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Abstract. We revisit meet-in-the-middle (MITM) attacks on block ci-
phers. Despite recent significant improvements of the MITM attack, its
application is still restrictive. In other words, most of the recent MITM
attacks work only on block ciphers consisting of a bit permutation based
key schedule such as KTANTAN, GOST, IDEA, XTEA, LED and Pic-
colo. In this paper, we extend the MITM attack so that it can be applied
to a wider class of block ciphers. In our approach, MITM attacks on
block ciphers consisting of a complex key schedule can be constructed.
We regard all subkeys as independent variables, then transform the game
that finds the user-provided key to the game that finds all independent
subkeys. We apply our approach called all subkeys recovery (ASR) at-
tack to block ciphers employing a complex key schedule such as CAST-
128, SHACAL-2, KATAN, FOX128 and Blowfish, and present the best
attacks on them with respect to the number of attacked rounds in liter-
ature. Moreover, since our attack is simple and generic, it is applied to
the block ciphers consisting of any key schedule functions even if the key
schedule is an ideal function.

Keywords: block cipher, meet-in-the-middle attack, key schedule,
CAST-128, SHACAL-2, KATAN, FOX128, Blowfish, all subkeys recov-
ery attack.

1 Introduction

Meet-in-the-middle (MITM) attack, originally introduced in [9], is a generic
cryptanalytic technique for block ciphers. It was extended to preimage attacks
on hash functions, and several novel techniques to extend the attack have been
developed [3,14,4,25,5,11]. Then, it has been shown that those advanced tech-
niques are also applied to block ciphers [7,13,6,18].

Since the MITM attack mainly exploits a low key-dependency in a key sched-
ule, it works well for a block cipher having a simple key schedule such as a key
schedule based only on a bit permutation. In fact, most of the recent MITM at-
tacks were applied to ciphers having a simple key schedule such as KTANTAN,
GOST, IDEA, XTEA, LED and Piccolo [7,13,18,26,15]. However, as far as we
know, no results have been known so far for block ciphers consisting of a complex
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key schedule1 except for the recent attack on AES [6]. In general, the MITM
attack at least requires two sets of neutral key bits, which are parts of secret key
bits, to compute two functions independently. For a simple key schedule such as a
permutation based key schedule, since each subkey is directly derived from some
secret key bits, it is relatively simple to find “good” neutral key bits. Yet, for a
cipher equipped with a complex key schedule, finding neutral key bits, which is
the core technique of the MITM attack, is likely to be complicated and specific.
For instance, the MITM attack on the 8-round reduced AES-128 in [6] looks
complicated and specific, i.e., it seems difficult to directly apply their technique
to other block ciphers not having the AES key schedule.

In this paper, we extend the MITM attack, then present a generic and simple
approach to evaluate the security of ciphers employing a complex key schedule
against the MITM attack. The basic concept of our approach is converting the
game of finding the user-provided key (or the secret key) to the game of find-
ing all subkeys so that the analysis can be independent from the structure of
the key schedule, by regarding all subkeys as independent variables. This sim-
ple conversion enables us to apply the MITM attack to a cipher using any key
schedule without analyzing the key schedule. We refer this attack as all sub-
keys recovery (ASR) attack for simplicity, while our approach is a variant of
the MITM attack. We first apply the ASR attack to CAST-128, Blowfish and
FOX128 in a straightforward way, then show the best attacks on them with
respect to the number of attacked rounds in literature. Moreover, to construct
more efficient attack, we present how to efficiently find useful state that contains
a smaller number of subkey bits by analyzing internal components, then apply
it to SHACAL-2 and KATAN family. The attacks presented in this paper are
summarized in Table 6 (see also Table 2). We emphasize that our attack can
be applied to any block cipher having any key schedule function even if the key
schedule is an ideally random function. This implies that our approach gives
generic lower bounds on the security of several block ciphers against the MITM
attacks.

This paper is organized as follows. Section 2 gives some notations used through-
out this paper. The basic concept of the ASR attack is presented in Section 3. The
applications of the basic ASR attack to CAST-128 and Blowfish are demonstrated
in Section 4. Some advanced techniques and those applications to SHACAL-2 and
KATAN family are introduced in Sections 5 and 6, respectively. Section 7 discusses
several features of the ASR attack. Finally, we conclude in Section 8.

2 Notation

The following notation will be used throughout this paper:

1 In this paper, we refer a complex key schedule as a non-permutation based key
schedule such as a key schedule having non-linear components.
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a||b : Concatenation.
|a| : Bit size of a.

≫ or ≪ : Right or left bit rotation in 32-bit word.
⊕ : Bitwise logical exclusive OR (XOR) operation.
� : Addition modulo 232 operation.
� : Subtraction modulo 232 operation.

3 All Subkeys Recovery (ASR) Attack

In this section, the basic concept of the all subkeys recovery (ASR) attack is
introduced. First, we briefly present the basic concept, then, the detailed proce-
dure of the basic ASR attack is given. Finally, we show an ASR attack on the
balanced Feistel network as a concrete example.

3.1 Basic Concept

The previous MITM attack aims to determine the user-provided key by finding
good neutral key bits which are parts of the user-provided key. In order to find
good neutral key bits, an attacker needs to thoroughly analyze the key schedule.
In general, this makes the analysis complex and specific, and it is difficult to
evaluate the security of a wide class of block ciphers, including ciphers having a
complex key schedule, against the MITM attack.

