
A Tree-Based Approach to Integrated Action

Localization, Recognition and Segmentation

Zhuolin Jiang1, Zhe Lin2, and Larry S. Davis1

1 University of Maryland, College Park, MD, 20742
2 Adobe Systems Incorporated, San Jose, CA, 95110
{zhuolin,lsd}@umiacs.umd.edu, zlin@adobe.com

Abstract. A tree-based approach to integrated action segmentation,
localization and recognition is proposed. An action is represented as a
sequence of joint hog-flow descriptors extracted independently from each
frame. During training, a set of action prototypes is first learned based
on a k-means clustering, and then a binary tree model is constructed
from the set of action prototypes based on hierarchical k-means cluster-
ing. Each tree node is characterized by a shape-motion descriptor and a
rejection threshold, and an action segmentation mask is defined for leaf
nodes (corresponding to a prototype). During testing, an action is local-
ized by mapping each test frame to a nearest neighbor prototype using
a fast matching method to search the learned tree, followed by global fil-
tering refinement. An action is recognized by maximizing the sum of the
joint probabilities of the action category and action prototype over test
frames. Our approach does not explicitly rely on human tracking and
background subtraction, and enables action localization and recognition
in realistic and challenging conditions (such as crowded backgrounds).
Experimental results show that our approach can achieve recognition
rates of 100% on the CMU action dataset and 100% on the Weizmann
dataset.

1 Introduction

Action recognition has become an active research topic in computer vision. In
this paper, we propose a simultaneous approach to localize and recognize multi-
ple action classes based on a unified tree-based framework.

Realistic actions often occur against a cluttered, dynamic background and
are subject to large variations in people’s posture and clothing, illumination
variations, camera motions and occlusion. Figure 1 shows examples of action
frames in realistic environments (with cluttered backgrounds and moving ob-
jects). In these cases, it is not easy to detect and segment the actors from the
backgrounds. Consequently, they pose a significant challenge for those action
recognition approaches which perform simple preprocessing such as background
subtraction [1–4]. Even though many previous works have been done for action
recognition [5–9], robustly localizing and recognizing actions viewed against a
cluttered and dynamic background is still important to explore.
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(a) (b) (c)

Fig. 1. Examples of action localization and recognition. (a) The jumping-jacks action is
recognized even though large background motion flows created by crowds; (b) The two-
handed-wave action is recognized correctly while the actor is partially occluded; (c) The
one-handed-wave action is recognized while there is a significant motion interruption
from vehicles in the background.

Localizing an action in a video is more computationally complex than search-
ing for an object in a 2D image. For example, a video sequence with size
120× 160× 1000 frames can produce more than 1014 subvolumes with variable
spatial and temporal dimensions, which is approximately 106 times larger than
the number of subwindows produced when searching for an object in a 120×160
image. Although there are some recent approaches for efficiently searching sub-
windows in a 2D image for object detection [10], they cannot be easily extended
to volume search in 3D spatial and temporal spaces. Most prior work employs
the sliding window scheme for detecting actions. Actions are usually described by
adopting spatial-temporal features and combined shape and motion information.
The classifiers are based on cascade classifiers [11, 12], vocabulary trees [7] and
branch-and-bound schemes [10, 13]. However, most previous approaches for ac-
tion detection and retrieval built action detectors independently for each action
class, which may not scale well for detecting a large number of action types.

We introduce an efficient, tree-based approach to localize and recognize an
action simultaneously. This approach extends our previous work [9]. Compared
to [9], the differences between two approaches include: (1) the shape feature in
this paper is based on HOG while the shape feature in [9] is based on binary
silhouette or appearance-based likelihood; (2) the prototype tree in this paper is
used to localize and recognize actions while the tree in [9] is used to speed up the
process of prototype matching and actor location refinement; (3) the probabilistic
framework in this paper is constructed to determine action category labels and
action prototypes, while the probabilistic framework in [9] is built to determine
actor location and action prototype.

