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Abstract. Wepresent a framework that unifies several standard differen-
tial techniques. This unified view allows us to consider many, potentially
all, output differences for a given input difference and to combine the in-
formation derived from them in an optimal way. We then propose a new
attack that implicitly mounts several standard, truncated, impossible, im-
probable and possible future variants of differential attacks in parallel and
hence allows to significantly improve upon known differential attacks using
the same input difference. To demonstrate the viability of our techniques,
we apply them to KATAN-32. In particular, our attack allows us to break
115 rounds of KATAN-32. For this, our attack exploits the non-uniformity
of the difference distribution after 91 rounds which is 20 rounds more than
the previously best known differential characteristic.
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1 Introduction

Designing a secure block cipher that, at the same time, is very efficient is still
challenging. In particular, lightweight cryptography which recently received con-
siderable attention from the cryptographic community calls for block ciphers that
can be efficiently implemented even in very resource constrained devices. Design-
ing secure ciphers for such tiny devices – e.g., RFID tags or sensor networks –
requires, on the one hand, innovative design strategies and, on the other hand,
perhaps compromises in the security level. One such constraint is the block size
used in block ciphers. As the block size, along with the key size, greatly influ-
ences the required circuit size, block ciphers tailored to be implemented in small
devices have a strong tendency to feature smaller block sizes compared to mod-
ern block ciphers mainly focusing on software such as the AES. While modern
block ciphers focusing on software usually have a block size of no less than 128
bits, most ciphers designed for efficient implementations in hardware have block
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sizes of 64 bits or less (see for example PRESENT [8] or HIGHT [12]). A block
cipher with a particular small block size of 32-bit is KATAN-32 [10] presented
at CHES 2009.

Block ciphers with very small block sizes have some interesting characteristics.
From the point of view of the attacker, when using the block cipher in counter
mode, it is possible to distinguish the output from a random sequences faster.
Similarly, an attacker can build a complete code book faster and time-memory
tradeoffs are a greater concern. From the perspective of the designer, most sta-
tistical attacks like differential or linear cryptanalysis seem at first glance to
become more difficult as the amount of data available to the attacker is much
more restricted.

Finally, from a theoretical point of view, small block sizes provide the opportu-
nity to understand well-established attacks better since computations involving
the entire code-book are feasible. In particular, for differential cryptanalysis, it
becomes feasible to compute the exact expected probabilities for many (some-
times all) differentials. This data then allows to study the behaviour of (classical)
differential cryptanalysis and related techniques more precisely.

Yet, it is not obvious a priori how to provide an optimal unified view on these
differentials even if this data is available. To provide an answer to this question,
this work investigates the probability distribution of output differences under one
(or many) input difference and provides an optimal way to use the non-uniform
distribution of differences in an attack.

Prior Work: Differential cryptanalysis was first proposed by Biham and Shamir
[4] and since became one of the most prominent tools in the analysis of block
ciphers. Many improvements and extensions have been proposed in the past,
we mention some of the most influential ones. Knudsen [15] and later Biham,
Biryukov and Shamir [3] proposed to use differentials with zero probability, that
is impossible differential attacks. Based on the work of Lai [17] High-order differ-
entials were introduced in [16] and are most effective against ciphers where the
algebraic degree can be limited. Truncated differentials, first mentioned in [16]
can be seen as a collection of differentials and in some cases allow to push dif-
ferential attacks one or two rounds further. Boomerang attacks can be viewed as
special cases of second order differentials and are most efficient when the prob-
ability of any differential drops rapidly with an increasing number of rounds.
Recently, improbable differentials have been suggested [22] as a natural exten-
sion of impossible differentials and have been successfully applied to the block
cipher CLEFIA. Also recently, differential cryptanalysis was extended to multi-
differential cryptanalysis in [6]. Finally, our application of the log-likelihood can
be seen in the framework of [21].

