A Highly Efficient GPU Implementation for Variational
Optic Flow Based on the Euler-Lagrange Framework

Pascal Gwosdek!, Henning Zimmer!, Sven Grewenigl,
Andrés Bruhn?, and Joachim Weickert!

1 Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science, Bldg. E1.1,
Saarland University, 66041 Saarbriicken, Germany
{gwosdek, zimmer, grewenig, weickert}@mia .uni-saarland.de
2 Vision and Image Processing Group,
Cluster of Excellence Multimodal Computing and Interaction,
Saarland University, Campus E 1.1, 66123 Saarbriicken, Germany
bruhn@mmci.uni-saarland.de

Abstract. The Euler-Lagrange (EL) framework is the most widely-used strategy
for solving variational optic flow methods. We present the first approach that
solves the EL equations of state-of-the-art methods on sequences with 640 x 480
pixels in near-realtime on GPUs. This performance is achieved by combining
two ideas: (i) We extend the recently proposed Fast Explicit Diffusion (FED)
scheme to optic flow, and additionally embed it into a coarse-to-fine strategy. (ii)
We parallelise our complete algorithm on a GPU, where a careful optimisation
of global memory operations and an efficient use of on-chip memory guarantee
a good performance. Applying our approach to the variational ‘Complementary
Optic Flow’ method (Zimmer et al. (2009)), we obtain highly accurate flow fields
in less than a second. This currently constitutes the fastest method in the top 10
of the widely used Middlebury benchmark.

1 Introduction

A fundamental task in computer vision is the estimation of the optic flow, which de-
scribes the apparent motion of brightness patterns between two frames of an image
sequence. As witnessed by the Middlebury benchmark [[1]] [, the accuracy of optic flow
methods has increased tremendously over the last years. This trend was enabled by the
recent developments in energy-based methods (e.g. [2I3U506L7U8I9U 101 1]) that find the
flow field by minimising an energy, usually consisting of a data and a smoothness term.
While the data term models constancy assumptions on image features like the bright-
ness, the smoothness term (regulariser) penalises fluctuations in the flow field.

To achieve state-of-the-art results, a careful design of the energy is mandatory. In
the data term, robust subquadratic penaliser functions reduce the influence of outliers
[SY7U11410], higher-order constancy assumptions [[7410] help to deal with illumination
changes, and a normalisation [4/10] prevents an overweighting at large image gradi-
ents. In the smoothness term, subquadratic penalisers yield a discontinuity-preserving

! Available athhttp: //vision.middlebury.edu/flow/eval/

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 372-883] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

http://vision.middlebury.edu/flow/eval/

Highly Efficient Variational Optic Flow on GPUs 373

isotropic smoothing behaviour [5/7/11]]. Anisotropic strategies [3l6.8L9I10] additionally
allow to steer the smoothing direction, which in [[10] yields an optimal complementarity
between data and smoothness term.

A major problem of recent sophisticated methods is that their energies are highly
nonconvex and nonlinear, rendering the minimisation a challenging task. Modern multi-
grid methods are well-known for their good performance on CPUs [1213], but still
do not achieve even near-realtime performance on larger image sequences. Multigrid
methods on GPUs do achieve realtime performance, but due to their complicated im-
plementation, they were only realised for basic models so far [14]].

Another class of efficient algorithms that can easily be parallelised for GPUs and
additionally support modern models are primal-dual approaches; see e.g. [1119]. These
methods typically introduce an auxiliary variable to decouple the minimisation w.r.t. the
data and smoothness term. For the data term, one ends up with a thresholding that can
be efficiently implemented on the GPU. For the smoothness term, a projected gradient
descent algorithm similar to [15] is used. Problems of primal-dual approaches are (i)
the rather limited number of data terms that can be efficiently implemented and (ii) the
required adaptation of the gradient descent algorithm to the smoothness term. The latter
is especially challenging for anisotropic regularisers, see [9].

