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Abstract. A survey of video databases that can be used within a con-
tinuous sign language recognition scenario to measure the performance
of head and hand tracking algorithms either w.r.t. a tracking error rate
or w.r.t. a word error rate criterion is presented in this work.

Robust tracking algorithms are required as the signing hand frequently
moves in front of the face, may temporarily disappear, or cross the other
hand.

Only few studies consider the recognition of continuous sign language,
and usually special devices such as colored gloves or blue-boxing environ-
ments are used to accurately track the regions-of-interest in sign language
processing.

Ground-truth labels for hand and head positions have been annotated
for more than 30k frames in several publicly available video databases of
different degrees of difficulty, and preliminary tracking results are pre-
sented.

Keywords: Sign Language Recognition, Tracking, Benchmark, Data-
bases.

1 Introduction

Tracking is especially important if motion trajectories have to be recognized,
e.g. for collision detection, gait analysis [I], marker-less motion capturing [2], or
vision-based gesture or sign language recognition [3l4]. Numerous tracking mod-
els of different complexity have been discussed in the literature [BJ6I7IS9], but
they are typically task and environment dependent, or require special hardware.
Under realistic circumstances, the performance of most current approaches de-
creases dramatically as it heavily depends upon possibly wrong local decisions
[10].

A common assumption is that the target object is moving most over time.
Opposed to a relatively rough bounding-box based tracking of e.g. persons or
cars for tracking-only tasks, usually special devices such as colored gloves or
blue-boxing environments are used to accurately track the regions-of-interest
(such as the head, the hands, etc.) for tracking and recognition tasks in sign
language processing.
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Only few studies consider the recognition of continuous sign language. Most
of the current sign language recognition systems use specialized hardware [TTJ12]
and are person dependent [I3I39], i.e. can only recognize the signers they were
designed for.

Furthermore, most approaches focus on the recognition of isolated signs or on
the even simpler case of recognizing isolated gestures [I4], which can often be
characterized just by their movement direction. The recognition of continuous
sign language is usually performed by hidden Markov model (HMM) based sys-
tems. An HMM-based approach for French Sign Language recognition has been
proposed in [I5], where a data glove was used to obtain hand appearance and
position. Starner et al. presented an American Sign Language (ASL) recognition
system [16], Holden et al. proposed an Australian Sign Language recognition
system based on HMMs [17], and e.g. Bauer and Kraiss proposed a German
Sign Language recognition system based on HMMs [I§] in which the signer wore
simple colored gloves to obtain data. Ong et al. [I9] give a review on recent
research in sign language and gesture recognition.

The main objectives of this paper are:

— To provide a brief survey of video databases that can be used within a
continuous sign language recognition scenario to measure the performance
of head and hand tracking algorithms either w.r.t. a tracking error rate or
w.r.t. a word error rate criterion

— To show that a conceptually simple model-free tracking model can be used
in several sign language tracking and recognition tasks

2 System Overview

For purposes of linguistic analysis, signs are generally decomposed into hand
shape, orientation, place of articulation, and movement [3] (with important lin-
guistic information also conveyed through non-manual means, i.e., facial expres-
sions and head movements).

In a vision-based automatic sign language recognition (ASLR) system for con-
tinuous sign language, at every time-step ¢ := 1,...,T, tracking-based features
are extracted at positions u{ := wuy,...,ur in a sequence of images X{ :=
X1,...,X7. We are searching for an unknown word sequence wi", for which the
sequence of features 27 = f(XT,ul) best fits to the trained models. Opposed
to a recognition of isolated gestures, in continuous sign language recognition we
want to maximize the posteriori probability Pr(w|2T) over all possible word
sequences w] with unknown number of words N. This can be modeled by Bayes’
decision rule [34]:

zf — ol = argmz}vx{Pr(w{V\x?)} = argmax {Pr(wy’) - Pr(zf |w)} (1)
wy wy
where Pr(w?) is the a-priori probability for the word sequence wi¥ given by the

language model (LM), and Pr(z{ |w)) is the probability of observing features
27 given the word sequence w, referred to as visual model (VM).
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Table 1. Freely available sign language corpora and their evaluation areas (X unsuit-
able or unannotated, v already annotated, ¥ annotations underway)

Corpus Evaluation Areas

Isolated Recog. Continuous Recog. Tracking Translation

Corpus-NGT v v v v
RWTH-BOSTON-50 v b 4 v b 4
RWTH-BOSTON-104 X v v b 4
RWTH-BOSTON-400 X v X b 4
RWTH-PHOENIX-v1.0 v v * v
RWTH-PHOENIX-v2.0 X v * v
ATIS-ISL X v v v
SIGNUM v v * b 4
OXFORD X b 4 v X

Hand and head tracking algorithms for sign language recognition can be eval-
uated on the one hand w.r.t. a tracking error rate criterion (TER), but on the
other hand w.r.t. the well known word error rate (WER) criterion which consists
of errors that are due to deletions, substitutions, and insertions of words. In this
work we focus on the evaluation of tracking approaches by a tracking error rate
criterion.