The basic concept of the ASR attack is to convert the game of finding the
user-provided key to the game of finding all subkeys, regarding all subkeys as
independent variables. Note that an attacker is able to encrypt/decrypt any
plaintexts/ciphertexts by using all subkeys, even if the user-provided key is un-
known. In addition, if a key schedule is invertible, then the user-provided key is
obtained from all subkeys.

In the ASR attack, analyzing the key schedule is not mandatory, since we
only treat subkeys (not secret key). Obviously, this makes analysis simpler than
finding good neutral key bits. In fact, the ASR attack depends only on the sizes of
the secret key and the round keys, and the structure of the data processing part
such as balanced Feistel network and SPN (substitution-permutation-network).

Moreover, in the ASR attack, the underlying key schedule can be treated as
an ideal function. In other words, our attack works even if the key schedule is an
ideal function. A concrete block cipher employs an weaker key schedule than an
ideal one. Thus, the number of attacked rounds may be extended by thoroughly
analyzing the key schedule. However, even without analyzing the key schedule,
we show several best attacks on several block ciphers in the single-key setting
in the following sections. Thanks to the MITM approach, our attack requires
extremely low data requirement, though it requires a lot of memory which is
the same order as the time complexity. We may employ memoryless collision
search [23] to reduce the memory requirements, while it requires a slightly larger
computations, i.e., the time complexity is multiplied by a small constant.
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Fig. 1. Basic concept of ASR attack

3.2 Recovering All Subkeys by MITM Approach (Basic Attack)

Let us explain the basic procedure of the ASR attack. As explained in the previ-
ous section, we regard all subkeys in the cipher as independent variables. Then,
we apply the MITM approach to determine all subkeys that map a plaintext
to the ciphertext encrypted by the (unknown) secret key. Suppose that n-bit
block cipher E accepting a k-bit secret key K consists of R rounds, and an �-bit
subkey is introduced each round (see Fig. 1).

First, an attacker determines an s-bit matching state S. The state S can be
computed from a plaintext P and a set of subkey bits K(1) by a function F(1)

as S = F(1)(P,K(1)). Similarly, S can be computed from the ciphertext C and

another set of subkey bits K(2) by a function F(2) as S = F−1
(2) (C,K(2)). K(3)

denotes a set of the remaining subkey bits, i.e., |K(1)|+ |K(2)|+ |K(3)| = R · �. By
using those K(1) and K(2), the attacker can independently compute F(1)(P,K(1))

and F−1
(2) (C,K(2)). Note that the equation F(1)(P,K(1)) = F−1

(2) (C,K(2)) holds

when the guessed subkey bits K(1) and K(2) are correct. Due to parallel guesses
of K(1) and K(2), we can efficiently check if the guessed key bits are correct. After

this process, it is expected that there will be 2R·�−s key candidates. Note that the
number of key candidates can be reduced by parallel performing the matching
with additional plaintext/ciphertext pairs. In fact, using N plaintext/ciphertext
pairs, the number of key candidates is reduced to 2R·�−N ·s, as long as N ≤
(|K(1)| + |K(2)|)/s. Finally, the attacker exhaustively searches the correct key
from the surviving key candidates. The required computations (i.e. the number
of encryption function calls) of the attack in total Ccomp is estimated as

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·�−N ·s. (1)

The number of required plaintext/ciphertext pairs is max(N, �(R · �−N ·s)/n�).
The required memory is about min(2|K(1)|, 2|K(2)|)×N blocks, which is the cost
of the table used for the matching. Obviously, the ASR attack works faster than
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Fig. 2. Balanced Feistel network
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Fig. 3. Partial matching

the brute force attack when Eq.(1) is less than 2k, which is required computations
for the brute force attack. For simplicity, we omit the cost of memory access for
finding a match between two lists, assuming that the time complexity of one
table look-up is negligible compared to that of one computation of F(1) or F(2).
The assumption is quite natural in most cases. However, strictly speaking, those
costs should be considered. In other words, the cost of (max(2|K(1)|, 2|K(2)|)×N)
memory accesses is added to Eq.(1).

If the number of attacked rounds R and the size of the matching state s are
fixed, the time complexity and the memory requirement are dominated by |K(1)|
and |K(2)|. Thus, smaller |K(1)| and |K(2)| lead to more efficient attacks with
respect to the time and memory complexity. Therefore, the key of the ASR attack
is to find the matching state S computed by the smallest max(|K(1)|, |K(2)|).

3.3 ASR Attack on Balanced Feistel Networks

Let us show examples of the ASR attack. Suppose that an example cipher E
with n-bit block and k-bit secret key consists of R rounds of the balanced Feistel
network as illustrated in Fig. 2. Let the round function F be an (n/2)-bit keyed
bijective function. Here, for simplicity, we assume that an (n/2)-bit subkey is
introduced before F each round. Also, ki denotes the i-th round subkey.

As depicted in Fig. 3, an (n/2)-bit state S can be computed independently
from (n/2)-bit subkey kr. In other words, S can be computed from P and K(1) ∈
{k1, k2, ..., kr−1}. Also, S can be obtained from C andK(2) ∈ {kr+1, kr+2, ..., kR}.