The block diagram of our approach is shown in Figure 2. In the training phase,
an action interest region 1 is specified in each frame of a set of training videos.
Action prototypes are learned via k-means clustering on the entire set of the
computed hog-flow descriptors. Next, a binary tree model is constructed using

1 Its center is on the vertical central axis of human bounding box, and its side length
is proportional to the height of the bounding box.
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Fig. 2. Overview of our approach

the set of learned action prototypes. In this tree model, each leaf node corre-
sponds to a learned action prototype and contains a list of parameters including
the probability of the prototype belonging to an action category, frame indices
of all the training descriptors which matched to this prototype, and a rejection
threshold. These parameters allows us to integrate action localization, recogni-
tion and segmentation in a video. In the testing phrase, we use the conventional
sliding-window-based scheme to generate a sequence of initial bounding boxes of
an action. These initial bounding boxes are rapidly obtained by traversing the
learned binary tree using a fast matching approach (see sec. 2.2) to find the near-
est neighbor prototypes. This is followed by a Kalman filtering-based refinement
on their scales and positions. Finally, given the refined bounding boxes at each
frame, the action category is identified by maximizing a sum of joint probability
method. Our main contributions are three fold:

– A HOG-based shape feature is adopted for modeling shape information to
enhance the joint shape-motion descriptors proposed in Lin et al. [9].

– A binary-tree-based approach is introduced to efficiently localize and rec-
ognize multiple action classes against cluttered, dynamic backgrounds and
under partial occlusions.

– Action recognition is modeled as a maximum probability estimation problem
of the joint probabilities of action category labels and action prototypes.

1.1 Related Work

Numerous approaches have been proposed for action detection and recognition
recently. Some approaches use motion trajectories of human bodies or body in-
terest points (or landmarks) to recognize actions, mainly based on visual track-
ing [14–17]. Other approaches represent an action as a space-time volume or use
human silhouettes as shape models for action recognition [1–4, 18]. But the lat-
ter typically requires background subtraction, which faces severe difficulties in
real world scenarios (i.e. cluttered, dynamic backgrounds). Recently, space-time
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interest points, or local feature-based approaches, have been applied to action de-
tection and recognition [6, 19–21, 8]. Many approaches combine multiple features
to improve action recognition performance [22, 7, 23, 12, 24]. Commonly used
classifiers for action recognition include k-NN classifiers [25, 26], support vector
machine (SVM) [21, 22, 6, 27, 28], boosting-based classifiers [16, 12, 20, 11],
hidden markov model (HMM) [29], dynamic time warping (DTW)-based classi-
fiers [24, 9, 30] and Hough voting schemes [31].

In analogy to object detection, sliding window-based schemes have been em-
ployed for actiondetection. Laptev andRerez [12] combined histograms of oriented
gradients (HOG) [32] and histograms of optical flow for action detection. Thurau
and Hlavac [25] extended the standard HOG-based pose descriptor to cope with
background clutter and used n-Gram models for sequence matching. Mikolajczyk
and Uemura [7] used a large number of local motion-appearance features and rep-
resented them in a vocabulary forest. Features extracted from a test sequence are
matched to the trees in the forest to vote for the action categories and locations.

However, most of the action detection approaches [5, 13, 12] built a detec-
tor for each action class independently. Detection is then very expensive when
the number of action classes is large. For multi-class action recognition, shar-
ing feature computation and basic classification steps between action categories
is desirable. This has been investigated in [33] for multi-class object detection.
Motivated by this work, we introduce a simultaneous multi-class action localiza-
tion and recognition approach by sharing information (feature computations) to
reduce redundancy and improve efficiency.

2 Action Representation and Learning

We use hog-flow descriptors for representing actions. Here we regard a sliding-
window region as a potential action interest region. A hog-flow descriptor is
extracted from each potential action interest region in an image for determining
whether the action of interest exists. An action interest region2 is defined as a
square region around the human body.