Our Contribution:Abstractly, differential cryptanalysis exposes a non-uniform
distribution of output differences given one (or several) input differences. This
is also the point of view from which our investigation sets out. Phrased in these
terms, recovering key information using differential techniques becomes the task
of distinguishing between distributions, one for the right key and one for the
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wrong keys. However, usually the attacker does not have access to a full de-
scription of these distributions. In standard differential cryptanalysis only one
output difference is considered and usually the probability of the best differential
characteristic is considered in place of the probability of the output differential.
Furthermore, for wrong keys it is assumed that the distribution is uniform.

In comparison the advantage of an attacker when dealing with small block-size
ciphers become apparent. The attacker has, under mild assumptions, the abil-
ity to compute the parameters of those distributions precisely. Thus, the task
is no longer to distinguish (essentially) unknown distributions, but distributions
which are known completely. In particular, the usual hypotheses that wrong keys
result in random permutations can be lifted. To this end, we first introduce a
model to study and distinguish these distributions. As an important side effect,
our framework unifies and generalises standard differential attacks, impossible
differentials, improbable differentials and truncated differentials into one attack
framework. Since our framework considers the distribution of all output differ-
ences it captures all techniques which exploit statistically significant subspaces
of the output space.

We then propose a new attack based on this model that implicitly mounts
several standard, truncated, impossible, improbable and possible future vari-
ants of differential attacks in parallel and hence allows to significantly improve
upon known differential attacks using the same input difference. We stress that
these “parallel applications” of various differential attacks are such that they are
strictly better than those attacks considered independently. To demonstrate the
viability of our model and attack, we apply our attack to two ciphers with small
block sizes: the toy-cipher SmallPresent[4] and KATAN-32. For KATAN-32 we
present the best known differential attack.1 In particular, our attack allows us
to break 115 rounds of KATAN-32, which is 37 rounds more than previous work
[14], although we note that our attack requires considerably more resources than
[14]. For this, our attack exploits the non-uniformity of the difference distribu-
tion after 91 rounds which is 20 rounds more than the previously best known
differential characteristic. Since our results takes into account several standard
techniques and still cover less than 1/2 of the cipher, they further strengthen our
confidence in KATAN-32’s resistance against differential attacks. For complete-
ness, we also like to mention a recent preprint [13] using a meet-in-the-middle
variant to recover the key for the full KATAN (slightly) faster than exhaustive
search.

Furthermore, our model allows to combine many input- and output-differences
which allows to reduce the data complexity compared to previous works signif-
icantly. This is mainly due to the fact that our approach almost naturally pro-
vides the optimal way of combining information from several input and output
differences. This is the major difference between our work and [6].

We highlight that similar approaches have been independently developed by
Blondeau, Gérard and Nyberg [7] and Murphy [20]. While these approaches also
differ in some theoretical respects (such as using the likelihood instead of the

1 Our attack is also the best known differential attack on SmallPresent[4].
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likelihood ratio in the latter case), the main difference between these works and
ours is that we put our model to practice and use it to improve upon known
attacks.

2 Preliminaries and Notation

In this work we focus on block ciphers where the key is XORed to (parts of)
the state. Let Rk denote one round function of a block cipher with (round)-key
k, where without loss of generality the key is added in last. By R we denote
the round function without the final key addition, that is Rk(x) = R(x) ⊕ k.
Moreover let EK : Fn

2 → F
n
2 be the corresponding r round block cipher, where

K = (k0, k1, . . . , kr) consist of all round keys. More precisely EK(x) = Rkr ◦
Rkr−1 ◦· · ·◦Rk1(x⊕k0) where k0 is the whitening key. For a function F : Fn

2 → F
n
2

given an input difference δ and an output difference γ we denote

PF (δ, γ) := Pr(F (X)⊕ F (X ⊕ δ) = γ)

for randomly uniformly chosen X . That is, PF (δ, γ) is the probability of the
differential δ → γ. Using N (unordered) pairs, the number of pairs following the

given differential is denoted by D
(N)
F (δ, γ). The expected value of D

(N)
F (δ, γ) is

NPF (δ, γ) and we discuss below more precisely how D
(N)
F (δ, γ) is distributed.

Note that in the following N always denotes the number of (unordered) plain-
text/ciphertext pairs used. As we use unordered pairs, using the full code book
corresponds to choosing N = 2n−1.