When n = k/2 (e.g., a 128-bit block cipher accepting a 256-bit key), 7 rounds
of E can be attacked in a straightforward manner. In this attack, both F(1) and
F(2) are composed of 3 rounds of E, and thus the sizes of K(1) and K(2) are both
3n/2 bits. As explained in Section 3.2, using six plaintext/ciphertext pairs, the
total time complexity Ccomp is estimated as
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Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·�−N ·s

= 23n/2 × 6 + 27·n/2−6·n/2 ≈ 23n/2 (= 23k/4 � 2k)

The required memory is around 6× 23n/2 blocks. Since Ccomp is less than 22n(=
2k), the attack works faster than the exhaustive key search. Note that the number
of attacked rounds might be extended by exploiting the subkey relations. Thus,
the number of attacked rounds 7 is considered as the lower bounds on the security
of this modelled cipher against the ASR attack.

Similarly to this, when n = k (e.g., a 128-bit block cipher accepting a 128-bit
key), the attack on at least 3 rounds of E is constructed. In this case, F(1) and
F(2) consist of 1 round of E, and the sizes of K(1) and K(2) are both n/2 bits.
Therefore, using 3 plaintext/ciphertext pairs (i.e. N = 3), the required time
complexity Ccomp is estimated as

Ccomp = max(2|K(1)|, 2|K(1)|)×N+2R·�−N ·s = 2n/2×3+1 (= 2k/2×3+1 � 2k).

The required memory is around 3 × 2n/2 blocks. Consequently, the ASR attack
works faster than the brute force attack, which requires about 2n computations.

Roughly speaking, when Eq.(1) is less than 2k, the ASR attack works faster
than the brute force attack. Therefore, the necessary condition for the basic ASR
attack is that the size of subkey is less than the size of secret key.

4 Basic ASR Attacks on CAST-128 and Blowfish

The generic attack on a balanced Feistel network explained in the previous sec-
tion can be directly applied to a concrete block cipher. In this section, we apply
the basic ASR attacks to CAST-128 and Blowfish. In those attacks, the round
function F is assumed to be any function even ideal. However, in the case of a
concrete cipher, the underlying round function F is specified, i.e., it can be an-
alyzed. By deeply analyzing the round function, the number of attacked rounds
may be increased. Such advanced techniques are introduced in the next sections.

The basic parameters of the ciphers analyzed in this paper are listed in Table 1.
Table 2 shows the parameters of our (ASR) attacks in this paper.

4.1 Descriptions of CAST-128 and Blowfish

Description of CAST-128. CAST-128 [1,2] is a 64-bit Feistel block cipher
accepting a variable key size from 40 up to 128 bits (but only in 8-bit increments).
The number of rounds is 16 when the key size is longer than 80 bits. First, the
algorithm divides the 64-bit plaintext into two 32-bit words L0 and R0, then the
i-th round function outputs two 32-bit data Li and Ri as follows:

Li = Ri−1, Ri = Li−1 ⊕ Fi(Ri,K
rnd
i ),

where Fi denotes the i-th round function and Krnd
i is the i-th round key con-

sisting of a 32-bit masking key Kmi and a 5-bit rotation key Kri . Each round



208 T. Isobe and K. Shibutani

Table 1. Basic parameters of our target ciphers

algorithm
block size key size subkey size # rounds

(n) (k) (�) (R)

CAST-128 [1] 64 40 ≤ k ≤ 128 37 12 (k ≤ 80), 16 (k > 80)
Blowfish [27] 64 128 ≤ k ≤ 448 32 16

Blowfish-8R∗ [27] 64 128 ≤ k ≤ 192 32 8
SHACAL-2 [12] 256 k ≤ 512 32 64

KATAN32/48/64 [8] 32/48/64 80 2 254
FOX128 [16] 128 256 128 16

∗ Fewer iteration version of Blowfish specified in [27] as a possible simplification.

function Fi consists of four 8 to 32-bit S-boxes, a key dependent rotation, and
logical and arithmetic operations (addition, subtraction and XOR). Fi has three
variations, and the positions of three logical or arithmetic operations are varied
in each round. However, we omit the details of Fi, since, in our analysis, it is
regarded as the random function that outputs a 32-bit random value from a
32-bit input Ri and a 37-bit key Krnd

i .

Description of Blowfish. Blowfish [27] is a 16-round Feistel block cipher with
64-bit block and variable key size from 128 up to 448 bit. Several possible simpli-
fications of Blowfish were also described in [27]. We refer one of them that is an
8-round variant (fewer iterations) of Blowfish accepting less than 192 bits of key as
Blowfish-8R. First, Blowfish divides a 64-bit plaintext into two 32-bit state L0 and
R0. Then the i-th round output state (Li||Ri) is computed as follows:

Ri = Li−1 ⊕Krnd
i , Li = Ri−1 ⊕ F (Li ⊕Krnd

i ),

where Krnd
i is a 32-bit round key at round i. The F-function F consists of four

8 × 32 key dependent S-boxes. Note that, in the last round, the 64-bit round
key is additionally XORed with the 64-bit state. In this paper, we assume that
F-function is known by an attacker, and it is a random 32-bit function. The
assumption, i.e., the known F-function setting, has already been used in [29,17].