2.1 Hog-Flow Descriptor

We compute a shape descriptor based on the histogram of oriented gradients in-
troduced in [32]. A simplified HOG descriptor for an action interest region is rep-
resented as a feature vectorDh = (h1...hnh

) ∈ Rnh by dividing the action interest
region into nh non-overlapping square grids (or sub-regions)R1...Rnh

. Unlike [32]
which computesHOGdescriptors froma dense overlapping grid, we compute them
on a non-overlapping square grid. More specifically, we compute the descriptor as
follows: The input image I is first smoothed by a Gaussian filter with standard

2 For the training data, we compute the action interest region from background sub-
traction. The action interest region is defined as a square region around the localized
bounding box. For the test data, the action interest region is obtained by global fil-
tering refinement (see sec. 3.2).
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(a) (b) (c) (d) (e) (f)

Fig. 3. An example of computing the hog-flow descriptor of an action frame against
a moving camera and a dynamic background. (a) Raw optical flow field; (b) Motion-
compensated optical flow field; (c) Image spatial gradient, (d) Flow descriptor Df

computed from the raw optical flow field. The flow descriptor is visualized by placing its
four channels in a 2× 2 grid. (e) Flow descriptor Df computed from the compensated
optical flow field, (f) A visualization of HOG descriptor Dh with 8 × 8 grid and 9
orientation bins.

deviation σg = 2; then we use a simple 1-D centered mask [-1, 0, 1] to compute
the image spatial gradient x component gx(x, y) = I(x + 1, y) − I(x − 1, y) and
y component gy(x, y) = I(x, y + 1) − I(x, y − 1) along x direction and y direc-
tion respectively3. The magnitude ρ and orientation θ are computed by ρ(x, y) =√
gx(x, y)2 + gy(x, y)2, θ = arctan gy(x, y)/gx(x, y). Next, we divide the action in-

terest region intonh non-overlapping square grids.For eachgrid,weaccumulate the
votes over all the pixels (x, y) into no orientation bins weighted by their magnitude
ρ(x, y) to compute the histograms of oriented gradients. Finally, the feature vector
Dh is obtained by concatenating all the histogram entries and L2-normalization.
The image spatial gradients and the HOG descriptor computed from an action in-
terest region are visualized in Figure 3(c) and 3(f), respectively.

A flowdescriptor for an action interest region is represented as a nf -dimensional
feature vectorDf = (qbmf+

x , qbmf−
x , qbmf+

y , qbmf−
y ) ∈ Rnf , where ‘qbmf ’ refers

to quantized, blurred, motion-compensated flow. The flow descriptor Df is
computed by using the approach introduced in [9]. A median flow-based motion
compensation scheme is used for handling the influences of moving cameras and
dynamic backgrounds in [9]. Figure 3(a) and 3(b) show an example of motion flow
compensation for an action frame against a moving camera and a dynamic back-
ground. From these two figures, we know that this approach not only effectively
removes background flows but also corrects foreground flows, so the extracted flow
descriptors are robust against cluttered, dynamic backgrounds. A flow descriptor
for an example action interest region with and without motion compensation, are
visualized in Figure 3(d) and 3(e) respectively.

We concatenate the shape and motion descriptors Dh and Df to form a joint
hog-flow descriptor. The distance between two hog-flow descriptors is computed
using the Euclidean distance metric.

2.2 Tree Model Construction and Matching

We represent an action as a set of representative action prototypes [29, 25, 9],
Λ = (λ1, λ2...λk). For compressing the redundant information from the training

3 For computing the gradient vector at pixel position (x, y) of color images, we compute
the image gradients for each color channel and take the one with largest norm.
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descriptors in the presence of small inter-class or large intra-class variability, and
learning representative action prototypes Λ, we perform clustering on the entire
set of hog-flow descriptors. Next, a binary tree model is constructed from these
learned prototypes.

Prototype Learning. Given the set of descriptors extracted from all frames of
the training videos, we perform k-means clustering using the Euclidean distance
measure for learning the action prototypes. Since our HOG descriptors and flow
descriptors are obtained by L2 normalization, the Euclidean distance metric is
reasonable for clustering the joint hog-flow descriptors. The resulting cluster
centers are used as the learned action prototypes. Figures 4(a) and 4(b) show
typical HOG components and flow components of action prototypes.

Tree Learning. In order to rapidly localize and recognize an action occurring in
a video, we build a binary tree over the set of prototypes based on the hierarchical
k-means clustering algorithm [34].

For maximizing the efficiency of the tree search algorithm, we estimate a
matching rejection threshold for each tree node. The thresholds are denoted as
Θ = (θ1, θ2, ..., θnt), where nt is the number of tree nodes. These thresholds
are learned from the training data as follows: For the i-th tree node, let Dleafi

denote the maximum Euclidean distance between the descriptor corresponding
to the i-th node and all of the training descriptors corresponding to its children
leaf nodes. The threshold θi is set to τDleafi , where the factor τ is chosen to
reduce the influence of the noisy samples from the HOG or flow components of
training descriptors. τ is estimated via cross-validation.