3 Benchmark Databases

All databases presented in this section are used within the SignSpeak project and
are either freely available or available on request. The SignSpea project tackles
the problem of automatic recognition and translation of continuous sign language
[20]. The overall goal of the SignSpeak project is to develop a new vision-based
technology for recognizing and translating continuous sign language (i.e. provide
Video-to-Text technologies).

Example images showing the different recording conditions are shown for each
database in where [Table 1l gives an overview how the different corpora
can be used for evaluation experiments.

For an image sequence X{ = X7i,..., X7 and corresponding annotated hand
positions u? = wy,...,ur, we define the tracking error rate (TER) of tracked
positions @7 as the relative number of frames where the Euclidean distance
between the tracked and the annotated position is larger than or equal to a
tolerance T:

0lu—v| <t
1 otherwise

T
1 . .
TER = T tg_l 07 (ug, ) with 0r(u,v) := { (2)

! http://www.signspeak.eu
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Fig. 1. Example of ground-truth annotations and evaluation viewport borders: ground-
truth annotations within the red-shaded area are disregarded in the corresponding TER
calculation

Table 2. Freely available tracking ground-truth annotations in sign language corpora
for e.g. hand and face positions

Corpus Annotated Frames
Corpus-NGT 7891
RWTH-BOSTON-50 1450
RWTH-BOSTON-104 15746
ATIS-ISL 5757
OXFORD 296
SIGNUM 51448

Depending on the database format, a viewport for TER calculation can be spec-
ified in addition. Frames, in which the hands are not visible, are disregarded,
resulting in a different number of frames to be evaluated (e.g. in [Table 4l the
dominant-hand is only visible in 12909 frames of the 15746 annotated frames,
the head is always visible). Examples of annotated frames and evaluation view-
port borders are shown in in the left image, all annotated ground-truth
points are within a specified evaluation viewport border and will be considered
for TER calculation, whereas in the right image both the dominant hand and
non-dominant hand (i.e. right and left hand, annotated by the green and red
circle, correspondingly) are out of the viewport border and will be ignored for
TER calculation.

3.1 Corpus-NGT Database

The Corpus—NG’IE database is a 72 hour corpus of Sign Language of the Nether-
lands. It is the first large open access corpus for sign linguistics in the world. It

2 http://www.corpusngt.nl
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presently contains recordings from 92 different signers, mirroring both the age
variation and the dialect variation present in the Dutch Deaf community [21].

Currently, 280 video segments with about 8k frames have been annotated
to evaluate hand and head tracking algorithms (cf. [Table 2]).

3.2 Boston Corpora

All corpora presented in this section are freely available for further research in
linguistics, tracking, recognition, and translation.

The data was recorded within the ASLLRPH project by Boston University, the
database subsets were defined at the RWTH Aachen University in order to build
up benchmark databases [22] that can be used for the automatic recognition of
isolated and continuous sign language.

The RWTH-BOSTON-50 corpus was created for the task of isolated sign
language recognition [23]. It has been used for nearest-neighbor leaving-one-out
evaluation of isolated sign language words. About 1.5k frames in total are
annotated and are freely available (cf. [Table 2]).

The RWTH-BOSTON-104 corpus has been used successfully for continuous
sign language recognition experiments [4J24]. For the evaluation of hand tracking
methods in sign language recognition systems, the database has been annotated
with the signers’ hand and head positions. More than 15k frames in total are
annotated and are freely available (cf. [Table 2]).

3.3 Phoenix Weather Forecast Corpora

The RWTH-PHOENIX corpus with German sign language annotations of
weather-forecasts has been first presented in [25] for the purpose of sign lan-
guage translation (referred to as RWTH-PHOENIX-v1.0 corpus in this work).
It consists of about 2k sentences, 9k running words, with a vocabulary size of
about 1.7k signs. Although the database is suitable for recognition experiments,
the environment conditions in the first version are more challenging for robust
feature extraction such as hand tracking (cf. [Figure 2)). During the SignSpeak
project, a new version RWTH-PHOENIX-v2.0 is recorded and annotated to
meet the demands described in Due to simpler environment condi-
tions in the RWTH-PHOENIX-v2.0 version (see also [Figure 2)), promising fea-
ture extraction and recognition results are expected. Ground-truth annotations
are currently added for about 8k frames and will be freely available in the near

future (cf. [Table 2)).