4.2 ASR Attack on 7-Round Reduced CAST-128

The generic attack on a balanced Feistel network can be directly applied to
a variant of CAST-128 which accepts a more than 114 bits key. This variant
consists of 16 rounds, since the key size is longer than 80 bits. While the size of
each subkey of the CAST-128 is 37 bits including a 32-bit masking key and a 5-
bit rotation key, the above explained attack still works faster than the exhaustive
key search. For the 7-round reduced CAST-128, we use |K(1)| = |K(2)| = 111(=
37 × 3), since each of F(1) and F(2) consists of three rounds of the CAST-128.
Consequently, using six plaintext/ciphertext pairs, the total time complexity
Ccomp for the attack on the 7-round reduced CAST-128 is estimated as follows:
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Table 2. Parameters of our attacks presented in this paper

algorithm
# attacked |K(1)| |K(2)| |K(3)| s attacked
rounds (forward) (backward) (remains) key size

CAST-128 7 111 111 37 32 120 ≤ k ≤ 128

Blowfish† 16 256 288 32 32 292 ≤ k ≤ 448

Blowfish-8R† 8 128 160 32 32 163 ≤ k ≤ 192

SHACAL-2 41 484 492 336 4 485 ≤ k ≤ 512

KATAN32 110 68 70 82 1 80

KATAN48 100 71 71 58 1 80

KATAN64 94 71 71 46 1 80

FOX128 5 224 224 192 32 256

† Known F-function setting.

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·�−N ·s

= 2111 × 6 + 27·37−6·32 = 2111 × 6 + 267 ≈ 2114.

The number of required known plaintext/ciphertext pairs is only 6 (= max(6,
�(258−6·32)/64�), and the required memory is about 2114 (= min(2111, 2111)×6)
blocks. Recall that our attack works faster than the exhaustive key search only
when the key size of the reduced CAST-128 is more than 114 bits. As far as we
know, the previous best attack on the reduced CAST-128 was for only 6 rounds
in the single-key setting [31]2. Thus, surprisingly, this simple attack exceeds the
previously best attack on the reduced CAST-128 with respect to the number of
attacked rounds.

4.3 ASR Attack on Full Blowfish in Known F-function Setting

In this section, we apply the ASR attack on Blowfish block cipher in the known
F-function setting as with [29,17].

For the full (16-round) Blowfish, we choose R8 as the 32-bit matching state,
i.e., s = 32. Then K(1) and K(2) include 256 (= 32× 8) and 288 (= 32× 9) bits
of subkeys, respectively, and K(3) = 32. When N = 9 (≤ (256 + 288)/32), the
time complexity for finding all subkeys is estimated as

Ccomp = max(2256, 2288)× 9 + 2576−9·32 = 2292.

The number of required data is only 9 (=max(9, �(576−9·32)/64�)) known plain-
text/ciphertext pairs, and required memory is about 2260 (=min(2256, 2288)× 9)
blocks. In this setting, the attack works faster than the exhaustive key search
when the key size is more than 292 bits.

Similarly to the attack on the full Blowfish, for the full (8-round) Blowfish-
8R, we choose R4 as the 32-bit matching state, i.e., s = 32. Then K(1) and K(2)

2 The differential attacks on the 8- and 9-round reduced CAST-128 in weak-key setting
were presented in [30].



210 T. Isobe and K. Shibutani

include 128 (= 32 × 4) and 160 (= 32 × 5) bits of subkeys, respectively, and
K(3) = 32. When N = 5 (≤ (128 + 160)/32), the time complexity for finding all
subkeys is estimated as

Ccomp = max(2128, 2160)× 5 + 2320−5·32 = 2163.

The number of required data is only 5 (=max(5, �(320−5·32)/64�)) known plain-
text/ciphertext pairs, and the required memory is about 2131 (=min(2128, 2160)×
5) blocks. In this setting, the attack works faster than the exhaustive key search
when the key size is more than 163 bits.

Note that these attacks are the first results on the full Blowfish with all key
classes in the known F-function setting, while the attacks presented in [29,17]
work only in the weak key setting, i.e., weak F-functions.

5 Application to SHACAL-2

In this section, we apply the ASR attack to SHACAL-2 block cipher. After a
brief description of SHACAL-2, we present the basic ASR attack on the reduced
SHACAL-2 without analyzing the internal functions of the cipher. Then, by ana-
lyzing the functions of the cipher, we show the matching state that contains fewer
bits of subkeys. Finally, we demonstrate an advanced ASR attack by using this
matching state. Recall that the basic ASR attack regards internal components
such as an F-function of the balanced Feistel network as a black-box function,
while the advanced ASR attack analyzes the internal components. An ASR at-
tack on the 5-round reduced FOX128 is presented in Appendix A as another
example of the advanced ASR attack.

5.1 Description of SHACAL-2

SHACAL-2 [12] is a 256-bit block cipher based on the compression function of
SHA-256 [10]. It was submitted to the NESSIE project and selected to be in the
NESSIE portfolio [22].

SHACAL-2 inputs the plaintext to the compression function as the chaining
variable, and inputs the key to the compression function as the message block.
First, a 256-bit plaintext is divided into eight 32-bit words A0, B0, C0, D0, E0,
F0, G0 and H0. Then, the state update function updates eight 32-bit variables,
Ai, Bi, ..., Gi, Hi in 64 steps as follows:

T1 = Hi �Σ1(Ei)� Ch(Ei, Fi, Gi)�Ki �Wi,

T2 = Σ0(Ai)�Maj(Ai, Bi, Ci),

Ai+1 = T1 � T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di � T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi,
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where Ki is the i-th step constant, Wi is the i-th step key (32-bit), and the
functions Ch, Maj, Σ0 and Σ1 are given as follows:

Ch(X,Y, Z) = XY ⊕XZ,

Maj(X,Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

After 64 steps, the function outputs eight 32-bit words A64, B64, C64, D64, E64,
F64, G64 and H64 as the 256-bit ciphertext. Hereafter pi denotes the i-th step
state, i.e., pi = Ai||Bi||...||Hi.

