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Abstract. We propose a new filter called Bi-affinity filter for color im-
ages. This filter is similar in structure to the bilateral filter. The pro-
posed filter is based on the color line model, which does not require the
explicit conversion of the RGB values to perception based spaces such as
CIELAB. The bi-affinity filter measures the affinity of a pixel to a small
neighborhood around it and weighs the filter term accordingly. We show
that this method can perform at par with standard bilateral filters for
color images. The small edges of the image are usually enhanced leading
to a very easy image enhancement filter.

Keywords: Bilateral filter, RGB color filtering, image matting, matting
Laplacian.

1 Introduction

Bilateral filter was originally proposed by Tomasi and Manduchi [1]. The princi-
ple idea behind such a filtering operation is to combine information from spatial
domain as well as feature domain. It can be represented as

h(x) =
1

k(x)

∑

y∈Ωx

fs(x, y)gr(I(x), I(y))I(y) (1)

where I and h are the input and output images respectively, x and y are pixel
locations over the image grid, Ωx is the neighborhood induced around the central
pixel x, fs(x, y) measures the spatial affinity between pixels at x and y and
gr(I(x), I(y)) denotes the feature/measurement/photometric affinity. k(x) is the
normalization term given by

k(x) =
∑

y∈Ωx

fs(x, y)gr(I(x), I(y)) (2)

The spatial and range filters (f , g respectively), are commonly set to be Gaussian
filters

fs(x, y) = exp(
−‖x− y‖22

2σ2
s

), gr(u, v) = exp(
−‖u− v‖22

2σ2
r

)
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parameterized by the variances σs, σr. The range filter penalizes distance in the
feature space and hence the filter has an inherent edge preserving property. Due
to this important property bilateral filter has been one of the most widely used
filtering techniques within computer vision community.

Bilateral filter is a non-linear filter and as such many researchers have pro-
posed techniques to decompose the non-linear filter into a sum of separable one
dimensional filters or similar cascaded representations [2]. Singular value decom-
position of the 2D kernel is one such approach which has been proposed by [3,4].
Paris et al. [5] proposed an approximation of the bilateral filter by filtering sub-
sampled copies of the image with discrete intensity kernels, and recombining the
results using linear interpolation.

Recently numerous researches have identified the run-time of the bilateral
filter as the critical bottleneck and a few techniques have been proposed which
render the filtering operation almost constant time, albeit with larger space
requirements [6,7] and behavioral approximations. The research into improving
the filter performance heavily relies on the form of the filters which are applied in
the range as well as spatial domain. Porikli’s method [6] can be entirely broken
down to an approximation of a product of a box filter for smoothing and a
polynomial or 4th order Taylor series approximation of a Gaussian kernel.

Traditionally, researchers have overlooked one of the most important shortfalls
of the bilateral filter, which is a unified handling of multi-channel color images.
This is due to the independence assumption within the color channels, such that
the filter processes each channel on its own. As a direct consequence, bilateral
filter produces color artifacts at sharp color edges. One of the remedies proposed
in the original work by Tomasi et al. [1] was to convert from RGB space to
CIELAB space. According to them, once the image is converted to the CIELAB
space the channel wise bilateral filter does not produce such artifacts. We try to
investigate further into this weakness and propose a new technique which works
at par with the transformed domain techniques which have been the standard
practices within the community so far.

2 Color Models

The deterioration of bilateral filter for RGB space seems to indicate that one
constant range filter is probably not enough to capture the edge variations in all
the channels, and hence a conversion to a suitable space such as CIELAB, which
is perceptually more uniform than RGB, is performed. Though this transforma-
tion is very fast and can be implemented in hardware, this does not preclude
the research in alleviating this necessity. This inherent shortcoming of bilateral
filter to work in the RGB space can be traced back to the idea of quantifying
the nearness of the color of two pixels within some spatial neighborhood. To
determine whether two pixels have the same real world color, the color coordi-
nates of a generic color model are used. Any generic color model assumes either
there is no color distortion in the neighborhood, or there is an identical color
distortion for all imaging conditions. In practice, when dealing with real world
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images of an unknown source, these assumptions are rarely true as scene surface
color is distorted differently in different images as well as different image regions,
depending on the scene and camera settings.

2.1 Color Line Model

The introduction of color lines has been attributed to Omer et al. [8], who
proposed the idea that the cluster of pixel colors in the RGB space appear to be
mostly tubular regions, thereby adhering to the fact that most small regions in
natural images can be decomposed into a linear combination of 2 colors. This has
the obvious potential in edge preserving filtering domain, since it brings down
the estimation problem of a valid range filter from 3 channels to 2.