The most popular minimisation strategy for continuous energy-based (variational)
approaches is the Euler-Lagrange (EL) framework, e.g. [2i3[7010/16]. Following the
calculus of variations, one derives a system of coupled partial differential equations
that constitute a necessary condition for a minimiser. The benefits of this framework
are: (i) Flexibility: The EL equations can be derived in a straightforward manner for
a large variety of different models. Even non-differentiable penaliser functions like
the TV penaliser [17] can be handled by introducing a small regularisation parame-
ter. (ii) Generality: The EL equations are of diffusion-reaction type. This does not only
allow to use the same solution strategy for different models, but also permits to adapt
solvers known from the solution of diffusion problems. However, one persistent issue of
the EL framework is an efficient solution. As mentioned above, multigrid strategies are
either restricted to basic models [14] or do not give realtime performance for modern
test sequences [12].

Our Contribution. In the present paper, we present the first method that achieves near-
realtime performance on a GPU for solving the EL equations. To this end, we adapt
the recent Fast Explicit Diffusion (FED) scheme [18]] to the EL framework. FED is an
explicit solver with varying time step sizes, where some time steps can significantly
exceed the stability limit of classical explicit schemes. If a series of time step sizes is
carefully chosen, the approach can be shown to be unconditionally stable. The already
high performance is further boosted by a coarse-to-fine strategy. Finally, our whole
approach is parallelised on a GPU using the NVidia CUDA architecture [19]. By doing
so, we introduce FED for massively parallel computing, where it unifies algorithmic
simplicity with state-of-the-art performance. To obtain high performance despite the
large amounts of data involved in the computation, we pay particular attention to an
efficient use of on-chip memory to reduce transfers from and to global memory.

To prove the merits of our approach, we apply it within the recent variational optic
flow method of Zimmer et al. [10], which gives qualitatively good results. Moreover,

374 P. Gwosdek et al.

due to its anisotropic regulariser, it can easily be specialised to less complicated smooth-
ness terms. Experiments with our GPU-based algorithm show speedups by more than
one order of magnitude over CPU implementations of both a multigrid solver and an
FED scheme. Compared to the anisotropic primal-dual method of Werlberger et al. [9],
we obtain better results in an equivalent runtime. In the Middlebury benchmark, we
rank among the top 10 methods, and can report the smallest runtime among them.

Paper Organisation. In Sec.[2l we review the optic flow model of Zimmer et al. [10].
We then adapt the FED framework in Sec.[3] and present details on the GPU implemen-
tation in Sec.[dl Experiments demonstrating the efficiency and accuracy of our method
are shown in Sec.[3] followed by a summary in Sec.

2 Variational Optic Flow

Let f(x) = (f!(x), f?(x), f3(x)) " denote an image sequence where f? represents
the i-th RGB colour channel, = := (z,y,t) ", with (z,y) "€ {2 describing the location
within a rectangular image domain 2 C R? and ¢ > 0 denotes time. We further assume
that f has been presmoothed by a Gaussian convolution of standard deviation o. The
sought optic flow field w := (u,v,1) T that describes the displacements from time ¢ to
t+1 is then found by minimising a global energy functional of the general form

E(u,v) :/Q[M(u,v)—&—aV(Vu, V)| dedy , (1)

where V := (9,,0,) " denotes the spatial gradient operator, and o >0 is a smoothness
weight.

2.1 Complementary Optic Flow

The model we will use to exemplify our approach is the recent method of Zimmer ef
al. [10], because it gives favourable results at the Middlebury benchmark and uses a
general anisotropic smoothness term.