The key schedule of SHACAL-2 takes a variable length key up to 512 bits
as the inputs, then outputs 64 32-bit step keys. First, the 512-bit input key is
copied to 16 32-bit words W0, W1, ..., W15. If the size of the input key is shorter
than 512 bits, the key is padded with zeros. Then, the key schedule generates
48 32-bit step keys (W16, ...,W63) from the 512-bit key (W0, ...,W15) as follows:

Wi = σ1(Wi−2)�Wi−7 � σ0(Wi−15)�Wi−16, (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are defined by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X 	 3),

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X 	 10).

5.2 Basic ASR Attack on 37-Step Reduced SHACAL-2

We directly apply the ASR attack described in Section 3 to SHACAL-2. This
leads to the attack on the 37-step reduced SHACAL-2.

Due to a generalized Feistel network-like structure of SHACAL-2, the i-
step 32-bit word Ai is computed without using subkeys Wi,Wi+1, ...,Wi+6 as
mentioned in [14]. Thus, the 15-step state A15 can be computed by each of
F(1)(P,K(1)) and F−1

(2) (C,K(2)), where K(1) ∈ {W0,W1, ...,W14} and K(2) ∈
{W22, ...,W36}. Since |K(1)| = |K(2)| = 480(= 32 × 15) and the size of the
matching state A15 is 32 bits, by using 22 known plaintext/ciphertext pairs, the
time complexity to compute all subkey bits is estimated as

Ccomp = max(2480, 2480)× 22 + 237·32−22·32 ≈ 2485.

The required memory is about 2485 blocks. Note that this attack finds a secret
key more efficiently than the exhaustive key search only when the key size is
more than 485 bits.

Surprisingly, this simple attack exceeds the previous best attack on the re-
duced SHACAL-2 in the single-key setting for 32 steps [28] with respect to the
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Fig. 4. Overview of 41 round attack on reduced SHACAL-2

number of attacked rounds 3. In the following, by deeply analyzing the functions
used in SHACAL-2, we show further improvements.

5.3 Advanced ASR Attack on 41-Step Reduced SHACAL-2

In order to extend the basic ASR attack, we choose the lower 4 bits of A16 as
the matching state. Using this matching state, the 41-step reduced SHACAL-2
can be attacked. The forward and backward functions F(1) and F(2) are given
as follows (see also Fig. 4).

Forward Computation in F(1): Due to the structure of SHACAL-2, the
lower 4 bits of A16 can be computed from the 15-th state p15 and the lower
4 bits of W15, since the other bits of W15 are not affected to the lower 4 bits
of A16. Thus, the matching state S (the lower 4 bits of A16) is calculated as
S = F(1)(P,K(1)), where K(1) ∈ {W0,W1, ...,W14, the lower 4 bits of W15} and
|K(1)| = 484(= 32× 15 + 4).

Backward Computation in F(2): We give the following observation.

Observation 1. The lower t bits of Aj−10 are obtained from the j-th state pj

and the lower t bits of three subkeys Wj−1, Wj−2 and Wj−3.

3 The MITM preimage attacks on the reduced SHA-256 were proposed in [5,19].
However, these attacks can not be directly applied to SHACAL-2, because in the
block cipher setting, these attacks require the code book, i.e., they require all plain-
text/ciphertext pairs. Also, due to those high time complexity, they do not seem to
work faster than the exhaustive key search.
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In the backward computation, i.e., the inverse step function, the (j − 1)-th step
state pj−1 is computed from the j-th step state pj as follows:

Hj−1 = Aj �Σ0(Bj)�Maj(Bj , Cj , Dj)�Σ1(Fj)

�Ch(Fj , Gj , Hj)�Kj−1 �Wj−1,

Dj−1 = Ej �Aj �Σ0(Bj)�Maj(Bj , Cj , Dj),

Gj−1 = Hj , Fj−1 = Gj , Ej−1 = Fj , Cj−1 = Dj, Bj−1 = Cj , Aj−1 = Bj .

Thus, pj−1 except for Hj−1 is obtained from pj . The lower t bits of Hj−1 can be
computed from pj and the lower t bits of Wj−1. Similarly, from Aj−1, ..., Gj−1

and the lower t bits of Hj−1 and Wj−2, we can compute Aj−2, ..., Fj−2 and
the lower t bits of Gj−2 and Hj−2. Furthermore, Aj−3, ..., Ej−3 and the lower
t bits of Fj−3 and Gj−3 are computed from Aj−2, ..., Fj−2 and the lower t bits
of Gj−2, Hj−2 and Wj−3. Again, as mentioned in [14], Aj−10 is determined by
pj−3 without Wj−10, ...,Wj−16. This relation can be translated to “the lower t
bits of Aj−10 are determined from only Aj−3, ..., Ej−3 and the lower t bits of
Fj−3, Gj−3 and Hj−3”. Therefore, Aj−10 can be obtained from pj and the lower
t bits of Wj−1,Wj−2 and Wj−3.

From Observation 1, the matching state S (the lower 4 bits of A16) can be
computed as S = F−1

(2) (C,K(2)), where K(2) ∈ {W26, ...,W40, the lower 4 bits of

W23, W24 and W25}. Thus, |K(2)| = 492(= 32× 15 + 4× 3).

Evaluation. Recall that the matching state S is the lower 4 bits of A16, |K(1)| =
484, |K(2)| = 492 and |K(3)| = 336 (= 32×7+(32−4)×4). Thus, using 244 known
plaintext/ciphertext pairs (i.e. N = 244 ≤ (484 + 492)/4), the time complexity
for finding all subkeys is estimated as

Ccomp = max(2484, 2492)× 244 + 21312−244·4 = 2500.

