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Abstract. We tackle the challenging problem of human activity recog-
nition in realistic video sequences. Unlike local features-based methods
or global template-based methods, we propose to represent a video se-
quence by a set of middle-level parts. A part, or component, has consistent
spatial structure and consistent motion. We first segment the visual mo-
tion patterns and generate a set of middle-level components by clustering
keypoints-based trajectories extracted from the video. To further exploit
the interdependencies of the moving parts, we then define spatio-temporal
relationships between pairwise components. The resulting descriptive
middle-level components and pairwise-components thereby catch the es-
sential motion characteristics of human activities. They also give a very
compact representation of the video. We apply our framework on popular
and challenging video datasets: Weizmann dataset and UT-Interaction
dataset. We demonstrate experimentally that our middle-level represen-
tation combined with a χ2-SVM classifier equals to or outperforms the
state-of-the-art results on these dataset.

1 Introduction

Human activity patterns extraction and categorization sparked considerable in-
terest in Computer Vision community these recent years. Recent literature has
shifted from actions classification in controlled acquisition conditions [1–3], to
complex activities classification in more realistic scenarios[4–6]. In the latter situ-
ation, the challenge stems from structured property of activity themselves; specif-
ically, the complicated spatio-temporal relationships between a set of body parts
or multiple persons often exhibit low intra-similarity and large inter-variability.
In addition, it suffers from the free acquisition setting for realistic scenarios,
which makes possible camera motion, illumination changes or occlusions.

In terms of activity representation, most models fall into the following three
categories: local feature-based [2, 7–9], part-based [10, 11], and global template-
based [12]. Local features-based models, e.g. bag-of-features model [7], and global
template-based models [12] are widely used; they achieve impressive results in
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certain situations. Local features-based models and global template-based mod-
els, however, have limitations to represent complicated activities. For the former,
local features only contain limited spatio-temporal information, insufficient for
representing complex activities. For the latter, the global templates are not fle-
xible enough to capture intra-class variations of activities. Middle-level features,
which connect local features and global features, are apparently suitable to rep-
resent complex activities. Nevertheless, part-based models are not widely em-
ployed. The possible reason is that it is difficult to generate middle-level features
from low-level features, and the problem will become extremely complicated if
we try to decompose a global template into a set of interactive parts.

In this work, we propose to represent complex activities by a set of middle-level
features, which we call spatio-temporal parts. We define a part as a component
which has consistent spatial structure and consistent motion in temporal do-
main, e.g. an extending arm. Unlike previous part-based models, such as Hidden
Part Model [10] or Constellation model [13], in which the parts are hidden or
abstract, without physical meaning, our middle-level components are concrete:
they correspond to certain physical entities of the body and embed semantic in-
formation. For example, an extending arm means that it is an arm and the arm
is extending. Furthermore, our model is free from complex and computationally
heavy learning and inference on a graph.

Trajectory-based representation of activity got encouraging results [5, 14, 15].
We go further in this direction. We generate middle-level components by group-
ing similar trajectories. First, motion salient keypoints are selected and tracked,
to form a set of trajectories. Then middle-level components are obtained by clus-
tering trajectories of similar appearance and motion. A component is a bundle
of trajectories. To exploit the structural and dynamic property of activities, we
define spatio-temporal relationships that encode co-dependence between com-
ponents. As a result, a video sequence is represented by a set of middle-level
components and their spatio-temporal relationships.

Our contribution is threefold: i) we propose to represent a video by a set of
middle-level components, or motion-parts; to this end, we introduce a hierar-
chical clustering approach (section 3.1); ii) we develop a new motion descriptor
computed on components (section 3.2); iii) we model the spatio-temporal rela-
tionships between pairwise components (section 3.3).

The rest of this paper is organized as follows. Section 2 discusses related
work. Section 3 gives a detailed description of our approach for generating and
representing middle-level components and their relationships, and classifying
activity. We illustrate and interpret the experimental results in Section 4. Finally
we present the conclusion in Section 5.

2 Related Work

Video representation is of great interests in computer vision. A large panoply
of work are dedicated to this problem, proposing new detectors or descriptors.
To cite only a few: Spatio-Temporal Interest Points (STIPs) [16], shape descrip-
tor [3], motion descriptor [17], shape-motion [18], static features [19], or hybrid
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features [20]. Among these, local detectors such as STIPs are very popular.
Impressive results are reported in realistic video sequences with low resolution,
camera motion, and illumination changes. However, STIPs-like feature only rep-
resents local and limited information in a spatio-temporal volume. Although
much effort has been put to add spatio-temporal information between these lo-
cal features [6, 21], the problem is still far from being solved.