In addition to the rejection threshold associated with each tree node, each leaf
node λi contains a list of parameters Υi = (υi,1, ..., υi,m), Ωi = (ωi,1, ..., ωi,m). Υi

lists the frame indices of training descriptors that best match with the prototype
(leaf node) λi. Ωi denotes the probability distribution of each prototype (leaf
node) belonging to an action class{αi}i=1...m. We first compute an observation

vector Ω̂i = (ω̂i,1, ..., ω̂i,m). ω̂i,m is defined as ω̂i,m =
Fi,m

Fm
, where Fi,m denotes

the number of training features from class m that are assigned to leaf node λi

and Fm denotes the number of training features in class m. Ω̂i is L1 normalized
to generate a class distribution vector Ωi. These parameters are estimated by
matching the set of hog-flow descriptors from the training data to the learned
tree, which is very important in estimating actor’s position, scale, and action
category label for a testing video (explained in sec. 3). An example of the bi-
nary tree model is visualized in Figure 4(c). The yellow leaf nodes in the figure
represent action prototypes.

Fast Tree Matching. Given a query subwindow from a frame of video, a query
hog-flow descriptor is extracted and first compared to the descriptor correspond-
ing to the top node (see Figure 4(c)). For each non-leaf node, if the distance
between the query feature descriptor Dq and the current tree node descriptor
is less than its rejection threshold, this descriptor is accepted and we continue
traversing the tree; the child node most similar to the query descriptor is selected
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(a) HOG components (b) Flow components

(c) Learned binary tree model

Fig. 4. An example of tree learning. (a)(b) Visualization of HOG and flow components
of learned prototypes for k = 12. The HOG component is represented by 8×8 grids and
9 orientation bins. The flow component is represented by four (orientation channels)
12 × 12 grids. In the flow component, grid intensity indicates motion strength and
‘arrow’ indicates the dominant motion orientation at that grid, (c) The learned binary
tree model. Yellow tree nodes are prototypes , Query feature Dq and its searching path
(red color dashed line).

as the next node. This continues until the query feature reaches a leaf node of
the tree. On the other hand, if the distance ever exceeds the rejection threshold
of the tree node, then this query feature is rejected and no longer compared with
its children nodes.

3 Action Recognition

3.1 Problem Formulation

Let random variable V be an observation from an image frame, λ be a prototype
random variable chosen from the set of k learned hog-flow prototypes
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Λ = (λ1, λ2...λk), α be an action category random variable chosen from the set of
m action categories A = (α1, α2...αm), and β = (x, y, s) denote random variables
representing actor location comprising image location (x, y) and scale s. Then, the
problem of action localization and recognition in a test video is equivalent to max-
imizing the joint probability distribution p(α, λ, β, V ) in each frame of the video.
We assume that i) the observation V is given; ii) action category α is independent
of actor location β; and iii) the probability of actor location β given observation
V is uniform. The joint probability distribution can now be decomposed into an
action category mapping term and a prototype matching term:

p(α, λ, β, V ) ∝ p(α, λ, β|V ) ∝ p(α|V, λ)p(λ|V, β) (1)

The action category mapping term p(α|V, λ) is estimated by α-th element ωi,α

of the class distribution vector Ωi = (ωi,1, ..., ωi,m). We model the prototype
matching term p(λ|V, β) as:

p(λ|V, β) ∝ e−d(D(V,β),D(λ)), (2)

where d represents the Euclidean distance between the descriptor D(V, β) deter-
mined by observation V at location β, and the descriptor D(λ) corresponding
to the prototype λ.