Data Term. For simplicity, we use a standard RGB colour representation instead of the
HSV model from the original paper. Our data term is given by

3
M (u,v) := Wy, (Z 0, (f'(z+w) — fi(m))2> 2)

3
+v ¥y (Z <9§; (f;(w—l—'w) - fé(w)f + 9; (f;(w—l—'w) - f;(w))2)>)

i=1

where subscripts denote partial derivatives. The first line in (2) models the brightness
constancy assumption [2], stating that image intensities remain constant under the dis-
placement, i.e. f(x+w) = f(x). To prevent an overweighting of the data term at
large image gradients, a normalisation in the spirit of [4] is performed. To this end, one
uses a normalisation factor 0} := (|V f?|> 4+ ¢(?)~!, where the small parameter ¢ > 0

Highly Efficient Variational Optic Flow on GPUs 375

avoids division by zero. Finally, to reduce the influence of outliers caused by noise or
occlusions, a robust subquadratic penaliser function Wy (s2) := v/s24-¢2 with a small
parameter € > 0 is used [7]].

Weighted by v > 0, the second line in) models the gradient constancy assump-
tion V f(x+w) = V f(x) that renders the approach robust under additive illumi-
nation changes [7]]. The corresponding normalisation factors are defined as 0}1, gy =
% f{i 2y} |24+ ¢2)~1. As proposed in [12] a separate penalisation of the brightness and
the gradient constancy assumption is performed, which is advantageous if one assump-
tion produces an outlier.

Smoothness Term. The data term only constraints the flow vectors in one direction, the
data constraint direction. In the orthogonal direction, the data term gives no informa-
tion (aperture problem). Thus, it makes sense to use a smoothness term that works com-
plementary to the data term: In data constraint direction, a reduced smoothing should
be performed to avoid interference with the data term, whereas a strong smoothing is
desirable in the orthogonal direction to obtain a filling-in of missing information.

To realise this strategy, one needs to determine the data constraint direction. This can
be achieved by considering the largest eigenvector of the regularisation tensor

3
Ryi= Y Ky 0595 (V1) 4y (6,95 (V1) +0,95(V5))]« 0
i=1
where K, is a Gaussian of standard deviation p, and * denotes the convolution operator.
Apart from this convolution, the regularisation tensor is a spatial version of the motion
tensor that occurs in a linearised data term. For more details, see [10].

Let r; > r denote the two orthonormal eigenvectors of R, i.e. 1 is the data con-
straint direction. Then, the complementary regulariser is given by

V(Vu,Vv) = ¢V<(r1T Vu)2+ (r Vv)2) + (ry Vu)2+ (ry Vv)2 @

To reduce the smoothing in data constraint direction, we use the subquadratic Perona-
Malik penaliser (Lorentzian) [5120] given by ¥y (s?) := A2 In(1 + (s%/A?)) with a
contrast parameter A > 0. In the orthogonal direction, a strong quadratic penalisation
allows to fill in missing information.

2.2 Energy Minimisation via the Euler-Lagrange Framework

According to the calculus of variations, a minimiser (u,v) of the proposed energy ()
necessarily has to fulfil the associated Euler-Lagrange equations

OuM — « div(D (r1,72, Vu, Vo) Vu) =0, (5)
Oy M — « div(D (r1,72, Vu, Vo) Vv) =0, (6)
with reflecting boundary conditions. These equations are of diffusion-reaction type,

where the reaction part (0, M and 0, M) stems from the data term, and the diffusion
part (written in divergence form) stems from the smoothness term.

376 P. Gwosdek et al.

To write down the reaction part of the EL equations, we use the abbreviations f, :=
Ousfi(x+w), fi = fi(x+w)— fi(x) and f, := 0. f{(x+w) — i fi(x), where
xx € {x,y, 2, vy, yy} and x € {x,y}. With their help, we obtain

3 3
8 M = %(Z%(fif)-(Z%fifé) (7)
(o) (0 o)

i=1 i=1

3
M = %(Z%(ﬁ)j(iﬁ%ﬁf&) (8)
+W%<Z(92(éz)+9” y)) (Z Oy foz foy + Oy fye éy)>

i=1 i=1
The joint diffusion tensor D (71, r2,Vu,Vv) is given by

D (r1,72,Vu,Vv) := ¥, ((rlTVu)2+ (rlTVv)2> T Ty .)