The second, different, trend is the global approach. In these methods, a set
of global templates are first built, then they are matched with testing video
sequences. To improve the flexibility of templates, [12] presented a deformable
action templates model by learning a best set of primitives and weights. [22]
proposed to split the entire template into a set of parts, then match each part
individually.

At an intermediate level between local and global approaches, several middle-
level feature-based classification models have been proposed. [10] introduced a
discriminative part-based approach, in which a human action is modelled by
a flexible constellation of parts. In [13], the authors proposed a hierarchical
action model, in which the lower layer corresponds to local features, the higher
layer describes a constellation of P parts; each part is associated to a bag of
features, and the relative positions of parts are taken into account. A human
body part-based approach was developed in [11]. The human body is divided
into elementary points from which a decomposable triangulated graph is built.
The graph structure represents the spatial configuration of body parts and the
velocity distribution of nodes encodes the temporal variation of activity.

Different from simple periodic actions, activities often correspond to one per-
son performing a series of elementary actions or multiple persons interacting with
each other. The spatio-temporal relations among local or middle-level features
are important to help understand the human motion and recognizing activities.
Related to our work, the authors of [6] proposed a spatio-temporal matching ker-
nel to measure structural similarity between sets of features. They first define
seven temporal relationships and four spatial relationships between local features
based on their 3-D coordinates. Then a 3-D spatial histogram and a 3-D tempo-
ral histogram, in which each bin contains designated pairs of two feature points
from a video, are used to capture the appearance and relationship information
of a video. Histogram intersection is finally used to match two histograms.;

3 Our Approach

We propose to extract middle-level components to describe and classify human
activities in videos. In the first stage, we segment the motion into ‘meaningful
parts’, or components. To this end, we take a bottom-up strategy and clus-
ter moving parts which are spatially and temporally consistent. We proceed by
hierarchical clustering : linking key-points into trajectories, then clustering tra-
jectories into middle-level components. In the second stage, we represent each
video by a histogram of quantized motion descriptor computed at each com-
ponent. Co-components, or pairwise components, are also considered by taking
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into account spatio-temporal relationships. Classification is performed by SVM
classifier, using this global video representation as input features. Figure 1 gives
an overview of our method.

Fig. 1. From keypoints to middle-components and the global representation of videos

3.1 From Trajectories to Middle-Level Components

We aim to extract descriptive motion-parts, or components, of human activities
from videos. We use a hierarchical approach that progressively generates fea-
tures at different levels of semantic : keypoint, trajectory, component. Keypoints
{p1, p2, . . . , pm} are described by their 2D coordinates and associated local fea-
tures computed on local patches; trajectories {t1, t2, . . . , tn} are generated by
tracking local keypoints in the image sequences; components {c1, c2, . . . , cl} are
bundles of trajectories, resulting from a graph-clustering algorithm.

In order to create reliable and robust trajectories, it is critical to extract good
keypoints. In [14, 15], trajectories are produced by tracking spatially salient
points, such as SIFTs or corners. However, in low-resolution videos with clut-
tered background and fast motion, the number of resulting keypoints is far
from sufficient and trajectories are not reliable. Instead, we propose to extract
densely sampled points from each frame. Then the correspondence between key-
points in successive frames is established by nearest neighbour distance ratio
matching [23].

Several heuristics are proposed to obtain reliable and useful trajectories. For
a keypoint p in the frame t, we only match it with keypoints in the frame t+ 1
which are located within a N ∗ N spatial window around it. The window size
depends on the maximal velocity. We also discard short trajectories of limited
length. For a trajectory with N keypoints with coordinates (x1, y1), ..., (xN , yN),
the average displace disp = 1

