

L. Rivest, A. Bouras, and B. Louhichi (Eds.): PLM 2012, IFIP AICT 388, pp. 310–321, 2012.
© IFIP International Federation for Information Processing 2012

Improved Span Time Performance
in NPD Using Better Coordination

Samuel Suss and Vince Thomson

Department of Mechanical Engineering, McGill University
817 Sherbrooke Street West, Montreal, Canada H3A 2K6

samuel.suss@mail.mcgill.ca, vince.thomson@mcgill.ca

Abstract. New product development (NPD) processes are characterized by un-
certainty and iteration making them difficult to plan and manage. A novel dy-
namic model of NPD that explicitly models communication techniques is used
to examine ways to improve span time and effort performance through im-
proved coordination. Results of simulations under various scenarios of epistem-
ic and aleatory uncertainty illustrate how coordination and adapting agile NPD
methods to non-software product development can be used to attain significant-
ly better performance.

Keywords: Collaborative product development, coordination, complex product
development, concurrent engineering.

1 Introduction

New product development (NPD) is a critically important part of product lifecycle. It
consumes a large proportion of the overall time of bringing a product to market, and
determines about 70% of product cost [1]. The implementation of engineering design
tools, concurrent engineering (CE) practices and product data management systems
has reduced NPD cycle times in recent years. However, in large NPD projects where
hundreds of engineers work to develop complex products, there remain significant
inefficiencies. Researchers have estimated that the amount of waste in aerospace and
defence NPD programs is 60–90% of the charged time with about 60% of all tasks
being idle at any given time [2]. The actual time engineers spend on value-added
activities is much less than half of their total working time. There is much efficiency
lost in wasted communication, waiting for information and lack of coordination.

Although effective teamwork and individual initiative are important in the success-
ful performance of NPD, the manner in which the engineering design process in NPD
is structured and coordinated is found to be the factor of significant consequence [3-
9]. Engineering design is inherently iterative and uncertain [10, 11]. The way in
which the process is divided into differentiated tasks leads to dependencies between
the tasks. Teams of specialists carrying out these tasks create evolving information
that reduces uncertainty during the process and that is required by other dependent
tasks. It is the way that this developing information is shared among interdependent
tasks that leads to rework and this significantly affects the required effort and span

 Improved Span Time Performance in NPD Using Better Coordination 311

time of the process. Thus, in planning an NPD process it is the choice of the work
breakdown structure and the way in which interdependent work is managed that de-
termines to a great extent the difficulties that teams and individuals encounter in their
efforts to successfully complete a project.

With a focus on engineering design of complex products, the goal of this research
is to find methods for achieving significantly faster NPD, i.e., the reduction of the
span time to create a product. We argue that this can be done with better coordination
of the NPD process and that this in turn can be achieved through a better understand-
ing of how coordination strategies and tactics impact the creation and communication
of information, and under what conditions they are effective. In order to accomplish
this, we treat the NPD process as a complex system of elements: resources, tasks, and
developing information, that interact to change the state of the system, and we study
engineering design processes using computer modeling and simulation.

One of the main distinctions regarding uncertainty in engineering design is be-
tween the lack of knowledge (epistemic) and stochastic (aleatory) uncertainty [12].
Epistemic uncertainty is due to ignorance or incomplete information. Some epistemic
uncertainty is reducible, for instance, via further studies, measurements or expert
consultation. Stochastic uncertainty is the inherent variation associated with a system
or environment such as dimensional variation in a production system, the variation in
task duration, or the unexpected change in product requirements originating from the
customer. Fundamentally, the rate of progress towards the certainty of information is
affected by how a design task reduces epistemic uncertainty, and this is a function of
the amount of work done in the task and the uncertainty of input information. The
aleatory uncertainty of information developed in a task and its input information is
always present, and its influence must be taken into consideration [13].

2 The Model

In order to analyse the effects of coordination, we model information flow explicitly
and use it to measure task progress in an NPD model, hereinafter referred to as the
collaborative process model or CoPM for brevity [14]. We consider a generalized
engineering design process composed of tasks arranged into phases with a design
review at the end of each phase. Each of the tasks is considered to be performed by a
cross-functional development team. In keeping with the practice observed in industry
to ensure that design work being done by development teams integrates together cor-
rectly into a product, we also include a system level integrator in our process model.

CoPM considers the process as a dynamic system with tasks, resources and infor-
mation as its elements. The tasks are linked together through their need for informa-
tion from each other in order to make progress during the design work. Resources are
linked to information and tasks by the requirement that a resource assigned to a task
can do work or process information, but not both simultaneously. Information
processing requirements are linked to the dependency strength between tasks.