The number of required data is 244 (=max(244, �(1312− 244 · 4)/256�)) known
plaintext/ciphertext pairs. The memory size is 2492 (=min(2484, 2492) × 244)
blocks. The attack works more efficiently than the exhaustive key search when
the key size is more than 500 bits.

6 Application to KATAN Family

In this section, we analyze KATAN family including KATAN32, KATAN48 and
KATAN64. First, we briefly describe the specification of KATAN family. Then,
we explain our attack strategy for finding the matching state depending on fewer
key bits. Finally, we develop ASR attacks on the reduced KATAN32/48/64. We
emphasize that all of our attacks on the reduced KATAN presented in this
section are the best (exponential-advantage) attacks in the single key setting
with respect to the number of attacked rounds.
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Table 3. Parameters of KATAN family

Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

6.1 Description of KATAN

KATAN [8] family is a feedback shift register-based block cipher consisting of
three variants: KATAN32, KATAN48 and KATAN64 whose block sizes are 32-,
48- and 64-bit, respectively. All of the KATAN ciphers use the same key schedule
accepting an 80-bit key and 254 rounds. The plaintext is loaded into two shift
registers L1 and L2. Each round, L1 and L2 are shifted by one bit, and the least
significant bits of L1 and L2 are updated by fb(L2) and fa(L1), respectively.
The bit functions fa and fb are defined as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ k2i,

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ k2i+1,

where L[x] denotes the x-th bit of L, IR denotes the round constant, and k2i
and k2i+1 denote the 2-bit i-th round key. Note that for KATAN family, the
round number starts from 0 instead of 1, i.e., KATAN family consists of round
functions starting from the 0-th round to the 253-th round. Li

1 or Li
2 denote the

i-th round registers L1 or L2, respectively. For KATAN48 or KATAN64, in each
round, the above procedure is iterated twice or three times, respectively. All of
the parameters for the KATAN ciphers are listed in Table 3.

The key schedule of KATAN ciphers copies the 80-bit user-provided key to
k0, ..., k79, where ki ∈ {0, 1}. Then, the remaining 428 bits of the round keys are
generated as follows:

ki = ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 for i = 80, ..., 507.

6.2 Attack Strategy

Recall that the key of our attack is to find the state that contains as small
number of subkey bits as possible. In order to find such states, we exhaustively
observe the number of key bits involved in each state per round. A pseudo code
for counting the number of subkey bits involved in the forward direction for
KATAN32 is described in Algorithm 1. We use similar code to observe how many
subkey bits are affected to each state of KATAN32 in the backward direction.
Also, similar codes are used for counting the number of subkey bits related to
each state of KATAN48 and KATAN64. As an example, Table 4 shows the results
obtained by this algorithm when R = 63 of KATAN32 in the forward direction.
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Algorithm 1. Counting the number of key bits involved in each state

Require: R /* Evaluated number of rounds */
Ensure: LK1[0], . . . ,LK1[|L1| − 1] and LK2[0], . . . ,LK2[|L2| − 1] /* The number of

key bits involved in each state after R round */
1: LK1[i]← 0 for i = 0, . . . , |L1| − 1
2: LK2[i]← 0 for i = 0, . . . , |L2| − 1
3: for i = 0 to R − 1 do
4: for j = 0 to |L1| − 2 do
5: LK1[(|L1| − 1)− j]← LK1[(|L1| − 1)− j − 1]
6: end for
7: for j = 0 to |L2| − 2 do
8: LK2[(|L2| − 1)− j]← LK2[(|L2| − 1)− j − 1]
9: end for
10: LK1[0]← LK2[y1] + LK2[y2] + LK2[y3] + LK2[y4] + LK2[y5] + LK2[y6] + 1
11: LK2[0]← LK1[x1] + LK1[x2] + LK1[x3] + LK1[x4] + (LK1[x5] · IR) + 1
12: end for
13: return LK1[0], . . . ,LK1[|L1| − 1] and LK2[0], . . . ,LK2[|L2| − 1]

6.3 ASR Attack on 110-Round Reduced KATAN32

We consider the 110-round variant of KATAN32 starting from the first (0-th)
round. In this attack, L63

2 [18] is chosen as the matching state.

Forward Computation in F(1): As shown in Table 4, L63
2 [18] depends on

68 subkey bits. This implies that L63
2 [18] can be computed by a plaintext P

and 68 bits of subkeys. More specifically, L63
2 [18] = F(1)(P,K(1)), where K(1) ∈

{k0, ..., k54, k56, k57, k58, k60, ..., k64, k68, k71, k73, k77, k88} and |K(1)| = 68.

Backward Computation in F(2): Table 5 shows the result obtained by Al-
gorithm 1 modified to backward direction on KATAN32 with R = 47 starting
from 110 round. In the backward computation, the matching state L63

2 [18] is
computed as L63

2 [18] = F−1
(2) (C,K(2)), where K(2) ∈ {k126, k138, k142, k146, k148,

k150, k153, k154, k156, k158, k160, . . . k219}, and |K(2)| = 70.

Evaluation. For the 110-round reduced KATAN32, the matching state S is
chosen as L63

2 [18] (1-bit state). Since |K(3)| = 82(= 2 × 110 − 68 − 70) which
is more than 80 bits, we first determine only K(1) and K(2). After that, we
additionally mount the MITM approach in order to determine the remaining 82
bits of subkeys.