N

∑
t (xt − x) is computed, and trajectories whose

displace disp < thd are removed.
We turn now to the key problem of clustering trajectories into descriptive

consistent motion-parts, namely components. Current work on motion segmen-
tation from trajectories often only use the 2D or 3D location information of
points on the paths [24]. However, in complex scenes, e.g. with low motion
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contrast or cluttered background, this approach cannot lead to satisfying seg-
mentation. We propose an alternative and more robust solution, which describe
keypoints, hence trajectories, by multi-features: location L = (xt, yt), displace-
ment D = (xt−xt+1, yt− yt+1), and intensity histogram I computed on a patch
centred at each keypoint. We then define the distance between trajectory i and
trajectory j as follows :

dij =
1

|t2 − t1|
t2∑

t=t1

dL(Lt(i), Lt(j)) (α1 dI(It(i), It(j)) + α2 dD(Dt(i), Dt(j))) (1)

where, t1 and t2 are the start-frame and end-frame of the two overlapping tra-
jectories i and j; dL(Lt(i), Lt(j)) is the spatial distance between two points from
two trajectories in frame t, dI(It(i), It(j)) = exp(− 1

2σ2

∑r
k=1 min(Ikt (i), I

k
t (j)))

and dD(Dt(i), Dt(j)) = ||Dt(i) − Dt(j)||2 are distances between two intensity
histograms (It(i), It(j)) and displacements (Dt(i), Dt(j)) respectively. α1 and
α2 are weights that balance the contribution of each features. The role of the
spatial distance measure dL(Lt(i), Lt(j)) is to favor the clustering of trajectories
that are close to each other spatially.

Once the distance matrix among trajectories is computed, we use an effi-
cient graph-based partitioning algorithm to cluster trajectories [25]. The main
principle of this algorithm is to disconnect nodes of the graph (trajectories are
associated to nodes in our case) which are linked by a ‘weak’ edge. Hence, the
approach relies on a threshold parameter T to cut the edges. In order to alleviate
the sensibility of the clustering to this parameter T , we proceed in a cut-and-
merge manner: we first over-segment the graph with a ‘hard’ parameter value;
then use the resulting partitions as nodes of a new graph, and apply the graph-
based partitioning algorithm again to merge these partitions which are similar.
The dissimilarity measure between two partitions ck and cl that we use is the
following :

dckcl = ||LCck − LCcl || · ||MCck −MCcl || (2)

where LCp is the centroid of partition p, MCp is a matrix motion descriptor of
partition p (which we will describe in section 3.2); ||.|| is the Euclidean distance
(or equivalently, the Frobenus distance for MC descriptor).
This two-phase partitioning procedure alleviates the dilemma of choosing the
parameter T and produces reliable and robust middle-level components. It is
worth mentioning that the entire hierarchical clustering method, from keypoints
to components, is very fast because the number of trajectories and motion-parts
is relatively small.

Figures 2 and 3 show 2D and 3D visualizations of the components extracted
from image sequences of 6 activity classes in HT-Interaction dataset. Different
components are shown by different colours, keypoints in the same component
share the same colour, and keypoints in the same trajectory are connected by
white lines.
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(a) shakeHanding (b) Hugging (c) Kicking

(d) pointing (e) pushing (f) punching

Fig. 2. Illustration of the components. Each component contains a collection of trajec-
tories that are of consistent motion. Different colors correspond to different components.
Only the largest components are shown.

3.2 Components Motion Descriptor

Inspired by Johansson’s work on visual interpretation of biological motion [26],
which showed that humans can recognize actions merely from the motion of a
few moving lights attached to the human body, and subsequent works for ac-
tion recognition and detection [27], we argue that motion is the most critical
feature for recognizing activities. Thus, similar to the idea of ‘Trajectory trans-
lation descriptor’ proposed by Sun [14], we introduce a robust motion descriptor.
This new descriptor is based on a piecewise linear approximation of the whole
trajectory/component.

Each trajectory in a component defines a parametric curve of the 3D spatio-
temporal space. Following Rao’ approach to segment a curve into line seg-
ments [28], we first smooth each trajectory-curve using anisotropic diffusion [29],
then compute its spatio-temporal curvature. The extrema of the curvature, which
capture both the speed and direction changes, divide a trajectory into several
line segments. The orientations of line segments are quantized into S states, in-
cluding a ‘no-motion’ state. Thereby, we compute a S×S state transition matrix
for each trajectory, and sum over all trajectories. If a trajectory contains only
a single segment, the matrix contains a single non-zero element on its diagonal.
We use the resulting matrix MC to describe the overall motion of a component.
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(a) shakeHanding (b) Hugging

(c) Kicking (d) pointing

(e) punching (f) pushing

Fig. 3. Spatio-temporal visualization of components in the 6-class HT-Interaction
dataset. Only the largest components are shown.