When looking at the RGB histogram of real world images (Fig. 1), it can be
clearly observed that the histogram is very sparse, and it is structured. Color line
model exploits these two properties of color histograms by describing the elon-
gated color clusters. It results in an image specific color representation that has
two important properties: robustness to color distortion and a compact descrip-
tion of colors in an image. This idea has been used for image matting [9,10], Bayer
demosaicing [11] and more recently for image de-noising and de-blurring [12,13].
The matting idea can be further utilized in edge preserving filter applications
by removing the constant range filter all-together. The 2 color characteristics of
a small patch can be exploited to evaluate the best range variance for the patch
itself. This idea is the key intuition behind the new filter introduced in this work.

Fig. 1. RGB color histogram adapted from [8]

2.2 Closed Form Matting

The two-color model states that any pixel color Ii can be represented as a linear
combination of two colors P and S, where these colors are piecewise smooth and



30 M. Das Gupta and J. Xiao

can be derived from local properties within a small neighborhood containing
the pixel i.

Ii = αiP + (1− αi)S, ∀i ∈ w, 0 ≤ αi ≤ 1 (3)

where w is a small patch. α is called the matting coefficient. The patch size is
a key parameter in this model, as it is true only for small neighborhoods. As
the resolution and the size of the images grow, so should the window size as
well, to capture a valid neighborhood. For color images, it was proved by Levin
et al. [10], that if the color line property is obeyed then the 4D linear model
satisfied by the matting coefficient, within a small window, at each pixel can be
written as

αi =
∑

c

acIci + b, ∀i ∈ w, c ∈ {1, 2, 3} (4)

where c is the index over the color channels. Given such a model we can formulate
the cost function for evaluating the matting coefficient α. For an image with N
pixels we define the cost as

J(α, a, b) =
∑

k∈N

(
∑

i∈wk

(αi −
∑

c

ackI
c
i − bk)

2 + ε
∑

c

ack
2

)
(5)

where wk is a small window around pixel k and a = {aci}, for all i = [1, N ]. ε is
a regularization weight for uniqueness as well as smoothness of the solution.

Theorem 1. Let J(α)
.
= mina,b J(α, a, b), then J(α) = αTLα, where L is an

N ×N matrix, whose ijth element is given by

∑

k|(i,j)∈wk

(δij − 1

|wk| (1 + (Ii − μk)
T Σ̃

−1

k (Ij − μk))) (6)

where δij is the Kronecker delta, μk is a 3× 1 mean vector of colors inside the
kth window with both i and j as members, Ii and Ij are the color vectors at

location i and j, Σ̃k = Σk + ε
|wk|I3, where Σk is the 3 × 3 covariance matrix,

|wk| is the cardinality of the window and I3 is the 3× 3 identity matrix.

Proof. We would like to point out that, Levin et al. [10], prove the theorem
based on an extension, from a gray scale case. We present the full 3-channel
proof which can be readily extended to more channels if necessary.

Rewriting Eq. 5 in a matrix notation, where ‖.‖ denotes the 2-norm,

J(α, a, b) =
∑

k

‖Gk.āk −αk‖ (7)

where

Gk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

IR1 IG1 IB1 1
...

...
...

...
IRwk

IGwk
IBwk

1√
ε 0 0 0
0

√
ε 0 0

0 0
√
ε 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, āk =

⎡

⎢⎢⎣

aRk
aGk
aBk
b

⎤

⎥⎥⎦ , αk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

α1

...
αwk

0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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Note that another representation of Gk is possible where the last 3 rows are
combined to a single row of the form [

√
ε
√
ε
√
ε 0], but this form leads to an

unstable covariance matrix. For known αk, we can solve the least square problem

ā�k = argmin ‖Gk.āk −αk‖ (9)

= (GT
k Gk)

−1GT
k αk (10)

Substituting this solution in Eq. 7, and denoting Lk = I|wk|+3 −
Gk(G

T
kGk)

−1GT
k , where I|wk|+3 is the identity matrix of size (|wk|+ 3), we

obtain, J(α) =
∑

k ‖Lkαk‖ =
∑

k(α
T
k L

T
kLkαk). Making the additional obser-

vation that

LT
k Lk = (I|wk|+3 −Gk(G

T
kGk)

−1GT
k )

T (I|wk|+3 −Gk(G
T
kGk)

−1GT
k )

= I|wk|+3 +Gk(G
T
k Gk)

−1GT
k Gk(G

T
kGk)

−1GT
k − 2Gk(G

T
kGk)

−1GT
k

= I|wk|+3 −Gk(G
T
k Gk)