Analysing the diffusion tensor, one realises that the resulting smoothing process is not
only complementary to the data term, but can also be characterised as joint image- and
flow driven: The smoothing direction is adapted to the direction of image structures,
encoded in r; and r2. The smoothing strength depends on the flow contrast given by
the expression (7 Vu)?+(r] Vv)2. As a result, one obtains the same sharp flow edges
as image-driven methods, but does not suffer from their oversegmentation problems.

Solution of the Euler-Lagrange Equations. The preceding EL equations are difficult
to solve because the unknown w implicitly appears in the argument of the expressions
fY(x+w). A common strategy to resolve this problem is to embed the solution into
a coarse-to-fine multiscale warping approach [7]. To obtain a coarse representation of
the problem, the images are downsampled by a factor of 7 € [0.5, 1). At each warping
level k, the flow field is split up into w* +dw* =:w**1, where w* = (u*v*1)7 is the
already computed solution from coarser levels and dw” = (du*dv¥0) " is a small flow
increment that is computed by a linearised approach.

Let us derive this linearised approach. To ease presentation, we omit the gradient
constancy part, i.e. set v = 0, and restrict ourselves to the first EL equation (3). The
extension to the full model works straightforward in accordance to [7]. A first step is to
perform a Taylor linearisation

FE = flatw™) = fi(x) = 25 4 fhdut + R0t (10)

where in expressions of the form f%* the flow w" is used. Replacing all occurrences of

£ by this linearisation and using the information from level & for all other constituents,
one obtains the linearised first EL equation (with v=0)

3 3
W]/\/[(Z e(z),kr (fi’k+f;’kduk+f;’kdvk)2> . Z e(z),kr (f;’k—l—f;’kduk—&-f;’kdvk) f;,k
i=1 i=1

—a div (D (rf,rg, V(uk+duk) ,V(vk+dvk)) V(uk+duk)) =0. (11)

Highly Efficient Variational Optic Flow on GPUs 377

At this point, it is feasible to use a solver for nonlinear systems of equations. However,
we use a second coarse-to-fine strategy per warping level for an even faster convergence.
Here the prolongated solution from a coarse level serves as initialisation for the next
finer level.

3 Fast Explicit Diffusion Solver

A classical approach to solve elliptic problems such as the linearised EL equation (L)
are semi-implicit schemes: They are unconstrained in their time step sizes, but require
to solve large linear systems of equations in each step. In contrast, explicit schemes
are much easier to implement and have a low complexity per step, but are typically re-
stricted to very small step sizes to guarantee stability. In this paper, we use a new time
discretisation that combines the advantages of both worlds [[18]]: Fast Explicit Diffusion
(FED) schemes are as simple as classical explicit frameworks, but use some extremely
large time steps to ensure a fast convergence. Still, the combination of large (unstable)
and small (stable) time steps within one cycle guarantees the unconditional stability
of the complete approach. Hence, FED schemes outperform semi-implicit schemes in
terms of efficiency and are additionally much simpler to implement, especially on mas-
sively parallel architectures.

Let us first derive a stabilised explicit scheme [16] for solving the linearised EL
equation (II)) w.r.t. the unknown du®. To this end, we introduce the iteration variable [

d’LLk’ZJrl*d’LLk’l
= div (D (r}, 7}, V(1" +du?) , V (0P +d0™")) V(P +du™t))

7

1
o

3
(A () DG (FEF 4 fE RN ko) fi”“>, (12)

i=1

where 7, denotes the FED time step size at iteration 0 < ! < n which is computed
as [18]

T, = é . (0052 (ﬂ'frllilz))il . (13)

In (I2), the term ¢! (..) is an abbreviation for the expression ¥}, (..) in the first line
of (), where we additionally replace du* by du*' and dv* by dv*!. Finally, note that
our scheme is stabilised by using du®*" from the next iteration in the last row.

