is

obtained from the equation:

∀x ∈ [0, 1],
(
1− exp(−md

� x)
)d−1

≤ x.

The best asymptotic choice is d = 3, which does not mean that for a given m
and � the best probability of success is always achieved for d = 3. This however
proves that Danezis and Dı́az’s algorithm with constant column weight d can
indeed achieve communications linear in m. However, it can never have a good
probability of success for expansion rates smaller than 1.22.

The Harmonic Distribution. Using a constant column weight makes the descrip-
tion of the algorithm easy and gives very good results for some parameters (see
Fig. 5), but it is not optimal.

The decoding problem we are facing is very close to the problem of decod-
ing LT-codes [7] and, for LT-codes, it was proven that the optimal distribution
choice is the so-called Robust Soliton distribution. However, in our context, using
this distribution would correspond to fixing ρ(x), that is, choosing a row weight
distribution. This is not possible as each instance of our decoding problem corre-
sponds to a set of m random columns of H , meaning we only have full control on
the column weight distribution λ(x). The row distribution will always be given

by ρ(x) = exp
(− md̃

� (1− x)
)
, where d̃ = 1/

∑
i
λi

i is the average column weight
of H . Thus, the constraint on λ(x) is:

∀x ∈ [0, 1], λ
(
1− exp(−md̃

� x)
) ≤ x. (2)

With a change of variable y = 1− exp(−md̃
� x), inequality (2) becomes:

∀y ∈ [
0, 1− exp(−md̃

�)
]
, λ(y) ≤ − �

md̃
ln(1 − y).

The optimal choice is thus the harmonic distribution, consisting in a normalized
Taylor series expansion of − ln(1− x) truncated at order D. It is given by:

λD(x) =
1

H(D)

D∑

i=2

1

i− 1
xi−1 with H(D) =

D∑

i=2

1

i− 1
.

384 M. Finiasz and K. Ramchandran

Fig. 4. Column weight distribution for the harmonic distribution of order 7

These λD(x) distributions will satisfy inequality (2) if the expansion factor �
m is

greater than 1 + 1
D . Any expansion ratio �

m = 1 + ε can thus be chosen by the
user, and using the harmonic distribution of order 1

ε will asymptotically allow
to recover most documents.

The Enhanced Harmonic Distribution. One problem with the harmonic distri-
bution is the presence of columns of weight 2 (see Fig. 4). Any distribution
containing columns of weight 2 will have a non-zero asymptotic probability of
having identical columns4. Indeed, the collision probability Pcol that 2 of the m

matching columns of H are identical is Pcol

∑

i

(d̃λi
i m
2

)
/
(
�
i

)
. If the ratio �

m is
constant and m tends to infinity, all the terms in this sum tend to 0, except the

term i = 2. Asymptotically, Pcol
m→∞−→ (

d̃λ2m
2�

)2
, which is not negligible for the

harmonic distribution.
This means that, using the harmonic distribution, decoding will often end

with a few (O(1) asymptotically) unrecovered documents. In order to deal with
this issue, one solution is to combine this distribution with a constant weight
distribution to obtain what we call the enhanced harmonic distribution. Each
column of H is the concatenation of a column of length � − �3 following the
harmonic distribution and a column of length �3 of constant weight 3.

In practice, the proportion of collisions tends to 0 when m grows, so the
length �3 can be chosen such that �3

m tends to 0 and the probability of full

recovery still tends to 1. For example, l3 = O(
√
�) would be a reasonable choice.

Asymptotically, these �3 additional rows in H do not increase the expansion
factor. Using this enhanced harmonic distribution with an order D harmonic
distribution, the probability of recovering all m documents tends to 1 when
�
m > 1 + 1

D and m tends to infinity.

4 If two documents fi generate the exact same column Hi, our decoding algorithm
will be unable to recover any of them as no singleton can ever be obtained.