In CoPM, we split a task into three subtasks: work, which is comprised of the tech-
nical activity required to complete the task; read, which is the time spent by a re-
source performing the activity required to read, interpret and comprehend incoming

312 S. Suss and V. Thomson

information; and prepare, which is the time spent by the resource in preparing infor-
mation for communication. We model each of these subtasks as a stochastic process
so that the amount of time a resource needs to perform each activity is chosen from an
inverse triangular probability density function (PDF). The parameters of the triangular
PDF chosen to represent the work subtask reflect the capabilities of the team chosen
to perform this task.

Supported by our own observations in product development organizations and
those reported by Allen [15], we assume that the total amount of information that
must be communicated between interdependent tasks is directly proportional to the
strength of their mutual dependency [14]. We reason that, if there is greater uncer-
tainty in an activity’s output, it is likely that more estimates of the output information
need to be generated and communicated to dependent activities before the design
activity is completed. Similarly, if there is greater sensitivity to an activity’s output, it
is likely that more information needs to be transferred before the linked activities
arrive at a jointly satisfactory solution. For each increased level of uncertainty, the
effect of sensitivity is magnified and vice versa; so, we assume that the effects of
information uncertainty and task sensitivity are multiplicative.

Information is conceptualized as discrete units, and thus, each unit requires a sto-
chastic amount of processing time during the prepare or read subtasks. There are,
therefore, a fixed number of units of information that must be received by a depend-
ent task from other interdependent tasks. The number of information units that must
be communicated from any task i to another task j for each pair of tasks in the process
are represented as a matrix, NC, proportional to a design structure matrix D, where
the numerical value of each of the elements represents the dependency strength be-
tween the pair of tasks. The dependency strength may be formed from the product of
the initial uncertainty and sensitivity between each pair of tasks [16].

Each task and each unit of information carries out its own processing thread in the
simulation of the design process. Each thread is subject to mathematical and logical
rules governing executed events, and the values of the state variables that are assigned
accordingly. The primary state variables are WTti, the amount of work performed by
task i until time t; WDi, the amount of work required to be performed by task i (which
is initially set by an inverse PDF, but later can be increased when rework is required);
Iti, the number of units of information read by task i until time t; and γi, the total num-
ber of units of information from all other tasks required to be read by task i.

The mathematical and logical rules governing the processing threads and values of
state variables are summarized as follows:

(1) Work in a task stops when there is insufficient input information. This oc-
curs when WTti/WDi, the fraction of work performed in a task i, exceeds a
stochastically determined starve condition which is distributed normally
about Iti /γi , the fraction of information received by the task.

(2) Information is generated in a task in accordance with the progress of work.
The nth unit of information is ‘created’ in task i when WTti /WDi ≥ n Iti /γi.

(3) Work in each task is performed in cycles between which communication is
done, if required. The maximum length of each cycle, Δti, is a modeling in-
put for each task i in the process being modeled.

 Improved Span Time Performance in NPD Using Better Coordination 313

(4) The state of progress of a task at any time t, Sti, is assumed to be a linear
combination of the achieved technical work fraction and the received input
information fraction. Note that Sti varies from 0 to 1.

௧ܵ௜ ൌ 12 ൬ܹ ௧ܶ௜ܹܦ௜ ൅ ௜ߛ௧௜ܫ ൰

(1)

(5) The ratio of the epistemic uncertainty of each unit of information created by
task i at time t to the initial epistemic uncertainty of that task, εti , is given by
a modified Gompertz function which is an S-shaped curve that allows for
different rates of approach to the lower and upper asymptotes at the start and
end of a task: ߳௧௜ ൌ 1 െ ݁ቀି௕೔௘൫ష೎೔ೄ೟೔൯ቁ

(2)

where bi and ci are input parameters that govern the shape of the profile of
each task.

(6) The ratio of the aleatory uncertainty of each unit of information created by
task i at time t to the initial uncertainty of that task is given by the following
equation: ߮௧௜ ൌ ߳௧௜݉௜۷۴ۼ܃ሺ0,1ሻ

(3)

where mi is a scaling factor and UNIF(0,1) is a sample chosen from the uni-
form probability distribution between 0 and 1.