In our next step we discretise the expression div(D(..)V (u* 4+ du®!)) in matrix-
vector notation by A(u* +du®!, vk 4 dvP) (uF +duPt) =: ALy This enables
us to rewrite (I2) as

duk,l+1 —

3
T
duk,l+TlAk+1,luk+1,l_Oi (R?,l()j :96,k< ;’k—‘rf;’kdvk’l) f;’k>]

i=1

3 —1
.<1+Z)-SR (;’:’C)2> . (14)

i=1

378 P. Gwosdek et al.

Remarks. The number of individual time steps n in a cycle is given by min{n €
N | (n? + n)/12 > T}, where T denotes the desired stopping time of the cycle. For
n > 3, one can show that an FED cycle reaches this stopping time 7" faster than any
other explicit scheme with n stable time step sizes.

Moreover, the ordering of steps within one FED cycle is irrelevant from a theoretical
point of view, but can in practice affect the influence of rounding errors to the result.
However, it is possible to find permutations of the set {7, | 0 < I < n} that are more
robust w.r.t. floating-point inaccuracies than others. Given the next larger prime number
ptonand k < p, aseries {7 | I=((I+1) - k) mod p,I < n} is known to give good
results [[1821]]. In order to find a suitable value for the parameter «, we analysed a sim-
ple 1-D problem and choose the one « that minimises the error between the FED output
and the analytic reference solution. These values were once computed for all practical
choices of n to set up a lookup table which is used throughout our implementation.

4 Implementation on the GPU

Since our algorithm is hierarchic and uses different data configurations and cache pat-
terns for the operations it performs, we split it up into single GPU kernels of homo-
geneous structure. This concept allows to have a recursive program flow on the CPU,
while the data is kept in GPU memory throughout the process.

FED Solver. Our stabilised fast explicit scheme forms the heart of our algorithm. It
is also the most expensive GPU kernel in our framework: Due to its low arithmetic
complexity, it is strictly memory bound and requires significant amounts of data. For
the smoothness term, we reduce the memory complexity by exploiting the symmetry of
the non-diagonal matrix A from (I4), which comes down to store the four upper off-
diagonals. The remaining entries can be computed in shared memory. Where offset data
loads are necessary for this strategy, they can be efficiently realised by texture lookups.

Derivatives. Spatial image and flow derivatives are discretised via central finite differ-
ences with consistency order 2 and 4, respectively [[12]. For the motion tensor, these
derivatives are averaged from the two frames f(z,y,t) and f(z,y,t + 1), whereas for
the regularisation tensor, they are solely computed at the first frame. Where required,
we compute both the first order and second order derivatives in the same GPU ker-
nel which saves a large number of loads from global memory. Thanks to the texture
cache, the slightly larger neighbourhood that is needed in this context does again not
significantly affect the runtime.

Diffusion Tensor. In order to set up the diffusion tensor D for the smoothness term,
we apply the diffusivity function to the eigenvalues of the structure tensor and use these
new eigenvalues to assemble a new tensor. Both the derivative computation and the
principal axis transforms that are used in this context are fully data parallel. Note that
we do not store the tensor entries to global memory, but directly compute the weights
that are later to be used in the solver. By this, we save again a significant number of
global loads and stores. Due to our nonlinear model, we update the diffusion tensor
after every cycle.

Highly Efficient Variational Optic Flow on GPUs 379

Gaussian Convolution. Our GPU-based Gaussian convolution algorithm is tailored to
the small standard deviations o that typically occur in the context of optic flow: We
exploit the operation’s separability and cut off the discretised kernel at a precision of
3o0. This allows our ‘sliding window’ approach to keep a full neighbourhood in shared
memory, and thus to reduce global memory operations to one read and write per pixel.
Along the main direction of the 2-D data in memory, we apply loop unrolling over
data-independent rows and keep three consecutive sub-planes of the source image in a
ring buffer. Across this direction, we cut our domain in sufficiently large chunks, and
maintain a ring buffer of chunk-wide rows that cover the entire neighbourhood of the
computed row.