We consider the case where we assume E is a Markov cipher. A cipher E is a
Markov cipher when the transitional probabilities for the output differences of
round r+1 only depend on the output difference of round r. More precisely the
round function has to satisfy [18]:

Pr(R(X ⊕ k)⊕R(X ⊕ δ ⊕ k) = γ | X = x0) = PR(δ, γ)

for all choices of x0 and uniformly random chosen subkeys k. If, furthermore,
all round keys are independent, then one can compute the average value of
PEK (δ, γ) over all possible keys by adding the probabilities for all differential
characteristics included in the differential. This has first been formalised in [18]
and is summarised in the next proposition.

Proposition 1. For a function EK : Fn
2 → F

n
2 = Rkr ◦Rkr−1 ◦ · · · ◦Rk1(x⊕ k0)

with input difference δ, output difference γ and PR(γ
′, δ′) the probability of the

differential γ′ → δ′ for the function R we have

P̃E(δ, γ) :=
1

�K

∑

K

PEK (δ, γ)

=
∑

γ1,...,γr−1

PR(δ, γ1)
(∏

PR(γi, γi+1)
)
PR(γr−1, γ)
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The hypothesis of stochastic equivalence states (cf. [18]) that for almost all keys

we expect PEK (δ, γ) ≈ P̃E(δ, γ) which implies that D
(N)
K (δ, γ) ≈ NP̃E(δ, γ) for

almost all keys.
This approximation has to be understood as expected value taken over all

expanded keys. However, for our purpose, we are not only interested in the

expected value of the counter D
(N)
EK

(δ, γ) but moreover how these values are
distributed. This was analysed in [11] and more recently in [5]. It turns out,

considering D
(N)
EK

(δ, γ) as the results of N independent Bernoulli trials with suc-

cess probability P̃E(δ, γ) leads to a good model of the actual distribution. More
precisely, denoting by B(n, p) the Binomial distribution with n tries and success
probability p, the following is a reasonable approximation for the distribution of

D
(N)
EK

(δ, γ).

Assumption 1 (cf. Theorem 14 in [11]). The counter D
(N)
EK

(δ, γ) is dis-

tributed according to the Binomial distribution B(N, P̃E(δ, γ)), that is

Pr(D
(N)
EK

(δ, γ) = c) =

(
N

c

)
P̃E(δ, γ)

c(1− P̃E(δ, γ))
N−c

where the probability is taken over random keys K.

We note that we experimentally validated this assumption for all ciphers con-
sidered in this work although these ciphers are not Markov ciphers.

2.1 P̃E(δ, γ) in Differential Cryptanalysis

In standard differential cryptanalysis the attacker attempts to find an input differ-
ence and an output difference such that P̃E(δ, γ) is “sufficiently high”, i.e., bounded
away from uniform. In this case we can expect that, with high probability, for each
key K there exist sufficiently many right pairs to mount an attack, i.e., to detect
the bias of P̃E(δ, γ). Traditionally, in a 1R attack on the cipherRkr+1 ◦EK one (par-
tially) decrypts the last roundwith all possible (partial) round keys and increases a
counter for the current round key guess iff the computed difference fits the expected
output difference γ of round r. Afterwards, the keys are ranked according to their
counters, that is, the attacker first tries the key with the highest counter, than the
one with the second highest counter, etc.

The success probability of a differential attack is usually computed under the
Wrong-KeyRandomizationHypotheses .TheWrong-KeyRandomizationHypothe-
ses (see for example [18]) states that for awrongkeyguess the corresponding counter
is distributed as for a random permutation. Using the notation established above
the Wrong-Key Randomization Hypotheses can be stated as follows

Assumption 2 (Wrong-Key Randomization Hypotheses, cf. [18])). For
a wrong key guess the corresponding counter is distributed as for a random per-

mutation, that is D
(N)

R−1

k′ ◦Rkr+1
◦EK

(δ, γ) ∼ B(N, 2−n) for all k′ �= kr+1.
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2.2 Distinguishing Distributions

Following the above discussion on the distribution of counter values, it is natural
to view a differential attack as a technique to find the value kr+1 which maximises
the likelihood function corresponding to the right-key distribution (Maximum
Likelihood Estimation). This estimation may take two distributions into account.
For the right key guess, according to Assumption 1 the counter is distributed
according to B(N, P̃E(δ, γ)) while the counter of a wrong key guess is assumed
(cf. Assumption 2) to be distributed accordingly to B(N, 2−n).