−1GT
k = Lk

we can write J(α) =
∑

k(α
T
kLkαk). To complete the proof we need to find the

expression for Lk|i,j .
Noting the identity E[X2] = σ2

XX + E[X ]2, denoting the individual channel
means E[R] as R, we can write

GT
k Gk = |wk|

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A︷ ︸︸ ︷⎛
⎜⎝
σ2
RR +R2 + ε

|wk| σ2
RG +RG σ2

RB +RB

σ2
GR +GR σ2

GG +G2 + ε
|wk| σ2

GB +GB

σ2
BR +BR σ2

BG +BG σ2
BB +B2 + ε

|wk|

⎞
⎟⎠

D︷ ︸︸ ︷⎛
⎝
R
G
B

⎞
⎠

(
R G B

)
︸ ︷︷ ︸

DT

1︸︷︷︸
C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where we have divided the matrix into 4 components. Note that D = μk for the
kth window. Inverse of the above system can now be written as ([14])

(GT
kGk)

−1 =
1

|wk|
[
P Q
R S

]

P = (A−DC−1DT )−1 = (A−DDT )−1

=

⎡

⎢⎣
σ2
RR + ε

|wk| σ2
RG σ2

RB

σ2
GR σ2

GG + ε
|wk| σ2

GB

σ2
BR σ2

BG σ2
BB + ε

|wk|

⎤

⎥⎦

−1

= Σ̃
−1

k

Q = −P (DC−1) = −PD = −Σ̃
−1

k μk

R = −(C−1DT )P = −DTP = −μT
k Σ̃

−1

k

S = C−1 −R(DC−1) = 1−RD = 1 + μT
k Σ̃

−1

k μk



32 M. Das Gupta and J. Xiao

Putting all the terms together, we can write

(GT
k Gk)

−1 = 1
|wk|

[
Σ̃

−1

k − Σ̃
−1

k μk

−μT
k Σ̃

−1

k 1 + μT
k Σ̃

−1

k μk

]
(12)

Gk(G
T
kGk)

−1 = 1
|wk|

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(I1 − μk)
T Σ̃

−1

k 1− (I1 − μk)
T Σ̃

−1

k μk

(I2 − μk)
T Σ̃

−1

k 1− (I2 − μk)
T Σ̃

−1

k μk
...

...

(Iwk
− μk)

T Σ̃
−1

k 1− (Iwk
− μk)

T Σ̃
−1

k μk√
εΣ̃

−1

k

√
εΣ̃

−1

k μk

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Right multiplication by GT
k yields the final symmetric form, where we show only

the ith column for conciseness and ease of understanding

Gk(G
T
k Gk)

−1GT
k [:, i] =

1

|wk|

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + (I1 − μk)
T Σ̃

−1

k (Ii − μk)

1 + (I2 − μk)
T Σ̃

−1

k (Ii − μk)

1 + (I3 − μk)
T Σ̃

−1

k (Ii − μk)
...

1 + (Iwk
− μk)

T Σ̃
−1

k (Ii − μk)

εΣ̃
−1

k (Ii − μk)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Subtracting from I|wk|+3 and summing over k concludes the proof. Note that
Gk has 3 extra rows, (or C extra rows for general case) for the regularization ε.
These can be neglected in the final expression since they do not explicitly effect
the other computations. �

3 Bi-affinity Filter

The laplacian matrix L, whose elements are defined in Eq. 6, is called the matting
laplacian [10]. The usual decomposition of the laplacian matrix into a diagonal
matrix and a weight matrix leads to the formulation L = D−W. Here D is
a diagonal matrix with the terms Dii = #[k|i ∈ wk] at its diagonal, which
represents the cardinality of the number of windows the pixel i is a member of.
The individual terms of the weight matrix W, called the matting affinity, are
given by

Wij =
∑

k|(i,j)∈wk

1

wk
(1 + (Ii − μk)

T (Σk +
ε

wk
I3)

−1(Ij − μk)) (14)

By definition, all the rows of a laplacian matrix sum to zero, which leads toDii =∑
j Wij . At the local minima the solution α� satisfies the first order optimality
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condition LTα� = 0. So we can write the optimal condition for minimizing J(α)
as

LTα� = (D−W)Tα� =

⎛

⎜⎜⎜⎜⎜⎝

D11α
�
1 −∑j W1jα

�
j

D22α
�
2 −∑j W2jα

�
j

...
...