Resampling. Key ingredients for hierarchic coarse-to-fine algorithms are prolongation
and restriction operators. Several examples for such operators are known in the litera-
ture, but they are either quite expensive on GPUs due to their ‘inhomogeneous’ algorith-
mic structure, or do not possess necessary properties such as grey value preservation,
aliasing artefact prevention, and flexibility with respect to the choice of the resampling
factor [22123]. As a remedy, we propose a fast but versatile technique that approximates
the desired behaviour well enough to satisfy the quality requirements for optic flow. It
has a uniform algorithmic structure for all target cells and uses the texturing mechanism
of CUDA cards to obtain a high performance.

Textures can be queried at any point in a continuous domain, and in particular in
between grid points. The resulting value is then computed in hardware by means of a
bilinear interpolation. These properties alone yield an efficient prolongation algorithm:
For any target cell of the result, we use the value at the corresponding point of the
source texture. Note that this strategy does not guarantee grey value preservation from
a theoretical point of view, but experimentally yields favourable results.

As it turns out, we must not apply the same algorithm for restriction purposes: Typi-
cal choices of restriction factors close to two cause undersampling and lead to aliasing
artefacts. To overcome this problem, we use four sampling points instead of one: Let
Tz, Ty be the restriction factors in z— and y—direction, respectively, and assume textures
to be defined on the domain [0, 7, —1) x [0,n, —1). For any target point (z,y) ", we
then average over the texture values at locations

1 1\ 1 1\ "
(n (1) (=) a3

This modification allows us to choose arbitrary factors in the interval [é, 1) which suf-
fices for our purposes. Moreover, since nearby sampling points are likely to be in the
2-D texture cache at the same time, this strategy is almost as fast as prolongation.

Warping. In order to access images at warped positions, i.e. to evaluate expressions of
type f*(x+w"), we use the texturing mechanism of graphics cards: We store the image
channel ¢ that is to be warped in a texture, compute the target location by adding flow
field and pixel coordinates, and fetch the texture at the respective point. Albeit inco-
herent memory access is often considered a major performance problem on massively
parallel hardware, this operation turns out to be highly efficient: Optic flow is often
piecewise laminar and sufficiently smooth, such that the missing data locality is largely
compensated by the 2-D texture cache.

380 P. Gwosdek et al.

S Experiments

Quality. We first consider a qualitative evaluation of our results. To this end, we chose
4 sequences with known ground truth from the Middlebury database, and computed
the optic flow fields using our algorithm and an individual choice of parameters. A
visualisation of the results is shown in Fig. [[l Like in the original CPU implementa-
tion of Zimmer et al. [[10], the flow fields are accurate and without visual artefacts.

226 ms

Fig. 1. Our results for 4 Middlebury sequences with ground truth. Top to bottom: Dimetrodon,
Grove2, RubberWhale, Urban2. Left to right: First frame with flow key, ground truth, result
with runtime. We use optimised parameter sets («, 7, ¢, A) for the individual sequences (D: (400,
8, 1.0, 0.05), G: (50, 1, 1.0, 0.05), R: (1000, 20, 1.0, 0.05), U: (1500, 25, 0.01, 0.1)). Fixed
parameters for all cases: 7 = 0.91,0 = 0.3, p = 1.3, 1 cascadic FED step with 1 nonlinear
update and 7" = 150 per warp level.

Highly Efficient Variational Optic Flow on GPUs 381

Table 1. Error measures for 4 Middlebury sequences with known ground truth using the optimal
parameter sets from Fig.[I] and a fixed parameter set (300, 20, 0.01, 0.1).