(7) If the uncertainty of received information in a task is greater than the uncer-
tainty of information received earlier, rework is required. The amount of re-
work is calculated as the amount of work done in the intervening work
cycles where the input uncertainty is lower than the most recent information
received. Rework is manifested as an increase in WDi. The changes to all the
WDi during a simulation are accumulated and recorded as an output statistic
called churn.

(8) A task is completed when it finishes its work requirement, i.e., WTti=WDi,
and when it has received all of its required input information, i.e., Iti= γi, or
unless it is stopped because the allotted span time for that task (a model input
for each task) has been exceeded. A phase is completed when all the tasks in
the phase are done.

(9) Once tasks in a phase are completed the possibility of design version rework
is checked, where its probability is governed by the minimum of:

(a) the certainty of information in each task at the end of the phase,
(b) the percentage of completion of information exchange of each task,
(c) the percentage of completion of work of each task, and
(d) the percentage of completion of system level oversight.

314 S. Suss and V. Thomson

(10) Design version rework requires less effort each time it is repeated. This is
because of first order learning [17] and because of a reduction in epistemic
uncertainty. The effects of both of these are included in the model.

Although we assume that information develops uniformly with progress made in the
technical work of the task, information is not communicated as soon as it develops,
but rather is prepared for communication and transmitted periodically as one would
expect in practice. In CoPM, therefore, the created information entities wait until an
event triggers their release to the prepare queue. This event occurs each time the ratio
WTti /WDi reaches an integer multiple of the modeling input CIi which defines the
communication interval as a fraction of the nominal span time of task i. Thus, when
the following condition is true, the kth batch of information entities is released to the
prepare queue of task i:

WTti / WDi ≥ k CIi , for all k = 1, 2, 3,...., 1/ CIi
(4)

By focusing on how information is used during the design process (design work plus
communication or processing of information), the CoPM considers the trade-off be-
tween direct design effort (WT) and indirect activities such as communication (I, γ)
and project management (system level oversight, which is explicitly modelled). This
allows the CoPM to be very realistic in comparison to actual design tasks in industry
both in how the model operates and in results.

3 Insights from Simulations with the Model

Detailed results for a wide variety of scenarios can be seen in [14]. Space limits the
descriptions here to highlights of the findings in each of the following categories.

3.1 Overlapping Sequentially Dependent Tasks with Various Scenarios of
Uncertainty

The effects on effort and span time for overlapping sequentially dependent tasks were
studied with CoPM for various profiles of reduction in epistemic and aleatory uncer-
tainty (see Fig. 1 for an example showing results with high aleatory uncertainty).

For tasks with fast reduction of epistemic uncertainty there is a substantial reduc-
tion in span time when tasks overlap. This is evident even when there is a large mag-
nitude of aleatory uncertainty and strong task interdependence, but this requires fre-
quent communication of interim information (CIi =0.1) and no delays in information
flow due to latency or resource constraints. This is not the case for tasks with slow
reduction in epistemic uncertainty, where overlapping tasks by more than 50% has
little additional benefit in span time, and in fact, incurs a significant increase in effort.

 Improved Span Time Performance in NPD Using Better Coordination 315

Fig. 1. Effort versus span time for two profiles of epistemic uncertainty reduction for overlap-
ping of five sequentially dependent tasks

Examination of simulation results shows that span time and effort performance is
affected by the increasing amount of churn that is generated when there is high over-
lap. When uncertainty reduces more slowly, there is more rework generated with
increasing overlap, and tasks do not make progress, but spend more time doing re-
work due to imprecise information. The additional rework results in increased effort,
and an increase in span time. Simulations with several different values of random
uncertainty m and slowly reducing epistemic uncertainty show that the reduction in
span time is insensitive to the magnitude of m at 50% overlap. However, for fully
overlapped tasks, there is a wide divergence with m, indicating an increasingly larger
amount of effort and increasingly smaller additional reduction in span time when
random uncertainty is higher. This result is primarily due to the increasing amount of
churn that is generated.

3.2 The Effects of Communication Interval

With high interdependency, parallel execution with interim information exchange is
an important method of enabling dependent tasks to effectively continue with their
work. The timeliness with which interim information is exchanged allows each task to
make progress towards a successful design review at the end of each phase. However,
exchanging uncertain interim information can lead to unnecessary rework which im-
pedes the progress of tasks.