3.4 The ATIS Irish Sign Language Corpus

The ATIS Irish sign language corpus (ATIS-ISL) has been presented in [26], and
is suitable for recognition and translation experiments. The Irish sign language

3http://www-1i6.informatik.rwth-aachen.de/aslr/
4http://www.bu.edu/asllrp/
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corpus formed the first translation into sign language of the original ATIS data,
a limited domain corpus for speech recognition and translation tasks. The sen-
tences from the original ATIS corpus are given in written English as a transcrip-
tion of the spoken sentences. The ATIS-ISL database as used in [27] contains
680 sentences with continuous sign language, has a vocabulary size of about
400 signs, and contains several speakers. For the SignSpeak project, about 6k
frames have been annotated with hand and head positions to be used in tracking

evaluations (cf. [Table 2)).

3.5 SIGNUM Corpus

The SIGNUMP corpus has been first presented in [28] and contains both isolated
and continuous utterances of various signers. This German sign language corpus
is suitable for signer independent continuous sign language recognition tasks.
It consists of about 33k sentences, 700 signs, and 25 speakers, which results in
approximately 55 hours of video material. Ground-truth annotations for hand
and head positions have been carried out for about 51k frames (cf. [Table 2)).

3.6 OXFORD Corpus

The OXFORD corpus has been first described in [9], where the accuracy of a
long-term body pose estimation method is evaluated on a 6k frames continuous
signing sequence with changing backgrounds. The OXFORDY corpus, broadcast
news videos recorded from BBC, is suitable for recognition and tracking experi-
ments. For 296 frames the position of the left and right, upper arm, lower arm
and hand were manually segmented at the pixel level. The accuracy of body pose
estimation methods can be evaluated using an overlap score to compare the real
and the detected arm and hand position (cf. [Table 2)).

4 Hand and Head Tracking for Sign Language
Recognition

For feature extraction, relevant body parts such as the head and the hands have
to be found. To extract features which describe manual components of a sign,
at least the dominant hand has to be tracked in each image sequence. A robust
tracking algorithm is required as the signing hand frequently moves in front of
the face, may temporarily disappear, or cross the other hand.

4.1 Hand Tracking

The head and hand tracking tracking algorithm described in [29] (DPT) is based
on dynamic programming and is inspired by the time alignment algorithm in

® http://www.phonetik.uni-muenchen.de/forschung/Bas/SIGNUM/
Shttp://www.robots.ox.ac.uk/~vgg/research/sign_language/
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Fig.2. Example images from different video-based sign language corpora
(flt.r.): Corpus-NGT, RWTH-BOSTON, OXFORD, RWTH-PHOENIX v1.0, RWTH-
PHOENIX v2.0, ATIS-ISL, and SIGNUM

speech recognition which guarantees to find the optimal path w.r.t. a given
criterion and prevents taking possibly wrong local decisions.

Instead of requiring a near perfect segmentation for these body parts, the
decision process for candidate regions is postponed to the end of the entire
sequences by tracing back the best decisions. No training is required, as it is a
model-free and person independent tracking approach.

4.2 Head Tracking

In an Eigenface approach[30)], the distance to the face-space can be seen as a
measure of faceness and can thus be used as a score. To train the eigenfaces
in [29], the BioIDl1 database has been used, i.e. the head tracking approach is
model-based but person-independent (cf. [Table 4)). As faces generally are skin
colored, a skin color model can be used as an additional score within the DPT
approach.

The active appearance model (AAM) based face tracker proposed by [31] is
composed of an offline part, where a person-dependent face model containing
the facial appearance variation information is trained, and an online part, where
the facial features are tracked in real time using that model. Because the fitting
method is a local search, they initialize the AAM using the face detector by
Viola and Jones [32].

In contrast to the tracking approaches, a model-based face detection approach
is used for comparison where the faces have been automatically detected using
the OpenCV implementation of the Viola & Jones [32] face detector. As the
cascades have been trained on different data, the detection approach is model-
based but person-independent (cf. [Table 4)).