PSS at Almost the Same Communication Cost as a Regular Search 385

average ratio of recovered documents

full recovery probability

average ratio of recovered documents

full recovery probability

0.4

0

5000 6000 7000 8000 9000 10000

0.6

0.8

0.9

0.95

0.98

0.99

1

m

full recovery probability

average ratio of recovered documents

0.4

0

500 600 700 800 900 1000

0.6

0.8

0.9

0.95

0.98

0.99

1

m

0.4

0

50 60 70 80 90 100

0.6

0.8

0.9

0.95

0.98

0.99

1

m

0.4

0

50 60 70 80 90 100

0.6

0.8

0.9

0.95

0.98

0.99

1

m

0.4

0

500 600 700 800 900 1000

0.6

0.8

0.9

0.95

0.98

0.99

1

m

0.4

0

5000 6000 7000 8000 9000 10000

0.6

0.8

0.9

0.95

0.98

0.99

1

m

(a) (b) (c)

(d) (e) (f)

enhanced

harmonic

harmonic

weight 3

Distributions:

Fig. 5. Simulation results for different LDPC weight distributions. The curves repre-
sent the average ratio of recovered documents and the probability of recovering all m
documents as a function of the number of matching documents m for different buffer
sizes �. In (a) and (d) � = 100 and �3 = 10, in (b) and (e) � = 1000 and �3 = 35, and
in (c) and (f) � = 10000 and �3 = 100.

Communication Cost. We compared the different distributions through sim-
ulations and the results we obtained are shown in Fig. 5. One can clearly see
the limitation of the weight 3 distribution: for m > .8�
 �

1.22 the probability
of full recovery drops. However, the enhanced harmonic distribution holds to
our expectations, it behaves as expected with a probability of recovering all m
matching documents close to 1 even for expansion rates smaller than 5%.

With this algorithm and the enhanced harmonic distribution, the asymptotic
communication cost of private stream search with m matching documents of S
bits is thus 2m(S + 64 + O(log |Ω|)) using Paillier’s cryptosystem, or m(S +
1088+O(log |Ω|)) using the Damg̊ard-Jurik extension, which corresponds to an
expansion rate of 1 compared to a non-private search.

4 Further Improvements

An Offline-Online Construction. Using any of our two new schemes, it is
possible to reduce the size of the reply from the server almost to the size of a
non-private search result. However, the size of the query the user sends remains
large. The size of a private query is linear in |Ω| whereas it is logarithmic for a
non-private query. To improve this, we propose an offline-online scheme, where
the linear query is sent offline and a logarithmic query is sent online.

A Single Keyword Scheme. We first focus on queries containing a single keyword.
In this case, any query can be obtained as a cyclic shift of any other query. The
scheme works as follows:

– offline, the user generates a query Qj = {q1, . . . , q|Ω|} where qj = E(1) and
qi = E(0) otherwise (with j picked uniformly at random), and sends it to
the server,

386 M. Finiasz and K. Ramchandran

– offline, the server computes all possible cyclic shifts of Qj by i ∈ [0, [Ω| − 1]
positions and executes the corresponding queries. It stores each result in a
separate buffer Bi.

– online, the user wants to query the server for the j′-th keywords and sends
j′ − j mod |Ω| to the server,

– online, the server sends Bj′−j to the user and discards the other Bi,

– the user decrypts/decodes buffer Bj′−j normally.

With this scheme, the online work on the server side is a simple table lookup
and the amount of online communication is very close to the non-private case:
the query is only log |Ω| bits long, and with the PSS schemes we have presented
Bj′−j can also be small.

The offline amount of communication is still the same as for the standard
scheme, but the amount of computation on the server side is multiplied by |Ω|.
However, as this is offline work, it can easily be outsourced to distant server
farm and does not have to be run on the “online” low-latency servers. Of course,
if the amount of offline work is too high, it is also possible to treat the shifted
query online as in the standard scheme: the amount of work the server has to do
will then be the same as in the normal scheme, but most of the communication
will be done offline.