Simulations show that with slowly reducing epistemic uncertainty, span time re-
duces with smaller communication intervals until a minimum is reached at CIi ap-
proximately equal to 0.1 (the optimal point). Span time reduces with more interim
communication by nearly 75% at the optimal point. When CIi reduces below the op-
timal point, span time rises, and the steepness and magnitude of the rise is strongly
affected by the value of aleatory uncertainty m. With more rapid reduction in

316 S. Suss and V. Thomson

epistemic uncertainty, there is a 35% change in span time over the range of CIi. The
minimum span time with more rapid reduction in uncertainty is 36% lower than that
with more slowly reducing uncertainty.

Examination of the results for rework, starve time and design version rework
shows that the behaviour of the NPD system is largely effected by the increase in
starve time when CIi is above the optimal point. This results in an increase in design
version rework. The starve time increase is a result of tasks not getting enough infor-
mation to allow them to progress in their work when the communication interval is
too high. This causes an insufficient reduction in uncertainty when a design review
takes place and design version rework is triggered. When CIi is below the optimal
point, increased span time is caused by churn from too frequent communication of
interim information that is subject to random uncertainty.

3.3 Effects of Delays in Information Flow

In projects performed by many people in various locations, delays in simply getting
information to the attention of those that need to make use of it can be a significant
portion of the time required to do the work itself. These delays, where information
must travel through several layers within an organization and queue for the attention
of each reviewer, can cause unnecessary rework with significant knock-on effects.
Moreover, since engineers and designers are often occupied with several projects at
the same time, there is a delay before they turn their attention to following up on
missing information required to make progress on one of their tasks. These delays in
information flow are referred to as communication latency.

We divided latency into three types: the delay caused by the path the information
must take through various levels in the receiving organization before it reaches the
final addressee; the delay caused by resource constraints in the system level integrator
process; and the delay occurring when the addressee team does not turn its attention
immediately to incoming information.

CoPM simulations evaluated the impact of delays for various product development
system structures and levels of uncertainty. Each of the delay types, when applied in
isolation had a relatively small effect on span time. However, it was found that
sources of delay in information flow combine in a non-linear way to increase span
time significantly. Each source of delay increases the likelihood that information get-
ting to a dependent task is not continuously reducing in uncertainty and this generates
churn as tasks operate with imprecise information. Each additional source of delay
further exacerbates the delays due to other sources and leads to a tipping point where
the combination of delays is such that tasks cannot reduce their uncertainty sufficient-
ly, and cycles of design version rework ensue.

This insight has important managerial implications in that reducing delays in in-
formation flow between interdependent tasks can have a large effect on reducing span
time. Making an effort to reduce one or more sources of delay in information flow has
an outsized effect on project performance.

 Improved Span Time Performance in NPD Using Better Coordination 317

3.4 Adapting Agile NPD Methods to Non-software Product Development

In this section, we discuss a coordination scheme called ‘scrum’ that is part of agile
product development methods [18]. In the scrum scheme, a development team is a
cross-functional group that does the analysis, design, implementation, testing, etc.,
that is required to create a deliverable software product in short increments (typically
one month). During this period of time, called a ‘sprint’, the team is required to pro-
duce an entire, tested version of the software that completely answers a planned set of
requirements. Each successive sprint goes on to add additional requirements so that at
the end of the project the software meets the complete list of requirements for the
final product. The sprints are characterized by intense communication within the self-
managing development team (typically co-located), and by an ironclad commitment
to achieving the agreed to requirements (which cannot be changed during a sprint)
within the allotted time frame. This product development method has been found to
be effective in significantly reducing software development time.

Although this scheme is feasible in software development, it cannot be replicated
literally in mechanical design where physical parts must be designed, materials pro-
cured, and then undergo a manufacturing process in order to produce a prototype that
can be tested. However, in an analogy to the scrum concept, we could consider the
goal of a sprint to be the solution to a series of well defined design problems, provid-
ing the information required to make a key decision in an NPD project. Each succes-
sive sprint would then provide further information to an additional series of design
problems until the design of the final product is achieved.

A key element here is that the tasks involved in each phase completely solve a spe-
cific set of design problems that can be evaluated during a design review. Since NPD
of a complex product is essentially a series of activities providing information that
allow key design decisions to be made, the design review at the end of each of these
short phases or ‘sprints’ formalizes the decisions. The tasks in each phase leading up
to a design review are those that generate the information required to make these key
decisions. As in the sprint method for software, the work in each phase must be done
with intense interaction between all participants so that the design review is success-
ful and rework is not necessary. In practice, this is facilitated by smaller sized sprints.