3.2 Refinement by Global Filtering

An initial estimate of position (x, y) and scale s of actor location is first obtained
by a conventional sliding-window-based searching scheme over the video frames
using the fast tree matching method. For reducing the influence of noisy optical
flow and image gradient from a test frame, we perform Kalman filtering to refine
the positions and scales for the initial estimate of position (x, y) and scale s of
actor locations over all test frames. The refined position and scale of each frame
is used as an action interest region. The dynamic equation and measurement
equation are:

[
βt+1

β̇t+1

]
=

[
1 1
0 1

]
·
[
βt

β̇t

]
+Qt, (3)

β̂t+1 =
[
1 0

] ·
[
βt+1

β̇t+1

]
+Rt, (4)

where βt = (xt, yt, st) denotes the location and scale for frame t, β̇t is the velocity

and β̂t is the measured location and scale for frame t, which has the minimum
distance between the extracted descriptor extracted from the query subwindow
specified by β̂t, and any leaf nodes of the tree. Qt � N(0, diag(σ2

β, σ
2
β̇
)) is the

process noise and Rt � N(0, diag(σ2
β)) is the measurement noise.
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3.3 Action Recognition

After global filtering, the actor’s refined locations and scales {βt}t=1...T are
known, where T represents the number of frames in the test video. Action recog-
nition proceeds by re-computing hog-flow features from these image windows.
Given a location and scale βt at frame t, we compute the joint probability of
action category label αi and prototype λi at frame t as follows:

Jt(αi) = ωi,αie
−d(D(V,βt),D(λi(βt))), (5)

Each descriptor extracted from the refined locations and scales {β}t=1...T and
each frame contribute to the probability of action categories {αi}i=1...m oc-
curring in the test video. This is equivalent to maximizing the sum of joint-
probabilities. Finally, the maximum joint-probability action label is given as:

α∗
i = argmax{αi}i=1...m

lend∑

t=lstart

Jt(αi), (6)

where lstart and lend are the start frame and end frame of the test sequence,
respectively. This is equivalent to probabilistic (soft) voting where each frame
contributes a probability of belonging to a category.

3.4 Action Segmentation

In addition to action localization and recognition, our approach also segments
the actor’s pose in each frame of a test action sequence. After the process of tree
construction, each action category in i-th leaf node (prototype) has its own set
of representative training descriptors, which is stored in Υi = (υi,1, ..., υi,m) by
their indices during training.

Given the probability parameters Ωi = (ωi,1, ..., ωi,m) for the i-th leaf node
(prototype), we define a segmentationmask for i-th leaf node asBi =

∑m
j=1 ωi,jbj ,

where {bj}j=1..m are the binary silhouettes from the training data corresponding
to each action category and identified by Υi = (υi,1, ..., υi,m). If a test frame cor-
responds to the i-th leaf node, it can use its corresponding averaged segmentation
mask to segment the actions. Example results of action segmentations are shown
in Figure 7 and 8. A more precise action segmentation may resort to body pose
fitting or other useful observations, but our results can be used as initial segmen-
tations and input to a high level segmentation program.

4 Experiments

We evaluated our approach on two public action datasets: CMU action dataset [5]
and Weizmann action dataset [1], in terms of recognition rate and average com-
putation time. The average computation time is computed as the average time
required to localize and recognize an actor in a test frame. Our experiment focused
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(a) CMU dataset (b) Weizmann dataset

Fig. 5. Evaluation datasets

Table 1. Prototype-based recognition results using joint hog-flow features on the CMU
dataset (cluttered, dynamic background)

method recog. rate (%) avg. time (s)

500 proto. 84.55 0.86
1000 proto. 89.09 0.91
1700 proto. 89.09 0.88
2300 proto. 90 0.92
2789 proto. 100 0.89
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(a) jumping-jacks
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(b) one-handed-wave
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(c) pick-up
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(d) push-button
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Fig. 6. Precision-Recall curves of action detection on the CMU dataset. The green curve
labeled as ‘Ke’s method’ is the results reported in [5]; the blue curve labeled as ‘Yao’s
method’ is the results reported in [24].
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Fig. 7. Examples of action localization and recognition results on the CMU dataset.
Note that our approach effectively handled interruption of moving people and vehicles
in the scene. The 1st row: jumping-jacks; The 2nd row: one-handed-wave; The 3rd row:
pick-up; The 4th row: push-button; The 5th row:two-handed-wave. The green regions
are the segmentation masks.

on the CMU action dataset, since this dataset is much more difficult due to signif-
icant background clutter and motion. For computing simplified HOG descriptors,
we divide an action interest region into nh = 8 × 8 non-overlapping square cells
and accumulate the votes over all pixels into no = 9 orientation bins for each cell.
The hog-flow descriptor is 1152-dimensions which consists of a 8 × 8 × 9 = 576-
dimensional HOG descriptor and a 12×12×4 = 576-dimensional flow descriptor.