In this setting, the maximum likelihood estimation is equivalent to maximising
the log-likelihood ratio of the two distributions under consideration. Indeed, by
the Neyman-Pearson Lemma the log-likelihood ratio is the most poweful test
to determine whether a sample comes from one of two distributions. Denoting
p = P̃E(δ, γ) and q = 2−n, if a key K resulted in a counter value c one computes

lk(c) := log

((
N
c

)
pc(1− p)N−c

(
N
c

)
qc(1− q)N−c

)
= c log

((
p(1− q)

q(1 − p)

))
+N · log

(
1− p

1− q

)
.

The key guesses are ranked according to their lk(c) values, that is, the key
with highest lk(c) value is tested first. To simplify the computation one can
equivalently rank the keys according to

l′k(c) = c · w where w = log

(
p(1− q)

q(1 − p)

)
,

as we are only interested in the relative value of lk(c).
2

We may write lk′ and l′k′ for lk′(c) and l′k′(c) respectively if it is clear from
the context which c we are referring to.

Now, observe that l′k(c) is monotone increasing iff p > q (as in this case w > 0).
Thus, if the expected counter for the right key is higher than for wrong key
guesses then l′k has the same ranking and the rankings accordingly to l′k(c) and c
is the same. However, if p < q the function is monotone decreasing (as w < 0) and
the ranks get reversed. This corresponds to improbable differentials as defined
in [22]. The special case where p = 0 corresponds to impossible differentials (as
introduced in [15] and later used in [3]), as in this case for each counter c �= 0
the value lk(c) is formally minus infinity. In the latter case we use the convention
w = −∞ and 0 · w = 0. To conclude, we state the following observation.

Observation 1. Ranking keys according to their maximum likelihood estimation
as defined in Equation (1) unifies in a natural way standard differential attacks,
impossible differentials and improbable differentials.

As explained in the next section, it is this unified view that allows for a gener-

alised attack that considers many (in principle all) counters D
(N)
EK

(δ, γ) simulta-
neously.

2 As discussed below, this is actually equivalent to sorting according to the counters
c in the case of p > q and to −c in the case of p < q.
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3 The Attack Model

In this section, we present our attack in detail and provide formulas for com-
puting the gain of our attack. In summary, we use many (or even all) counters

D
(N)
EK

(δ, γ) for different δ and γ values simultaneously. We view those counters
as samples from one out of two possible (this time multi-dimensional) distri-
butions. One distribution corresponds to the correct round-key guess and the
other to the wrong key guesses. Using many counters at the same time allows us
to significantly improve the success probability (or – equivalently – reduce the
data complexity) compared to standard differential attacks. Informally, and this
is the major difference and biggest improvement over a related approach per-
formed in [6], this allows us to perform several standard differential attacks and
impossible (or more generally improbable) differential attacks at the same time.
In our attacks these simultaneous differential attacks are weighted appropriately
ensuring that we do not lose information compared to standard attacks. That is,
considering more information never reduces the success probability but strictly
improves it.

3.1 Multi-dimensional Distribution of D
(N)
EK

(δ, γ)

While in general any subset of pairs of input/output differences could be con-
sidered, here we focus on the case where one input difference is fixed and we
consider all possible output differences. In this case, we denote by

D(N)
EK

(δ) =
(
D

(N)
EK

(δ, 1), D
(N)
EK

(δ, 2), . . . , D
(N)
EK

(δ, 2n − 1)
)

the vector of all corresponding counters. As discussed in Section 2, each individ-
ual counter is distributed according to a binomial distribution B(N, P̃E(δ, γ)).
As each pair of the N pairs with input difference δ results in exactly one output
difference, we have that ∑

γ

D
(N)
EK

(δ, γ) = N.