Sequence Dimetrodon Grove2 RubberWhale Urban2
Optimised AEE 0.08 0.16 0.09 0.29
P AAE 149 232 2.93 2.75
Fixed AEE 0.11 0.19 0.11 0.36
AAE 2.20 2.69 3.76 3.56

3500 T T T T T T T

3000

2500

2000

ms

1500

1000

500 [/ | 640x480: | 1280x960: .
1734 ms 11433 ms Computation
: : + Transfer ——---—-

1 1 : 1 1 1
0.5M 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M
pixels

Fig. 2. Runtimes (with and without device transfer) on images with size ratio 4:3

We also evaluated our results to the ground truth by computing the Average Endpoint
Error (AEE), as well as the Average Angular Error (AAE). In order to be better com-
parable to the results of other state-of-the-art methods, we additionally performed the
same experiment on a fixed parameter set for all sequences, as it is required for the
Middlebury benchmark. From Tab. [Il we see that if we use fixed parameters, we ob-
tain results comparable to those of Werlberger et al. [9]], which has been the top-ranked
anisotropic GPU-based method in the Middlebury benchmark so far. Using individually
tuned parameters as in Fig.[I] the obtained quality can be further enhanced.

The high quality of our algorithm is also reflected in the position in the Middlebury
benchmark. In August 2010, it ranks seventh out of 35 both w.r.t. AAE and AEE.

Runtime. Finally, we evaluate the efficiency of our approach on image sequences of
varying sizes. To this end, we benchmark the runtimes on an NVidia GeForce GTX 480
graphics card. Since runtimes are affected by the size ratio of the image sequence and
the parameter set, we used a ratio of 4:3 and the fixed parameter set from Tab. [Il This
is depicted in Fig.[2l On Urban2 (640x480), our algorithm takes 734 ms. Compared to
hand-optimised Multigrid (FAS) [12]] and FED schemes with equivalent results on one
core of an 2.33 GHz Intel Core2 Quad CPU, this performance results in speedups of 15

382 P. Gwosdek et al.

and 17, respectively. Thanks to a better GPU occupancy, these factors are even higher
the larger the frame size, e.g. 23 and 28 for frames of 1024 x 768 pixels. Moreover,
our algorithm has comparable runtimes to the approach of Werlberger et al. [9], despite
yielding more accurate results, as seen in the Middlebury benchmark. Concerning the
latter, our method currently is the fastest among the top 10 approaches, outperforming
the competitors by one to three orders of magnitude.

6 Conclusions and Outlook

We have presented a highly efficient method for minimising variational optic flow ap-
proaches by solving the corresponding Euler-Lagrange (EL) equations. The core of our
approach is the recently proposed Fast Explicit Diffusion (FED) scheme [18], which
can be adapted to optic flow due to the diffusion-reaction character of the EL equations.
Additionally, we apply a coarse-to-fine strategy, and parallelise our complete algorithm
on a GPU, thereby introducing the first parallel FED implementation.

In our experiments, we used the proposed approach to minimise the optic flow model
of Zimmer et al. [[10], resulting in highly accurate flow fields that are computed in less
than one second for sequences of size 640x480. This gives a speedup by more than one
order of magnitude compared to a CPU implementation of (i) a multigrid solver and (ii)
an FED solver. In the Middlebury benchmark, we rank among the top 10 and achieve
the smallest runtime there.

Since most variational optic flow algorithms are based on solving the EL equations,
we hope that our approach can also help to tangibly speedup other optic flow methods
based on the EL framework. Note that we used an anisotropic regulariser, which results
in the most general form of the diffusion part. Applying our approach with other pop-
ular smoothness terms, like TV regularisation, thus works straightforward by simply
replacing the diffusion tensor by a scalar-valued diffusivity.

Our future research will be concerned with further reducing the runtimes to meet an
ultimate goal: Realtime performance for state-of-the-art optic flow approaches on high
resolution (maybe high-definition) image sequences.

Acknowledgements. We gratefully acknowledge partial funding by the cluster of ex-
cellence ‘Multimodal Computing and Interaction’, by the International Max Planck Re-
search School, and by the Deutsche Forschungsgemeinschaft (project We2602/7-1).

References

1. Baker, S., Roth, S., Scharstein, D., Black, M.J., Lewis, J.P., Szeliski, R.: A database and
evaluation methodology for optical flow. In: Proc. 2007 IEEE International Conference on
Computer Vision. IEEE Computer Society Press, Rio de Janeiro (2007)

2. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185-203 (1981)

3. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation
of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis
and Machine Intelligence 8, 565-593 (1986)

4. Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical flow. In:
Proc. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pp. 310-315. IEEE Computer Society Press, Maui (1991)

11.