Thus, in our model, a simulated project is divided into a series of six short phases
with five tasks, analogous to sprints with a design review at the end of each phase. To
model the co-location and intense communication between the various tasks, we elim-
inated the system level integrator function as the scrutinizer of each information item,
and included the integrator as a participant in the co-located group of development
teams. All delays due to latency of information exchange were removed. For compar-
ison, we performed simulations with the same technical work content with two phases
and five tasks with an integrator function acting as oversight of all information com-
municated between the tasks, and communication latency to get information from one
development team to the other.

Simulations show that with slow reduction in epistemic uncertainty and high alea-
tory uncertainty, span time is 33% lower with the scrum method (Fig. 2). When the
magnitude of aleatory uncertainty increases from 0 to 0.9 the span time remains

318 S. Suss and V. Thomson

approximately constant in the scrum scenarios, but increases by approximately 25%
in the standard scenarios. This result is primarily due to lower churn when using the
scrum method and the mitigation of increases in random uncertainty. When epistemic
uncertainty reduces more rapidly, both the standard and scrum methods are insensi-
tive to increases in the magnitude of aleatory uncertainty.

Fig. 2. Comparison of span time in scrum and standard NPD for several cases of uncertainty

The scrum method enables more frequent and rich communication of information,
minimizing latency and its effects. Short sprints with more design reviews provide
opportunities to efficiently judge the work accomplished in each sprint and to provide
feedback, keeping the work from straying too far off track. In interviews with senior
NPD project managers in the aerospace industry, we found that frequent design re-
views are sometimes used. In the words of a veteran NPD project director we inter-
viewed, “with frequent interim design reviews we were able to keep the work on track
… stay ‘out of the ditch’ and keep the work as close as possible to the ‘white line’ in
the middle of the road.” Thus, the scrum method works by allowing intense coordina-
tion among the people doing the work who can most effectively do this coordination,
while providing opportunity for managers to keep the work on track and to refine and
clarify requirements as the project progresses.

4 Discussion and Conclusion

The explicit modeling of information flow in an NPD process enabled CoPM to
capture the dynamic complexity of projects with interdependent tasks. This was ac-
complished through the explicit and detailed modeling of information exchange, the
linkage of information exchange to the work accomplished in each task, the deploy-
ment of resources, and the techniques used to manage the NPD process.

 Improved Span Time Performance in NPD Using Better Coordination 319

The model differentiated between unnecessary rework and the iterative refinement
of tasks that occurred as information was communicated from task to dependent task.
This iterative refinement was incorporated in the information exchange between each
pair of tasks, where each group of interdependent tasks had to exchange information
that was increasingly updated as the process was carried out. Rework was emergent in
CoPM due to the effects of the changing uncertainty of information and its interaction
with the dynamics of the information flow. Information improved during each task,
and the attributes of this information with regard to quality and uncertainty evolved as
the task progressed. Interim information that was communicated carried these infor-
mation attributes that were related to the state of the work in the task that created it.
This information, when used by other tasks, had an effect on their progress. If infor-
mation was imprecise or unstable, and if it was used inappropriately as a basis for
further work or decisions, the arrival of the contradictory information triggered re-
work of some or all of the work.

Simulations with CoPM showed that an appropriate interval between communica-
tion of interim information optimized task progress and minimized project span time
and effort. It was found that the optimal point of communication was quite defined
when the uncertainty of tasks reduced slowly and there was significant magnitude of
random uncertainty. If uncertainty reduced quickly or there was little random uncer-
tainty, the more frequent the communication the better. The mechanisms that in-
creased span time and effort at either side of the optimal point were design iteration
rework (churn) due to the too frequent communication of uncertain information, and
design version rework where there was insufficient frequency of communication to
avoid a deadlocked condition in interdependent tasks.

Where information flow was restricted between interdependent tasks, effects due to
delays and resource bottlenecks combined in a non-linear way leading to tipping
points. Each type of delay had a small effect by itself, but exacerbated the effects
caused by other delays leading to increasing levels of churn and design versions.
Conversely, the reduction of some delays and bottlenecks with the use of managerial
and technological solutions had a highly leveraged effect on reducing span time.

When there was a high degree of interdependency between tasks in an NPD
process, we found that span time could be reduced significantly by adopting the
‘scrum’ method. Here, the work had to be structured to allow for ‘sprints’ with inten-
sive coordination between self-managing teams executing tasks that together solved
well-defined design problems. After each sprint, an interim design review was per-
formed to evaluate the intermediate outcomes, to provide feedback, and to set the
detailed requirements for the next sprint. In this way, the impediments to information
exchange were minimized and the need for system level oversight was effectively
met. This method had the greatest impact in reducing span time for tasks with higher
random uncertainty.