Thus, assuming that this is the only dependency between the counter values, the

vectorD(N)
EK

(δ) follows amultinomial distributionwith parametersN and P̃E(δ) :=(
P̃E(δ, 1), . . . , P̃E(δ, 2

n − 1)
)
, denoted by D(N)

EK
(δ, γ) ∼ Multi(N, P̃E(δ)).

Later in this work we present experimental evidence comparing the empirical
and theoretical gain of the attack to justify this assumption for the ciphers
considered in this work. We summarise our assumption on the behaviour below.

Assumption 3. The vector of counters D(N)
EK

(δ) follows a multinomial distri-
bution where each component is distributed according to Assumption 1 and

∑

γ

D
(N)
EK

(δ, γ) = N.
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In contrast to previous works, we do not rely on the Wrong-Key Randomization
Hypotheses (Assumption 2) for our attack. Before mounting our attack, the
attacker has to compute the expected probability (or the expected counter value)
for all possible output differences. If the attacker is able to do this, he is usually
also able to compute the expected probability for wrong keys, that is compute

the distribution ofD
(N)

R−1

k′ ◦Rkr+1
◦EK

(δ, γ) as this is essentially computing two more

rounds. We note that even if k′ differs from k in only a few bits, this affects at
least one S-box and hence many output differences.

3.2 The Attack Algorithm

First, recall that the attack uses N plaintext/ciphertext pairs, to recover the
secret key. Following the previous section, we assume that the attacker has – in
an offline phase – computed the parameters of two distributions. Namely, vectors
of parameters p = (pi)i and q = (qi)i such that

pi = P̃E(δ, i) (1)

qi = P̃R−1◦R◦E(δ, i). (2)

That is, for a right key the vector of counters is a sample from the distribu-
tion Dist1 = Multi(N, p) and for the wrong keys sampled from the distribution
Dist2 = Multi(N, q). After this pre-computation phase, the attack proceeds as
follows . For all possible last round keys k′, the attacker first computes the vec-

tor of difference counters D(N)

R−1

k′ ◦Rkr+1
◦EK

(δ). That is, given the guess for the last

round key, the attacker partially decrypts every ciphertext and for all output dif-
ferences γ computes the number of pairs fulfilling the differential δ → γ. Next,
the attacker estimates the likelihood that the vector was sampled from Dist1. In
our case, this is equivalent to computing the difference of the log-likelihood of
the vector with respect to Dist1 and with respect to Dist2, i.e., to compute the
log-likelihood-ratio.

Given that for a random variable X following a multinomial distribution X ∼
Multi(M,p) it holds that

Pr((X1, . . . , Xn) = (x1, . . . , xn)) =

{
n!

x1!x2!...xn!
px1
1 . . . pxn

n if
∑

xi = M

0 else
,

the log-likelihood-ratio is given by lk′ =
∑

i D
(N)

R−1

k′ ◦Rkr+1
◦EK

(δ, i) log
(

pi

qi

)
Thus,

denoting wi = log
(

pi

qi

)
one computes

lk′ =
∑

i

wi ·D(N)

R−1

k′ ◦Rkr+1
◦EK

(δ, i).

This is a weighted extension of the case where one considers only one counter.
As before these weights naturally capture various types of differential attacks,
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i.e., in each component one considers a standard differential, improbable or
impossible differential attack. Furthermore, truncated differentials are captured

in this model since these correspond to a sub-vector of D(N)
EK

(δ).3

The time complexity is |K ′| · N where N is the number of pairs considered
and |K ′| is the number of all last-round subkeys.