Dealing with Multiple Keywords. To maintain privacy, the offline query the user
sends has to be completely random and, at the same time, it should be possi-
ble to modify it into any other query the user might later want to ask. For a
single keyword, cyclic shifts work well whatever the dictionary size. However,
for several keywords (say k), the user should be able to transform any random
query Qj1,...,jk into any chosen query Qj′1,...,j

′
k
, by simply giving the index of a

permutation.
When k = 2, a solution is to transform each index j into Aj + B mod |Ω|,

where A ∈ [1, |Ω| − 1] and B ∈ [0, |Ω| − 1] are the “permutation index” that the
user will send to the server in the online phase. If |Ω| is prime, then any pair
j1, j2 can be transformed into any pairs j′1, j

′
2 by choosing A = j2−j1

j′2−j′1
mod |Ω|

and B = Aj1 − j′1 mod |Ω|.
Building such families of permutations for larger values of k is not always

simple, and the number of permutations in the family will always have to be at
least

(|Ω|
k

)
. This means that the offline work on the server side will be O(|Ω|k)

times more than in the standard online scheme. Values of k larger than 1 or 2
are therefore not very realistic, and for these values the solutions we presented
work fine.

Using Fully Homomorphic Encryption. The PSS schemes we presented do
not need fully homomorphic encryption (FHE) to work: computing a syndrome
only requires addition and multiplication by a scalar. However, having an efficient
FHE scheme would allow AND queries, whereas the current schemes are limited
to OR queries. Also, the query size could be reduced to O(log |Ω|) encrypted bits

PSS at Almost the Same Communication Cost as a Regular Search 387

without having to use an offline-online scheme5. For instance, when querying for
keyword wi, the user could decompose the index i in log |Ω| bits and send two
ciphertexts E(0) and E(1) (or E(1) and E(0)) for each of these bits. The server
can then regenerate the whole query Q by homomorphically multiplying the
encrypted bits corresponding to each index. Continuing on this idea, it would
even be possible to get rid of the dictionary by simply querying a bit string: a
query of 2n encrypted bits would be enough to search any pattern of n bits.

One interesting aspect of this application of FHE, is that the number of ho-
momorphic multiplications that have to be done is independent of the database
size: multiplications are required to reconstruct the query, but not for the stream
search itself. Even if homomorphic multiplication is very expensive, or if the cho-
sen scheme only allows for a few multiplications, it is still possible use it for very
large databases: only the dictionary size is limited.

Also, one should note that the homomorphic encryption scheme used in PSS
does not have to be a public key scheme: only the user encrypts and decrypts
elements (the server simply has to be able to initialize the buffer to E(0), but the
user could send him this initial value). A symmetric homomorphic encryption
scheme with a limit on the number of possible multiplications could thus also be
of interest if it allows a small message expansion rate.

Application to Set Reconciliation. An interesting aspect of the LDPC
scheme we presented is that, even though it behaves like a randomized scheme,
it is fully deterministic. What this means is that if the user already knows a
subset of the documents fi that are going to match the query, he can compute
a buffer B for the documents he knows in the exact same way as the server and
“remove” this buffer from the reply he gets from the server.

This is the idea of set reconciliation: two users A and B know two sets SA

and SB and want to learn the elements the other user knows with the minimal
amount of communication. Classical results from set reconciliation show that
the amount of communication required is only |SA|+ |SB| − 2|SA ∩ SB|.

The same optimal result can be obtained with our construction: if m docu-
ments match the query, but the user already knows m′ of these documents, a
buffer of size m − m′ is (asymptotically) enough. This way, if a user repeats
the same search every day (for example, to monitor changes to a database), the
amount of communication required can be reduced even further by keeping a
cache of the previous search results.

5 Conclusion

We presented two new private stream search constructions allowing minimal
communication from the server to the user. Using Paillier’s cryptosystem, com-
pared to a standard non-private search, the response from the server in our

5 Not that a query of O(log |Ω|) bits is probably not achievable in practice as current
FHE schemes all require some important message expansion, but a poly-logarithmic
query is possible.