"http://www.bioid.com
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Table 3. Expected corpus annotation progress of the RWTH-PHOENIX and Corpus-
NGT corpora at the time of original print in comparison to the limited domain speech
(Verbmobil II) and translation (IWSLT') corpora

BOSTON-104 Phoenix Corpus-NGT Vermobil II  ITWSLT

year 2007 2009 2011 2009 2011 2000 2006
recordings 201 78 400 116 300 - -
running words 0.8k 10k 50k 30k 80k 700k 200k
vocabulary size 0.1k 0.6k < 2.5k 3k < 5k 10k 10k
T/T ratio 8 15 >20 10 > 20 70 20
Performance 11% WER - - - - 15% WER 40% TER

[35] - - - - 133] [34)

5 Experimental Results and Requirements

In order to build a Sign-Language-to-Spoken-Language translator, reasonably
sized corpora have to be created for statistically-based data-driven approaches.
For a limited domain speech recognition task (Verbmobil II) as e.g. presented in
[33], systems with a vocabulary size of up to 10k words should be trained with at
least 700k words to obtain a reasonable performance, i.e. about 70 observations
per vocabulary entry. Similar values should be obtained for a limited domain
translation task (IWSLT) as e.g. presented in [34].

Similar corpora statistics can be observed for other ASR or MT tasks. The
requirements for a sign language corpus suitable for recognition and translation
can therefore be summarized as follows:

— annotations for a limited domain (i.e. broadcast news, etc.)

— for a vocabulary size smaller than 4k words, each word should be observed
at least 20 times

— the singleton ratio should ideally stay below 40%

Existing corpora should be extended to achieve a good performance w.r.t. recog-
nition and translation [36]. During the SignSpeak project, the existing RWTH-
PHOENIX corpus [25] and Corpus-NGT [2I] will be extended to meet these
demands (cf. [Table 3)). Novel facial features [31] developed within the SignSpeak
project are shown in and will be analyzed for continuous sign language
recognition w.r.t. WER and TER criterions using the annotated benchmark cor-
pora described in

5.1 Tracking Results

For 7 = 20, the model-free and person independent DPT [29] tracking approach
can achieve already 8.37% TER on the 12909 frames of full RWTH-BOSTON-
104 dataset, and 8.83% TER on the 2603 test frames, where the dominant-hand

is visible (cf. [Table 4)).
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Fig. 3. Facial feature extraction on the Corpus-NGT database (f.1.t.r.): three vertical
lines quantify features like left eye aperture, mouth aperture, and right eye aperture;
the extraction of these features is based on a fitted face model, where the orientation
of this model is shown by three axis on the face: red is X, green is Y, blue is Z, origin
is the nose tip.

Table 4. Hand and head tracking on RWTH-BOSTON-104 dataset

TER
Tracking Model Pers. dep. # Frames Setup 7=5 7=10 7=15 7=20
Dominant Hand no no 12909 DPT [29] 73.59 42.29 18.79 8.37
no no 2603 DPT [29] 74.79 44.33 20.43 8.83
Head yes  no 15732 DPT + PCA [29] 26.77 17.32 12.70 10.86
yes  no 15732 Viola & Jones [32] 9.75 1.23 1.09 1.07
yes no 15732 Viola & Jones + kalman 10.04 0.81 0.73 0.68
yes  yes 15732 AAM [31] 8.23 4.86 4.82 4.79

Table 5. Hand and head tracking on Corpus-NGT dataset

TER
Tracking Model Pers. dep. # Frames Setup 7=5 7=10 7=15 7=20
Dominant Hand no no 7891 DPT [29] 97.26 85.62 67.88 52.15
Head yes  no 7891 DPT [29] 98.18 92.13 75.82 59.43
yes  no 7891 Viola & Jones [32] 78.13 62.07 59.59 58.52
yes  no 7891 Viola & Jones + kalman 56.92 26.04 17.55 15.81

The model-based and person-dependent AAM approach [31] does not outper-
form the DPT approach due to model-fitting problems and thus missing face
detections in about 700 frames.
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The performance of both DPT tracking and Viola & Jones detection based
approaches is relatively poor on the Corpus-NGT database (cf. [Table 5l). This
can be explained by the high number of near-profile head images in the database,
as both person-independent models have been trained on near frontal images
only. The proposed Kalman Filter-like tracking approach in combination with
Viola & Jones detections can reduce this effect.

6 Conclusions

Ground-truth labels for hand and head positions have been annotated for more
than 30k frames in several publicly available video databases of different degrees
of difficulty, and preliminary tracking results have been presented, which can be
used as baseline reference for further experiments.

The proposed benchmark corpora can be used for tracking as well as for
word error rate evaluations in isolated and continuous sign language recognition,
and furthermore allow for a comparison of model-free and person-independent /
person-dependent tracking approaches.
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