3.3 Computing the Gain of the Attack

What remains to be established is the efficiency of this attack. The key obser-
vation (cf. also [2]) is that the distribution of lk′ can be well approximated by a
normal distribution in the case where all values wi are relatively close together.
The case where all wi are close to uniform is the most interesting case for our at-
tack, as otherwise standard differential techniques, considering only one counter
are sufficient to break the cipher. Recall that there are two distributions to be
considered. First, there is a random variable (and a corresponding distribution)
for the log-likelihood-ratio of the right key. We denote this random variable by

R and it is defined as R =
∑

iwiD
(N)
EK

(δ, i). By Assumption 3 we expect D(N)
EK

(δ)
to be multinomial distributed with parameters N and (pi)i, with pi defined in
Equation (1). Hence the expected value of R is given by E(R) = N

∑
wipi.

Using that the pairwise covariances for a multinomial distribution is known, the
variance of R can be computed to be

Var(R) = N

⎛

⎝
(
∑

i

w2
i pi

)
−
(
∑

i

wipi

)2
⎞

⎠ .

Therefore, denoting by N (E, V ) the normal distribution with expected value E
and variance V , we will use the following approximation

R ∼ N
⎛

⎝N
∑

wipi, N

⎛

⎝
(
∑

i

w2
i pi

)
−
(
∑

i

wipi

)2
⎞

⎠

⎞

⎠

which we will justify with experimental results later in this work.
For the wrong keys, we introduce a random variableW and, following the same

lines of argumentation, we approximate the distribution of W with a normal
distribution, as follows

W ∼ N
⎛

⎝N
∑

wiqi, N

⎛

⎝
(
∑

i

w2
i qi

)
−
(
∑

i

wiqi

)2
⎞

⎠

⎞

⎠

with qi as defined in Equation (2). This enables to estimate the gain of the
attack. The gain is related to the probability that a wrong key candidate is

3 We note, however, that in the case of truncated differential attacks we might have
to assume that Assumption 2 holds.
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ranked higher than the right key candidate. More precisely, if the task is to
recover an n bit key and the rank of the correct key is r on average the gain is
defined as − log2

2r−1
2n . Given the probability that a wrong key is ranked higher

than the right key the expected number of wrong keys ranked higher than the
right key can be computed. This corresponds in turn to the expected rank of the
right key.

For analyzing this, we assume that the right key value is sampled according to
R. As the normal distribution is symmetric, with a probability of 1/2, the result
is larger or equal to E(R). For the wrong keys values are sampled from W . For
50% percent of the keys, computing the gain is now reduced to computing the
probability that W ≥ E(R), as this corresponds to an upper bound on to the
probability that a wrong key is ranked above the right key. Using the density
function of W, defined as

fW (x) =
1√

2πVar(W)
e−

1
2 Var(W)

(x−E(W))2

this probability of a wrong key being ranked higher than the right key is given
by Pr(W ≥ E(R)) =

∫∞
E(R) fW (x). Using the relation of the standard Normal

distribution and the Gaussian error function, this can be rewritten as

Pr(W ≥ E(R)) =
1

2

(
1− erf

(
E(R)− E(W)√

2Var(W)

))
. (3)

Concluding this part, we have now at hand an expression that allows us two
compute the gain of the attack. Moreover, compared to computing the values
of pi and qi, the time for evaluating the above expressions is negligible. We will
make use of this in Section 4 where the model is applied to SmallPRESENT-[4]
and KATAN. The experimental data given there justifies in turn the model for
those two ciphers.

More Input Differences. A straight-forward extension which does not require any
change to the analysis above is to use a different subset of input- and output-
differences. In particular, the attack might benefit from not only using one vector

D(N)
EK

(δ) but several such vectors for several choices of δ. We followed this ap-
proach in our experiments for SmallPRESENT-[4].

4 Application

In this section, we apply our framework to two blockciphers with very small
block sizes. First, we consider SmallPRESENT-[4] to demonstrate the idea and
then we consider reduced round variants of KATAN-32 for which we present the
currently best known differential attack.
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4.1 Toy Example SmallPRESENT-[4]