Dnnα
�
n −∑j WNjα

�
j

⎞

⎟⎟⎟⎟⎟⎠

Substituting Dii =
∑

j Wij into the above system of equations and invoking the
first order optimality condition leads to

⎛

⎜⎜⎜⎝

∑
j(α

�
1 − α�

j )W1j∑
j(α

�
2 − α�

j )W2j

...∑
j(α

�
n − α�

j )Wnj

⎞

⎟⎟⎟⎠ = 0 (15)

The effect of this equation is that the affinity Wij for two pixels with the same
color (same α�), is a positive quantity varying with the homogeneity of the local
windows containing the pixels i and j as governed by Eqn. 14. But for pixels
with different color (different α�) the affinity is zero. In essence the rows of the
laplacian matrix L work as a zero-sum filter kernel, after appropriate resizing. For
our proposed filter, we replace the range filter of traditional bilateral filter with
the appropriate row from the matting laplacian. This leads to the formulation
of the bi-affinity filter

hσ,ε(x) =

∑
y∈Ωx

fσ
s (x, y)L

ε
xyI(y)∑

y∈Ωx
fσ
s (x, y)L

ε
xy

(16)

where we denote the dependence on the user specified parameters σ, ε on the filter
output. The parameter σ controls the amount of spatial blurring and is same
as the spatial filter variance in standard bilateral filter. The parameter ε works
analogous to the range variance parameter in traditional bilateral filter. Note
that the relative weight attributed to the regularization term ε, determines the
smoothness of the α estimates, which in our work translates to the smoothness
of the filtered image. Bilateral filter has an inherent bending effect at the edges,
which can be observed in the very simple experiment shown in Fig. 2. Bi-affinity
filter does not smooth the edge, due to the affinity formulation which is zero
across the edge. This effect can be achieved by bilateral filtering only under
infinite range variance.

The calculation of the exact affinity matrix Wij as mentioned in Eqn. 14,
involves evaluation over all possible overlapping windows, which contain the
center pixel, which is O(w3), where w is the size of the window. The overall
complexity can be reduced by evaluating the affinity over a smaller set of possible
windows. In the simplest case, we can evaluate the terms of Wi,j locally, thereby
counting the contribution of only the local window centered at the current pixel
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Fig. 2. Left to right: original edge, bilateral filtering, bi-affinity filtering. Note the edge
curves slightly for the bilateral result.

(Fig. 3, right), and the complexity is equal to normal bilateral range filter, which
is O(w2). To keep the later comparisons with bilateral filter fair, we define an
approximate filter denoted by hl(x)

hl(x) =

∑
y∈Ωx

fs(x, y)L
x
xyI(y)

∑
y∈Ωx

f
(
sx, y)Lx

xy

(17)

which considers only the local window centered around pixel x denoted by Lx.
Note that we have dropped the dependence on the user specified parameters σ, ε
for notational simplicity.

Fig. 3. Left: all possible 3 × 3 neighborhood windows (brown) for center pixel (red)
and neighbor (blue). Right: central window only approximation.

The operations involved in computing the terms Lij ’s as mentioned in Eqn. 6,
can be decomposed as summation of Gaussian likelihoods over window depen-
dent parameters μw,Σw. These parameters can be computed by accumulating
first and second order sufficient statistics over windows. If memory complexity
is not an issue then pre-computing 9 integral images can be an option. These
9 integral images correspond to 3 integral images for each of the channels R, G
and B, 3 for RR, GG and BB and the remaining 3 for RG, GB and RB. For 3 channel
color images, this is equivalent to storing 3 more images into the memory. For
really large images (HDTV etc.) this option might not be the most optimal due



Bi-affinity Filter: A Bilateral Type Filter for Color Images 35

to the huge memory overhead. The other method is to collect sufficient statistics
for the current window and then updating the statistics for each unit move from
top to bottom and left to right, as proposed by the median filtering approach
by Huang [15] and then improved by Weiss [16]. Both these methods can now
be used to implement the bi-affinity filter.

4 Experiments

The regularization term in the affinity formulation works as an edge smoothness
term. For understanding the effect of this term we vary the amount of regular-
ization used for the process and record the PSNR with respect to the original
image. We report the results with respect to the window size in Fig. 4. The
PSNR degrades for larger window size, which further corroborates the two color
model which is valid only for small windows. The regularization term neutral-
izes the effect of window size to a certain degree as seen by the band of values
collecting near PSNR 96DB. This hints at a possible tradeoff between PSNR
and edge smoothness. For very small regularization values, the noise across the
edge can contribute to the jaggedness of the reconstruction. This effect can be
countered by increasing the amount of regularization. But this increase comes at
a cost, which is the increased smoothness of the overall image. Empirically, we
have obtained good results for larger window sizes by keeping the regularization
term relatively larger than proposed in the matting literature. The effect of reg-
ularization for fixed window size can be seen in Fig. 5. The edge reconstruction
becomes increasingly jagged as the amount of regularization is decreased.