388 M. Finiasz and K. Ramchandran

Table 2. Comparison of the computational and communication complexities of the
various PSS schemes. |Ω| is the dictionary size, t is the number of documents in the
database, S is the size of a document in the database, andm is the number of documents
matching the query. n = logN is the size of the modulus used in Paillier’s encryption
and S

n
is the number of plaintext blocks required to encrypt one document. Reply sizes

are given assuming the use of the original Paillier encryption: using the Damg̊ard-Jurik
scheme can gain a factor 2 in the reply sizes of all schemes.

query size server reply size user
(in bits) complexity (in bits) complexity

Non-private search |K| log |Ω| t Sm Sm

Ostrovsky-Skeith 2n|Ω| tn3 2Sm logm S
n
m logmn3

Bethencourt et al. 2n|Ω| tn3 2Sm+ 2nm +
2nm logm

m(S
n
+ logm)n3+m2.376

2n|Ω| tn3 2Sm+ 2nm +
2nm log t

m

m(S
n
+ log t

m
)n3 +

m2.376 + t log t
m

Danezis-Dı́az 2n|Ω| tn3 2.44(S+ log t)m 1.22S
n
mn3

Our RS scheme 2n|Ω| mtn3 2(S + 5 log t+
3 log |Ω|)m

S
n
mn3 +m2n2

Our LDPC scheme 2n|Ω| tn3 2(S+2 log |Ω|)m S
n
mn3

schemes only suffers a factor 2 expansion. Using the Damg̊ard-Jurik extension,
this expansion factor can be made as close to one as required when the docu-
ment size tends to infinity. Also, our Reed-Solomon based construction allows
zero-error rate, meaning the user is guaranteed to get the documents he expects
(or, if he chose m too small, he will know he missed some documents). This
comes at a cost on the server side, but can be a very important feature for some
applications.

The improvements we presented here do not solve all the problems of private
stream search: the computational cost on the server side is still much more than
for a regular search, and the size of the query the user has to send is also a
problem. Still, our LDPC scheme offers better performances than all the previ-
ous private stream search constructions, without any additional computations.
Table 2 gives a comparison of the asymptotic costs of the different PSS schemes
mentioned here.

References

1. Bethencourt, J., Song, D.X., Waters, B.: New constructions and practical applica-
tions for private stream searching (extended abstract). In: 2006 IEEE Symposium
on Security and Privacy, pp. 132–139. IEEE Computer Society (2006)

2. Bethencourt, J., Song, D.X., Waters, B.: New techniques for private stream search-
ing. ACM Trans. Inf. Syst. Secur. 12(3) (2009)

3. Damg̊ard, I., Jurik, M.: A Generalisation, a Simplification and Some Applications
of Paillier’s Probabilistic Public-key System. In: Kim, K.-C. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

PSS at Almost the Same Communication Cost as a Regular Search 389

4. Danezis, G., Dı́az, C.: Improving the decoding efficiency of private search. In:
Anonymous Communication and its Applications. Dagstuhl Seminar Proceedings,
vol. 05411. IBFI, Schloss Dagstuhl, Germany (2006)

5. Danezis, G., Diaz, C.: Space-Efficient Private Search with Applications to Rate-
less Codes. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS,
vol. 4886, pp. 148–162. Springer, Heidelberg (2007)

6. Gallager, R.G.: Low-density parity-check codes. M.I.T. Press, Cambridge (1963)
7. Luby, M.G.: LT codes. In: FOCS, pp. 271–280. IEEE (2002)
8. Luby, M.G., Mitzenmacher, M.: Verification codes. In: Proc. Allerton Conf. on

Communication, Control, and Computing (2002)
9. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A.: Analysis of random processes

via and-or tree evaluation. In: SODA, pp. 364–373 (1998)
10. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Analysis of low

density codes and improved designs using irregular graphs. In: Proceedings of the
30th Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 249–258.
ACM (1998)

11. Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Efficient era-
sure correcting codes. IEEE Transactions on Information Theory 47(2), 569–584
(2001)

12. Ostrovsky, R., Skeith, W.E.: Private Searching on Streaming Data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005)

13. Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. Journal of Cryp-
tology 20(4), 397–430 (2007)

14. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

15. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
SIAM 8(2), 300–304 (1960)

	Private Stream Search at Almost the SameCommunication Cost as a Regular Search
	Introduction
	Previous Constructions
	Paillier's Encryption Scheme
	The Ostrovsky-Skeith Construction
	The Danezis-Díaz Improvement
	The Bethencourt-Song-Waters Construction

	Two New PSS Constructions
	A Zero-Error Construction Using Reed-Solomon Codes
	An Asymptotically Optimal Construction Using Irregular LDPC Codes

	Further Improvements
	Conclusion
	References