SmallPRESENT-[s] [19] is a small-scale (toy) cipher designed to aid the develop-
ment and verification of cryptanalysis techniques. The cipher is an SP-network
with s parallel 4-bit S-box applications. Hence the block size is 4s. The permuta-
tion layer is a simple permutation of wires. We focus on SmallPRESENT-[4], the
version with 16 bit block size, as this allows us to derive sufficient experimental
data rather quickly. The S-box S is the same as for PRESENT (cf. [8]) itself and
the round keys are independent. For more details we refer to [19]. A standard
differential attack, with one round of partial decryption, seems feasible for not
more than 7 rounds. By looking at all the whole vector of output differences, we
are able to break 9 rounds with a significant gain. Moreover, compared to stan-
dard differential attacks, the data complexity for 7 rounds is reduced by a factor
of 25. We summarise our findings for attacking 7, 8 and 9 rounds in Table 1.
All attacks in Table 1 are 1R attacks. Hence, the length of the differentials is
6, 7 and 8 respectively. In Table 1 we give the number of input differences con-
sidered, the values for E(R), V (R), E(W), V (W) and the number of right-key
ranks smaller a than given threshold observed in 100 experiments (except for
the last column, see below) compared with the number of such ranks predicted
by our model (given in brackets in Table 1).

Table 1. Experimental Results for SmallPRESENT-[4]

#rounds 7 7 8 8 9 9

Data used 216 29 216 216 216 216

#Δ 1 1 1 5 1 60

E(R) 53.8210 0.8409 2.2250 9.7636 0.0570 1.5181

V (R) 124.0870 1.9388 4.6110 20.1537 0.1130 3.0441

E(W) −47.2890 −0.7389 −2.1490 −9.4631 −0.0560 −1.5141

V (W) 84.2370 1.3162 4.1520 18.3502 0.1120 3.0203

#ranks < 20 100 (10000.00) 4 (1.10) 1 (2.70) 57 (61.95) 0 (6.81E-3) 1 (0.56)

#ranks < 21 4 (1.50) 2 (3.90) 65 (67.64) 0 (0.01) 2 (0.84)

#ranks < 22 4 (2.10) 3 (5.40) 73 (73.13) 0 (0.02) 2 (1.26)

#ranks < 23 4 (2.90) 5 (7.40) 79 (78.30) 0 (0.05) 2 (1.96)

#ranks < 24 4 (4.10) 8 (10.20) 82 (83.03) 0 (0.09) 2 (2.87)

#ranks < 25 4 (5.70) 11 (13.70) 84 (87.21) 1 (0.16) 5 (4.27)

#ranks < 26 5 (7.80) 16 (18.30) 88 (90.78) 1 (0.30) 8 (6.23)

#ranks < 27 9 (10.70) 25 (24.20) 91 (93.69) 1 (0.56) 14 (8.96)

#ranks < 28 14 (14.50) 31 (31.30) 95 (95.95) 3 (1.04) 22 (12.67)

#ranks < 29 19 (19.60) 42 (39.80) 96 (97.59) 3 (1.92) 28 (17.57)

For comparison, the best 6 round differential for one active S-box is δ =
0x0007, γ = 0x0404 where P̃E(δ, γ) = 2−13.57 which is still sufficient to mount
a standard differential attack. Consequently, our attack always succeeded as
well. However, to go beyond standard differential attacks, even when using only
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29 pairs, which for a standard differential attack would not be sufficient, we
expect and observe a gain of more than 3.5 for 50% of the keys (cf. column 3 to
Table 1). The best 7 round differential for one active S-box is δ = 0x0007, γ =
0x0505 where P̃E(δ, γ) = 2−15.39 which is not sufficient to mount a standard
differential attack while our attack provides a gain of 5.97 for 50% of the keys.
Using N = 214, N = 213, N = 212 and N = 211 we get a gain of 3.954, 2.821,
2.159 and 1.758 respectively. Using more than one input difference and the full
code book, namely 0x0007, 0x000f, 0x0700, 0x0070 and 0x0f00 we expect and
observe (cf. column 5 of Table 1) a gain of 18.03 for 50% of the keys. Finally, the
best 8 round differential for one active S-box is δ = 0x0007, γ = 0x5055 where
P̃E(δ, γ) = 2−15.92.. Our attack has a gain of 1.44 for 50% of the keys(cf. column
6 of Table 1). Using all sixty input differences where one S-box is active in round
one, we expect a gain of 4.625 which is better than exhaustive key search (over
half the key space) by a factor of 3.625. Our experimental results for this case
are presented in the last column of Table 1.