In terms of takeaways for product development managers, there are two specific,
actionable items. First, the research in this paper shows that management of informa-
tion transfers is the key to an effective product development process. The work with
the collaborative process model showed the high impact of information transfers on
process effectiveness (amount of communication, timing of communication, system

320 S. Suss and V. Thomson

level oversight), but did not discuss many, alternative coordination mechanisms. A
discussion on coordination mechanisms can be read in [19].

The second takeaway is the effectiveness of the scrum method. It was clearly
shown that increasing design reviews shortens span time. The scrum method has been
very effective in the software industry and is now being used in other design domains.

Overall, the results of the CoPM simulations help NPD projects by providing
guidelines for improving information flow. CoPM has proven to be a useful tool by
providing a deeper understanding of the mechanisms that drive project performance.

References

1. Wheelwright, S., Clark, K.: Revolutionizing Product Development. The Free Press, New
York (1992)

2. Oppenheim, B.W.: Lean Product Development Flow. Systems Engineering 7(4), 352–376
(2004)

3. Browning, T.R., Fricke, E., Negele, H.: Key Concepts in Modeling Product Development
Processes. Systems Engineering 9(2), 104–128 (2006)

4. Joglekar, N., Ford, D.: Product Development Resource Allocation with Foresight. Euro-
pean Journal of Operational Research 160(1), 72–87 (2005)

5. Kerley, W., et al.: Redesigning the design process through interactive simulation: a case
study of life-cycle engineering in jet engine conceptual design. Int. J. Services and Opera-
tions Management 10(1), 30–51 (2011)

6. Mihm, J., Loch, C.H.: Spiraling out of control: Problem-solving dynamics in complex dis-
tributed engineering projects. In: Braha, D., Minai, A., Bar-Yam, Y. (eds.) Complex Engi-
neering Systems. Perseus Books, New York (2006)

7. Terwiesch, C., Loch, C.H., Meyer, A.D.: Exchanging Preliminary Information in Concur-
rent Engineering: Alternative Coordination Strategies. Organization Science 13(4), 402–
419 (2002)

8. Wynn, D., Clarkson, P.J., Eckert, C.: A Model-Based Approach to Improve Planning Prac-
tice in Collaborative Aerospace Design (2005)

9. Yassine, A.A., et al.: Information hiding in product development: the design churn effect.
Research in Engineering Design 14(3), 145–161 (2003)

10. Safoutin, M.J.: A methodology for empirical measurement of iteration in engineering de-
sign processes, University of Washington, Seattle, Washington (2003)

11. Fredriksson, B.: Systems Engineering–A Holistic Approach to Product Development. Grif-
fin 94, 95–105 (1994)

12. Oberkampf, W.L., et al.: Challenge problems: uncertainty in system response given uncer-
tain parameters. Reliability Engineering & System Safety 85(1-3), 11–19 (2004)

13. Suss, S., Grebici, K., Thomson, V.: The Effect of Uncertainty on Span Time and Effort
within a Complex Design Process. In: Heisig, P., Clarkson, J., Vajna, S. (eds.) Modelling
and Management of Engineering Processes, pp. 77–88. Springer, London (2010)

14. Suss, S.: Coordination in Complex Product Development. PhD Thesis, McGill University,
Montreal, Canada (2011)

15. Allen, T.J.: Architecture and communication among product development engineers. Cali-
fornia Management Review 49(2), 23–41 (2007)

 Improved Span Time Performance in NPD Using Better Coordination 321

16. Yassine, A.A., Falkenburg, D., Chelst, K.: Engineering design management: an informa-
tion structure approach. International Journal of Production Research 37(13), 2957–2975
(1999)

17. Von-Hippel, E., Tyre, M.J.: How learning by doing is done: problem identification in nov-
el process equipment. Research Policy 24(1), 1–12 (1995)

18. Cockburn, A.: Agile Software Development: The Cooperative Game. Addison Wesley,
Professional (2006)

19. Liang, W.H.: Coordination Mechanisms for New Product Introduction. Master Thesis.
McGill University, Montreal, Canada (2009)

	Improved Span Time Performance
in NPD Using Better Coordination
	Introduction
	The Model
	Insights from Simulations with the Model
	Overlapping Sequentially Dependent Tasks with Various Scenarios of Uncertainty
	The Effects of Communication Interval
	Effects of Delays in Information Flow
	Adapting Agile NPD Methods to Non-software Product Development

	Discussion and Conclusion
	References