3.3 Spatio-temporal Relationships between Components

Individual components alone are not sufficient for classification, because they
do not integrate information of neighborhood components. Instead of treating
components as independent ones, we propose to incorporate spatial and temporal
relationships between components.

We describe the spatial and temporal relationships between components re-
spectively, and quantize them into discrete states. For spatial relationship, we
project the coordinates of keypoints of a component into the x− y axis, and use
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the average coordinates (xc, yc) to characterise the spatial location of a compo-
nent C. Then the distance between the average coordinates of two components
is computed. If the distance is small, it is quantized into a bin; otherwise, we
compute the arc-tangent value of the spatial locations of two components, and
quantize it into Ks bins. For temporal dependencies, similar to [6], we define
Kt = 5 types of relationship: before, meeting, overlapping, equalling, inclusion.

A pairwise component unit, or co-components is defined as two components
and a directed edge between them. The type of an edge is decided by the spatio-
temporal relationship between components, which belongs to one of (Ks+1)×Kt

spatio-temporal relationships, and the direction of an edge is mainly decided by
the precedence relationship of the centroids of two components t1 and t2. If
t2 > t1, the direction of the edge is from component C1 to C2, which means that
C1 happens before C2. For inclusion relationship, the direction of the edge is
from component C1 to C2 if component C1 includes component C2. After that,
we represent a pairwise component unit with a descriptor by concatenating the
descriptors of two components. For the equal relationship, a bidirectional edge
is used, and two descriptors, concatenating C1 to C2 and C2 to C1, are used.

In total, there are K = (Ks +1)×Kt spatio-temporal relationships. We con-
sider all possible pairs of components. Because the number of components in
a video sequence is small, for example, from one to several dozen, it is fast to
perform the above operations. In our experiments, we found that this represen-
tation encodes robustly complicated spatial and temporal interactions between
components.

3.4 Global Representation of Activity

We follow a bag-of-features approach to represent the video sequences, using
motion matrix of co-component as features.

During the learning phase, we first vectorize the motion matrices of compo-
nents extracted from the videos, then quantize the resulting motion vectors into

Fig. 4. Examples of pairwise components and their spatio-temporal relationships. Each
bold curve stands for a component, and each line with an arrow stands for the edge
of a co-component. The relationship between a pairwise component unit is quantized
into one of several types.
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B bins, using a k-means clustering algorithm. This enables to create a codebook.
During the test phase, we assign the closest codebook entry to each component
motion descriptor of a new video sequence, and generate a histogram of quantised
descriptors.

When using individual components alone (without taking into account the spa-
tial and temporal relationships), the whole video is represented by a histogram of
B bins. When using co-components, during the training phase, for each of the K
spatio-temporal relationships, we generate a codebook of dimension B′. During
the testing phase, we assign the pairwise components descriptors to their closest
entry of the codebook associated to the same type of edge. We then generate K
histograms, and concatenate these histograms to represent the video.

3.5 Activity Recognition

Based on a bag-of-features representation of video sequences with motion
descriptors as features, we use the SVM with χ2 kernel to classify activities.
One-against-all strategy is adopted for the multi-classes classification task .

4 Experiments

4.1 Practical Details

Keypoints sampling. Keypoints are densely sampled at regular (space) interval L:
every L × L patch is represented by a keypoint. L might vary according to the
resolution of the input video. We chose L = 3 in our experiments.

Weights (α1, α2). Their values are fixed to (0.5, 0.5).

Trajectories. We set the size of searching window for matching keypoints to
N = 15. Short trajectories whose length is less than 5 frames are discarded, and
trajectories with average displacement disp < 4 are removed.

Keypoints descriptor. We compute an intensity histogram over a 12 × 12 patch
centred at each keypoint. Image intensity level is quantized into 20 bins.

Clustering parameter (t1, t2). Their values are fixed to (0.55, 0.5).

Component motion descriptor. The orientation of line segments is quantized into
S states (bins) including a no-motion state. The velocity of the line segments can
also be quantized. We analyse in the next section the impact of the quantization
on the classification rate.

Codebook size. Motion descriptor of single components are quantized in a code-
book of size B = 300. For co-components, the size of total codebook is 4280.