12.

13.

17.

18.

19.

20.

21.

22.
23.

Highly Efficient Variational Optic Flow on GPUs 383

. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piece-

wise smooth flow fields. Computer Vision and Image Understanding 63, 75-104 (1996)

. Weickert, J., Schnorr, C.: A theoretical framework for convex regularizers in PDE-based

computation of image motion. International Journal of Computer Vision 45, 245-264 (2001)

. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation

Based on a Theory for Warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024,
pp- 25-36. Springer, Heidelberg (2004)

. Sun, D., Roth, S., Lewis, J.P., Black, M.J.: Learning Optical Flow. In: Forsyth, D., Torr, P.,

Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 83-97. Springer, Heidelberg
(2008)

. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic

Huber-L* optical flow. In: Proc. 20th British Machine Vision Conference. British Machine
Vision Association, London (2009)

. Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosenhahn, B.,

Seidel, H.-P.: Complementary Optic Flow. In: Cremers, D., Boykov, Y., Blake, A.,
Schmidt, ER. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 207-220. Springer, Heidel-
berg (2009)

Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV- L! Optical
Flow. In: Hamprecht, F.A., Schnorr, C., Jahne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp.
214-223. Springer, Heidelberg (2007)

Bruhn, A., Weickert, J.: Towards ultimate motion estimation: Combining highest accuracy
with real-time performance. In: Proc. of the Tenth International Conference on Computer
Vision, vol. 1, pp. 749-755. IEEE Computer Society Press, Beijing (2005)

El Kalmoun, M., Kostler, H., Riide, U.: 3D optical flow computation using a parallel vari-
ational multigrid scheme with application to cardiac C-arm CT motion. Image and Vision
Computing 25, 1482-1494 (2007)

. Grossauer, H., Thoman, P.: GPU-Based Multigrid: Real-Time Performance in High Resolu-

tion Nonlinear Image Processing. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS
2008. LNCS, vol. 5008, pp. 141-150. Springer, Heidelberg (2008)

. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of

Mathematical Imaging and Vision 20, 89-97 (2004)

. Weickert, J., Schnorr, C.: Variational optic flow computation with a spatio-temporal smooth-

ness constraint. Journal of Mathematical Imaging and Vision 14, 245-255 (2001)

Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms.
Physica D 60, 259-268 (1992)

Grewenig, S., Weickert, J., Bruhn, A.: From Box Filtering to Fast Explicit Diffusion. In:
Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS,
vol. 6376, pp. 533-542. Springer, Heidelberg (2010)

NVIDIA Corporation: NVIDIA CUDA Programming Guide. 3rd edn.(2010),
http://developer.download.nvidia.com/compute/cuda/3 0/toolkit/
docs/NVIDIA CUDA ProgrammingGuide.pdf (retrieved June 10, 2009)

Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 12, 629-639 (1990)

Gentzsch, W., Schliiter, A.: Uber ein Einschrittverfahren mit zyklischer Schrit-
tweitendnderung zur Losung parabolischer Differentialgleichungen. Zeitschrift fiir ange-
wandte Mathematik und Mechanik 58, T415-T416 (1978)

Trottenberg, U., Oosterlee, C., Schiiller, A.: Multigrid. Academic Press, San Diego (2001)
Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnorr, C.: Variational optical flow
computation in real-time. IEEE Transactions on Image Processing 14, 608-615 (2005)

http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf

	A Highly Efficient GPU Implementation for Variational Optic Flow Based on the Euler-Lagrange Framework

	Introduction
	Variational Optic Flow
	Complementary Optic Flow
	Energy Minimisation via the Euler-Lagrange Framework

	Fast Explicit Diffusion Solver
	Implementation on the GPU
	Experiments
	Conclusions and Outlook
	References