4.1 Evaluation on the CMU Action Dataset

This dataset consists of five action classes: ‘jumping-jacks’, ‘one-handed-wave’,
‘pick-up’, ‘push-button’ and ‘two-handed-wave’. Totally there are 48 video se-
quences for the training data. Figure 5(a) shows sample training frames from the
dataset. The testing data contains 110 videos (events) which are down-scaled to
160× 120 in resolution. The dataset is known to be very challenging, because it
was captured by using a hand-held camera in environments with moving persons
or vehicles in the background. The experiment results reported from the dataset
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Table 2. Prototype-based recognition results using joint hog-flow features on the Weiz-
mann dataset (static background). ‘BS’ and ‘OT’ denote background subtraction and
object tracking respectively.

method recog. rate (%) avg. time (s) BS/OT

500 proto. 91.11 0.91 None
1500 proto. 92.22 0.93 None
2500 proto. 88.89 0.94 None
3000 proto. 90.00 0.96 None
4000 proto. 94.44 0.96 None

all descriptors 100 0.94 None

Fathi [16] 100 N/A OT
Schindler [23] 100 N/A OT

Lin [9] 100 N/A BS, OT
Jhuang [22] 98.8 N/A BS
Blank [1] 99.61 N/A BS

Thurau [25] 94.40 N/A None

are only the action detection results [5, 24]. We evaluated our approach on both
action localization (detection) and action recognition.

We first detect the actions occurring in the test videos. We used the deci-
sion criterion from [5, 24], where a detection is correct if the intersection of the
detected and the ground truth bounding boxes is larger than 50% and the clas-
sification label is correct. We generated the precision-recall (P-R) curve for each
action: Precision = TP/(TP + FP ) and Recall = TP/NP , where TP is the
number of true positives, FP is the number of false positives and NP is the
total number of positives. Figure 6 shows P-R curves of each action. The red
curves correspond to our approach, while the green and the blue P-R curves are
the basic results reported in [5] and [24] respectively. In general, our approach
achieved better performance compared to the results reported in [5, 24].

In addition to integrated detection and recognition performance shown in the
P-R curves, we also evaluated isolated recognition performance given ground
truth detections in order to measure the quality of our action recognition com-
ponent. We used the ground truth actor location in the first frame, and then
searched for the actor in its local neighborhood in later frames. We evaluated
our approach with respect to the number of prototypes k from 500 to 2789. As
shown in Table 1, the recognition rate reached 100% at k = 2789.

Figure 7 shows some qualitative results of action localization and recognition
on this dataset.

4.2 Evaluation on the Weizmann Action Dataset

The Weizmann dataset contains 90 videos separated into 10 actions performed
by 9 persons. Example frames of this dataset are shown in Figure 5(b). We
performed leave-one-person-out experiments to evaluate our approach.

We evaluated the performance of our approach using different number of proto-
types. Table 2 shows our experimental results. By using all the training descriptors
(except the training descriptors from the testing person) as action prototypes, our
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Fig. 8. Examples of action localization and recognition results on the Weizmann
dataset. The 1st row: bend, jack, jump, pjump, run; The 2nd row: side, skip, walk,
one-hand-wave, two-hand-wave. The green regions are the segmentation masks.

approach obtained 100% recognition rate. We compared these results to the state
of art action recognition approaches [16, 23, 9, 22, 1, 25]. We achieved the same
recognition rate as [16, 23, 9], but note that we did not use background subtrac-
tions and object tracking to localize and recognize actions. Figure 8 gives some
localization and recognition results using our approach.

5 Conclusions

The experimental results show that our approach yields very good results for ac-
tion localization and recognition in realistic scenarios with cluttered, dynamic
backgrounds. Our approach does not rely on background subtraction and human
tracking. In the future, we aim to combine local feature voting-based approach [7]
with our global scheme to improve our results further. Additionally, we are also
exploring scene context [8] as priors to improve our system and to apply it to more
complicated scenarios such as movies and TV shows.
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