4.2 Application to KATAN-32

KATAN-32 is one member of a family of ciphers defined in [10]. It has a block-
size of 32 bits, an 80 bit key and 254 rounds. The relatively small block-size
of 32 bits makes it an interesting target for our technique. The plaintext is
loaded into two registers of length 13 and 19, respectively. In each round, two
bits of the registers are updated, involving one key bit each. We refer to [10]
for more information. The currently best know differential attack on KATAN-
32 is a conditional differential attack that can break up to 78 rounds given
222 chosen plaintext/ciphertext pairs (see [14]). The best attack overall breaks
the full cipher slightly faster than exhaustive key search [13]. Note that, for
KTANTAN-32, which differs from KATAN-32 only in the key-scheduling, better
attacks are known (see [9,23]) but they do not apply to KATAN-32.

Below, we always assume δ = 0x1006a880which is the input difference for the
best known differential characteristic which holds with probability 2−31 after 71
rounds disregarding any dependencies. Note, however, that the special structure
of KATAN-32 means that in fact the first probabilistic difference only depends
on the plaintext values and not on the key values.

We consider a � = 24R attack below to maximise the number of rounds. This
implies a computational cost of 232 · 22� = 232+48 = 280 partial decryptions in
the online phase of the attack. Exhaustive search over half the key space would
have to perform 279 full encryptions where one full encryption costs roughly 4
partial decryptions. Hence, our attacks are twice as fast as exhaustive search.
However, we emphasise that compared to exhaustive search the gain in our attack
is significantly smaller.

71 + 24 Rounds of KATAN-32. The best output difference γ = 0x00000008 has
probability P̃E(δ, γ) ≈ 2−29.52, the output difference with the lowest probability
is γ̃ = 0x00000080 with P̃E(δ, γ) ≈ 2−32.10. We get E(R) ≈ 2505.211, V (R) ≈
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5096.661, E(W) ≈ −2467.448, V (W) ≈ 4868.280. Which gives an expected gain
of > 50 for 50% of the keys. We verified this estimate by considering the 16
differences with the highest probability. We compared randomly chosen right
keys with randomly chosen wrong keys and always recovered the right key as
the key with the highest rank.

91 + 24 Rounds of KATAN-32. The best output difference γ = 0x00400000 has
probability P̃E(δ, γ) ≈ 2−31.98, the output difference with the lowest probability
is γ̃ = 0x02000000 with P̃E(δ, γ̃) ≈ 2−32.00. We get E(R) ≈ 0.3695390, V (R) ≈
0.7390803, E(W) ≈ −0.3695384, V (W) ≈ 0.7390745. Which gives an expected
gain of 2.3586180 for 50% of the keys. The expected gain for 50% of the keys for
92 and 94 rounds is 1.9220367 and 1.2306869 respectively.

5 Conclusions and Further Work

In this work we presented a unifying framework for several standard differen-
tial attacks. This unified view allows to naturally consider multiple differentials
and by that improving upon known results. Our framework always provides
better success probabilities than any of the combined differential attacks alone;
although at the potential cost of increased computation time and memory. We
demonstrated the viability of our approach by extending the the best differen-
tial for SmallPRESENT-[4] by two rounds and the best known differential for
KATAN-32 by 20 rounds.

However, for many ciphers computing the distribution of counter values, i.e.,

D(N)
EK

(δ), is prohibitively expensive. For example, computing the Markov model

exactly for KATAN-48 would require O(248) memory which is well beyond what
is feasible today. Yet, starting from one difference computing one or two rounds
is usually feasible since only few output differences are possible after such a
small number of rounds. It is thus possible to extend a standard differential

attack using techniques discussed in this work. Instead of considering D(N)
EK

(δ)

the attacker would consider D(N)
Rkr

(δ). Then, in the online phase of the attack
counters are weighted accordingly to their distribution. We leave the details of
such an approach open for further investigation.
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