When N = 138 (≤ (68+70)/1), the time complexity for finding K(1) and K(2)

is estimated as

Ccomp = max(268, 270)× 138 + 2138−138·1 = 277.1.

The number of required data is 138 (=max(138, �(138 − 138 · 1)/32�)) known
plaintext/ciphertext pairs. The required memory size is about 275.1 (=min(268,
270) ×138) blocks.
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Table 4. Results on KATAN32 with R = 63 in forward direction (starting round = 0)

LK1[i] 0 1 2 3 4 5 6 7 8 9 10 11 12
# key bits 108 104 102 100 98 98 96 94 92 88 86 84 84

LK2[i] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

# key bits 104 102 100 98 100 93 92 90 88 90 87 85 83 77 75 75 75 74 68

Table 5. Results on KATAN32 with R = 47 in backward direction (starting round =
109)

LK1[i] 0 1 2 3 4 5 6 7 8 9 10 11 12
# key bits 44 46 48 50 52 54 56 58 60 62 64 66 68

LK2[i] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

# key bits 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

Finally, we need to find the remaining 82 bits of subkeys by using the simple
MITM approach in the setting where K(1) and K(2) are known. The required
complexity and memory for this process is roughly estimated as 241. These costs
are obviously much less than those of finding K(1) and K(2).

6.4 ASR Attack on 100-Round Reduced KATAN48

We consider the 100-round variant of KATAN48 starting from the first (0-th)
round. In this attack, L58

2 [28] is chosen as the matching state.
In the forward computation, L58

2 [28] depends on 71 key bits, namely L58
2 [28] =

F(1)(P,K(1)), where K(1) ∈ {k0, . . . k60, k62, k64, k65, k66, k69, k71, k72, k75, k79,
k86}, and |K(1)| = 71. In the backward computation, L58

2 [28] depends on 71 key

bits, namely L58
2 [28] = F−1

(2) (C,K(2)), where K(2) ∈ {k116, k122, k124, k128, k130,
k132, k134, k135, k136, k138, . . . k199}, and |K(2)| = 71. Since the size of matching
state s is 1, |K(1)| = |K(2)| = 71 and |K(3)| = 58(= 2× 100− 71− 71), by using
N = 128 (≤ (71+ 71)/1) known plaintext/ciphertext pairs, the time complexity
for finding all subkeys is estimated as

Ccomp = max(271, 271)× 128 + 2200−128·1 = 278.

The number of required data is 128 (=max(128, �(200 − 128 · 1)/48�)) known
plaintext/ciphertext pairs. The memory size is 278 (=min(271, 271)×128) blocks.

6.5 ASR Attack on 94-Round Reduced KATAN64

Similarly to the attack on the 100-round reduced KATAN48, we consider the 94-
round variant of KATAN64 starting from the first (0-th) round. In this attack,
L54
2 [38] is chosen as the 1-bit matching state.
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Table 6. Summary of the attacks in the single-key setting

algorithm
# attacked

time
memory

data reference
rounds [block]

CAST-128
6 288.51 Not given 253.96 KP [31]
7 2114 2114 6 KP this paper (Section 4.2)

Blowfish∗1 4 - - 221 CP [24]

Blowfish† 8 - - 248 CP [29]
16 2292 2260 9 KP this paper (Section 4.3)

Blowfish-8R† 8 2160 2131 5 KP this paper (Section 4.3)

SHACAL-2
32 2504.2 248.4 243.4 CP [28]
41 2500 2492 244 KP this paper (Section 5)

KATAN32∗2
78 276 Not given 216 CP [21]
110 277 275.1 138 KP this paper (Section 6.3)

KATAN48∗2
70 278 Not given 231 CP [21]
100 278 278 128 KP this paper (Section 6.4)

KATAN64∗2
68 278 Not given 232 CP [21]
94 277.68 277.68 116 KP this paper (Section 6.5)

FOX128
5 2205.6 Not given 29 CP [32]
5 2228 2228 14 KP this paper (Appendix A)

† Known F-function setting.
∗1 The attacks on the full Blowfish in the weak key setting were presented in

[29] and [17].
∗2 The accelerating key search techniques for the full KATAN32/48/64 were

presented in [20].

In the forward computation, L54
2 [38] depends on 71 subkey bits, namely L54

2 [38]
= F(1)(P,K(1)), where K(1) ∈ {k0, . . . k61, k63, k64, k65, k66, k68, k69, k71, k75,
k82}, and |K(1)| = 71. In the backward computation, L54

2 [38] depends on 71 sub-

key bits, namely L54
2 [38] = F−1

(2) (C,K(2)), where K(2) ∈ {k108, k110, k114, k116,
k118, k120, k122, k124, . . . k187}, and |K(2)| = 71. Since s = 1, |K(1)| = |K(2)| = 71,
and |K(3)| = 46(= 2× 94 − 71− 71), by using N = 116 (≤ (71 + 71)/1) known
plaintext/ciphertext pairs, the time complexity for finding all subkeys is esti-
mated as

Ccomp = max(271, 271)× 116 + 2188−116·1 = 277.68.

The number of required data is 116 (=max(116, �(188 − 116 · 1)/64�)) known
plaintext/ciphertext pairs. The memory size is 277.68 (=min(271, 271) × 116)
blocks.