4.2 Dataset

We test our algorithm on two datasets: Weizmann dataset [3] and UT-Interaction
dataset [6]. The Weizmann dataset comprises videos with an homogeneous and
static background. It consists in ten action classes: bending, running, walking,
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skipping, jacking, jumping forward, jumping in place, galloping sideways, waving
with two hands, and waving with one hand. Each video contains a single peri-
odic action, performed by a single person. The UT-Interaction dataset contains
six classes of human-human interactions: shake-hands, point, hug, push, kick
and punch. In this dataset, 6 participants performed activities with 10 different
clothings in different background, scale, and illumination conditions.

Fig. 5. Snapshots of video sequences of Weizmann (top) and UT-Interaction (bottom)
datasets

4.3 Experimental Setting and Results

During the learning phase, in Weizmann dataset, training is done on 8 subjects
and testing is done on all video sequences of the remaining subjects. In UT-
Interaction dataset, we use 15 video sequences for training and the rest for
testing.

Table 1. Classification accuracy on 6 classes of Weizmann dataset. We use here motion
descriptor of independent components.

Representation Bend Run Jack Jump Wave 1 Wave 2 Ave.

[30] 100 100 100 77.8 100 100 96.3
Components 100 100 100 100 100 100 100

We first evaluate the performance of our motion descriptor on individual com-
ponents, without taking into account the spatio-temporal relations between them
(components are assumed to be independent). The rate of correct classification
computed on each class from Weizmann dataset is given in Table 1. For the six
classes we tested, our approach reaches 100% of correct classification.

We then evaluate the role of pairwise relationships, e.g. co-component motion
descriptors (see section 3.3). The UT human-interaction dataset is particularly
well suited for this task because it comprises complex inter-actions between peo-
ple and therefore is a very challenging dataset. Accuracy results are given in
Table 2. In this table, we evaluate our middle-level representation with motion
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features computed on individual components and co-components. For compari-
son, we show classification results obtained from bag-of-features generated from
point-wise descriptors: histograms of gradient (HOG) and histograms of optical-
flow (HOF) computed around points extracted with STIP detectors [16]. We
give also the recent results of Ryoo [6]. In [6] the spatio-temporal relationships
among local STIPs are represented by a three-dimensional spatial histogram
and a three-dimensional temporal histogram; histogram intersection is used to
measure the similarity between spatial histograms and temporal histograms.

From Table 2, we observe that STIP-based features give the best results for
3 out of 6 classes. Comparatively, [6] gives relatively poor performances –i.e.
no winning class– compared to STIP- or component- based classification results.
On this dataset, bag-of-co-components representation combined with our motion
descriptor improves on the state-of-the-art results.

Table 2. Classification accuracy results on UT-interaction dataset. Our approach is
compared with others. In bold are highlighted best classification results for each class.

Detector/Descriptor HandShake Hug Kick Point Punch Push Ave.

STIPs / HOG 65 60 65 90 25 75 63.25
STIPs / HOF 65 85 90 85 55 65 74.2
STIPs / HOG+HOF 75 95 70 70 75 70 75.8

[6] 75 87.5 75 62.5 50 75 70.8

Components / motion 75 80 75 94.7 50 40 69.1
Co-components / motion 70 80 85 100 55 80 78.2

Fig. 6. Impact of quantization of motion descriptor: accuracy results for varying num-
ber of orientation bins (from 4 to 12) and amplitude bins (from 1 to 3) in the quanti-
zation process

Finally, we analyse the impact of parameter setting of our motion descriptor
on the classification results. Our motion descriptor relies on the quantisation of
orientation angle and displacement amplitude. We vary the number of bins used
in this quantisation procedure, from 4 to 12 for the former, from 1 to 3 for the
latter. Results on UT database are illustrated in Figure 6.
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5 Conclusion and Future Work

In this paper, we introduced a new middle-level representation, namely compo-
nents, to describe human activities in videos, and proposed a motion descriptor
that captures essential characteristics of human motions. We also have shown
that taking into account the spatial and temporal relationships between com-
ponents improves significantly the performance of the classification. Experimen-
tal results show that recognition results based on our middle-level components
and motion descriptor improve the state-of-the-art results on the most recent
UT-interaction database. In future work, we will add more information for our
middle-level components, and extend the work to activity detection task.
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