For quantitative comparisons against traditional bilateral filter, we concen-
trate on the range filter variance of 0.1 to 1 and vary the window size to obtain

Fig. 4. PSNR with respect to ground truth. The colors depict the window size. The x
axis depicts the regularization in log scale such that ε = 10x.
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Fig. 5. Effect of regularization term ε. From left to right: ε = 0.0005, 0.005, 0.05, 0.5.
The edge becomes gradually smoother with increasing ε as can be seen at the inset
images.

the curves in Fig. 6. The PSNR values obtained for our method are within ac-
ceptable deviations from those obtained for CIELAB bilateral filter, and surpass
the performance at ε = 1 and w = 5. Also note that Fig. 6 is a zoomed in
version of Fig. 4, at x=[-1,0], approximately coinciding with the beginning of
the knot.

Fig. 6. PSNR comparisons. Left: ε = σr = 0.1, right: ε = σr = 1. σd = 5

In the next experiment, we present comparison of the approximate bi-affinity
filter with traditional bilateral filter. This results are illustrated in Fig. 7. The
response is very similar even though in our method we do not need any color
conversions. For the bilateral filter, the RGB image is converted to CIELAB
space and then the filter is applied individually to each channel.

4.1 Image Enhancement and Zooming

The original bi-affinity filter (Eqn. 16), has been derived from the matting lapla-
cian formulation, which has been shown to preserve very minute details which
is one of the requirements of matting [10]. In other words, our bi-affinity formu-
lation preserves very intricate details of the image when compared to bilateral
filter where only the dominant edges of the image are preserved. In this regard
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Fig. 7. Top: left: original image, right: RGB bilateral filter. Bottom: left: CIELAB
bilateral filter, w = 11, σd = 5, σr = 0.1, right: our method, ε = 0.1.

bi-affinity filter can be thought of as preserving all edges, whereas bilateral fil-
ter only preserves strong edges. This important feature leads us to one of the
most interesting applications of such a filter which is image enhancement and
zooming.

Image enhancement techniques try to estimate the high-resolution data from
the low-resolution data by estimating the missing information. This leads to
numerous formulations, some learning based and some interpolation based. If
the missing high-resolution data can be inferred, then it can be added to the
interpolated input (which satisfies the data fidelity constraints) to generate the
high-resolution image [17]. Given the low-resolution input in Fig. 8, we can
interpolate it to the desired high-resolution size, and then add the missing high-
resolution info to generate the final high-resolution result. The mean affinity at
each pixel, which is the row wise normalized summation of W , contains this
missing detail. This detail is shown in Fig. 8, center panel. The bi-affinity filter
places a smoothed local affinity weighted kernel at each pixel. The enhancement
effect is a byproduct of the filtering formulation and not the main aim of this
work. We realize that existing methods, more so the iterative techniques [18],
can use a formulation similar to ours to refine the estimate at each step.

Like many other passive filtering techniques, e.g. bilateral, bicubic, etc., our
method only looks at the low-resolution observation to generate the values of the
high-resolution scene. Active methods such as Markov random field (MRF) based
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Fig. 8. Image enhancement. Left: input image is enlarged by a factor 2 (bicubic inter-
polation). The mean affinity map for all pixels (center), and the final enhanced image
(right).

models, impose neighborhood continuity constraints. We proposed to investigate
the details of such a model with the bi-affinity filter as one of its components,
as a future work. Additional examples of comparisons against zooming and then
post-processing with bilateral filter compared to our technique is shown in Fig. 9.

5 Conclusion and Future Work

In this paper, we have proposed a new edge preserving filter, which works on the
principle of matting affinity. We present a full n-channel derivation of the matting
laplacian. The formulation of matting affinity allows a better representation of
the range filter term in bilateral filter class. The definition of the affinity term
can be relaxed to suit different applications. We define an approximate bi-affinity
filter whose output is shown to be very similar to the traditional bilateral filter.
Our technique has the added advantage that no color space changes are required
and hence the images can be handled in their original color space. This is a big
benefit over traditional bilateral filter, which needs a conversion to perception
based spaces, such as CIELAB to generate better results. The full bi-affinity filter
preserves very minute details of the input image, and can be simply extended to
an image enhancement application. The implementation of the filter still remains
a challenge due to the small window requirement arising from the two color model
constraint. We propose a diligent effort in this area, since it is evident that the
kernel evaluation can be optimized in more ways than one.
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Fig. 9. Image Zooming by a factor 2x. Left column: bi-cubic interpolation + bilateral
filter. Right column: our method. Notice the preservation of small details in all the
images.
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