7 Discussion

On the ASR attack, an attacker attempts to recover all subkeys instead of the
user-provided key, regarding all subkeys as independent variables. Note that, if
there is no equivalent key, which is a reasonable assumption for a moderate block
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cipher, there obviously exist unique subkeys that map a given plaintext to the
ciphertext encrypted by a secret key. In the standard MITM attack, determining
neutral key bits and constructing initial structure called bicliques seem two of
the most complicated and important parts in the attack process. However, in our
attack, those two procedures are not required, since the attacker focuses only on
subkeys and all subkeys are treated equally. Moreover, in the ASR attack, it is not
mandatory to analyze the underlying key schedule, since it basically focuses only
on the data processing part. These features make the attack simple and generic.
While the ASR attack is simple and generic as explained, it is still powerful
attack. Indeed, we can significantly improve the previous results on several block
ciphers as summarized in Table 6 (see also Table 2 for the details of the target
ciphers). We emphasize that our approach is not polynomial-advantage attack
such as [20], which requires access of all possible keys, but exponential-advantage
attack. Moreover, our attack works on the block ciphers using any key schedule
functions even if it is ideal.

While all subkeys are regarded as independent variables in the ASR attack,
there must exist some relations between them in an actual block cipher. Thus, if
an attacker exploits some properties in the underlying key schedule, the attacker
may be able to enhance the attacks presented in this paper. For instance, the
following techniques might be useful:

– Finding the user-provided key from the part of subkeys.
– Reducing the search space of subkeys by using relation of subkeys.

Since the purpose of this paper provides generic approach to evaluate the secu-
rity of block ciphers, we do not show these specific and dedicated techniques.
However, by using such techniques, the number of attacked rounds might be
increased.

8 Conclusion

We have proposed a new but simple and generic attack on block ciphers. The
proposed attack called all subkeys recovery (ASR) attack is based on the meet-
in-the-middle (MITM) attack. The previous MITM attack applied to several
block ciphers consisting of a simple key schedule such as a permutation based
key schedule, since the MITM attack mainly exploits the weakness in the key
schedule. However, there have been a few results on the block ciphers having
complex key schedule.

In this paper, we applied the ASR attack to several block ciphers employing
complex key schedule, regarding all subkeys as independent variables. We showed
the ASR attacks on the 7-, 41-, 110-, 100-, 94- and 5-round reduced CAST-
128, SHACAL-2, KATAN32, KATAN48, KATAN64 and FOX128, respectively.
Moreover, we presented the ASR attacks on the full Blowfish in the known F-
function setting. All of our results except for the attack on the reduced FOX128
significantly improved the previous results with respect to the number of attacked
rounds.
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A Application to FOX128

We apply the ASR attack to the 5-round reduced FOX128.
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A.1 Description of FOX128

FOX128 is a variant of FOX family [16] consisting of a 16-round modified Lai-
Massey scheme with 128-bit block and 256-bit key. A 128-bit input state at round
i is denoted as four 32-bit words (LLi−1 || LRi−1 || RLi−1 || RRi−1). The i-th
round function updates the input state using the 128-bit i-th round key Krnd

i

as follows:

(LLi||LRi) = (or(LLi−1 ⊕ φL)||LRi−1 ⊕ φL)

(RLi||RRi) = (or(RLi−1 ⊕ φR)||RRi−1 ⊕ φR),

where or denotes a function converting two 16-bit inputs x0 and x1 to x1 and
(x0 ⊕ x1), and (φL||φR) = f64((LLi−1 ⊕ LRi−1)||(RLi−1 ⊕RRi−1),K

rnd
i ). f64

consisting of two 8 8-bit S-box layers sigma8 separated by the 8 × 8 MDS ma-
trix mu8 returns a 64-bit data from a 64-bit input X and two 64-bit subkeys
LKrnd

i and RKrnd
i as (sigma8(mu8(sigma8(X ⊕ LKrnd

i )) ⊕ RKrnd
i ) ⊕LKrnd

i ).
Two 64-bit subkeys LKrnd

i and RKrnd
i are derived from Krnd

i as Krnd
i =

(LKrnd
i ||RKrnd

i ).

A.2 ASR Attack on 5-Round Reduced FOX128

For the 5-round reduced FOX128, the following one-round keyless linear relation
can be exploited for the matching:

LLi+1 ⊕OR−1(LRi+1) = LLi ⊕ LRi.

If we know LL2 and LR2, LL2 ⊕OR−1(LR2) can be obtained. Thus, we choose
LL2 and LR2 as the matching state in the forward computation. The 32-bit
states LL2 and LR2 are computed from a 128-bit subkey Krnd

1 , a 64-bit subkey
LKrnd

2 and the left most 32 bits of RKrnd
2 , i.e., (LL2, LR2) = F(1)(P,K(1)),

where K(1) ∈ {Krnd
1 , LKrnd

2 , the left most 32 bits of RKrnd
2 }, and |K(1)| =

224(= 128 + 64 + 32). Similarly, we choose LL3 and LR3 as the matching state
in the backward computation. Since the similar relation holds in the backward
computation, LL3 and LR3 are computed as (LL3, LR3) = F−1

(2) (C,K(2)), where

K(2) ∈ {Krnd
5 , LKrnd

4 , the left most 32 bits of RKrnd
4 }, and |K(2)| = 224. Thus,

using the parameter N = 13 (≤ (224+224)/32), the time complexity for finding
all round keys is estimated as

Ccomp = max(2224, 2224)× 13 + 2640−13·32 = 2228.

The number of required data is only 13 (=max(13, �(640− 13 · 32)/64�)) known
plaintext/ciphertext pairs, and required memory is about 2228 (=min(2224, 2224)×
13) blocks.
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