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Abstract. A well known problem in photogrammetry and computer vi-
sion is the precise and robust determination of camera poses with respect
to a given 3D model. In this work we propose a novel multi-modal method
for single image camera pose estimation with respect to 3D models with
intensity information (e.g., LiDAR data with reflectance information).

We utilize a direct point based rendering approach to generate syn-
thetic 2D views from 3D datasets in order to bridge the dimensionality
gap. The proposed method then establishes 2D/2D point and local re-
gion correspondences based on a novel self-similarity distance measure.
Correct correspondences are robustly identified by searching for small re-
gions with a similar geometric relationship of local self-similarities using
a Generalized Hough Transform. After backprojection of the generated
features into 3D a standard Perspective-n-Points problem is solved to
yield an initial camera pose. The pose is then accurately refined using
an intensity based 2D/3D registration approach.

An evaluation on Vis/IR 2D and airborne and terrestrial 3D datasets
shows that the proposed method is applicable to a wide range of differ-
ent sensor types. In addition, the approach outperforms standard global
multi-modal 2D/3D registration approaches based on Mutual Informa-
tion with respect to robustness and speed.

Potential applications are widespread and include for instance multi-
spectral texturing of 3D models, SLAM applications, sensor data fusion
and multi-spectral camera calibration and super-resolution applications.

Keywords: Multi-Modal Registration, Pose Estimation, Multi-Modal
2D/3D Correspondences, Self-Similarity Distance Measure.

1 Introduction

A fundamental issue in computer vision and photogrammetry is the precise de-
termination of camera poses with respect to a given 3D model. It has many
applications, e.g., augmented reality, image based localization or robot naviga-
tion. The involved registration task is mostly formulated as the determination of
a geometric transformation1 which maps corresponding features onto each other

1 In case of camera pose estimation the geometric transformation is known as the
external calibration matrix or extrinsic parameters of the camera.
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by minimizing a proper distance measure. In general there are two solution ap-
proaches for matching 2D/3D image data. Either one computes 3D information
from 2 or more 2D images and performs the similarity comparison in 3D, or 2D
data is simulated from the 3D dataset and compared in a two-dimensional space.
We focus on the latter, since we assume only one available 2D image and a pre-
recorded 3D dataset with intensity information as described in Sec.2. This paper
considers 2D/3D camera pose estimation for multi-modal data, i.e., estimating
the external camera R, t parameters when the internal camera parametersK are
known and the involved datasets stem from different image modalities. The pro-
jection of 3D world points Mi to corresponding 2D image points mi is modeled
by a standard pinhole camera model. The intrinsic parameters K with the pa-
rameters skew s, focal length f , aspect ratio α and principal point u = [u0 v0]

T

are assumed to be known.

mi = PMi, P = K [R|t] ,K =

⎡
⎣
f s u0

0 αf v0
0 0 1

⎤
⎦ . (1)

1.1 Related Work and Contribution

2D/3D camera pose estimation received much attention in the last decades
[1,2,3,4]. Existing methods can be roughly divided by the spatial extent/type
of the used features/structures:

Pose from 2D/3D Point Correspondences: Pose estimation is basically
solvable from 3 2D/3D point correspondences and is widely known as the P3P
problem. A common approach is to determine the 3D point positions MC

i in the
camera coordinate frame C. This leads to a root finding problem for a polyno-
mial of degree 8 with only even terms. To disambiguate the 4 solutions in the
general case an additional point is often used. However, the computed pose from
4 point correspondences is usually not accurate and therefore it is advisable to
simultaneously use n >> 4 point correspondences. This leads to the well known
PnP (perspective n points) problem [3]. Often RANSAC type algorithms [5] or
robust cost functions [3] are used to handle outliers in the correspondence set.
A non-linear least squares optimization of the reprojection error with all inlying
feature correspondences increases accuracy further:

minimizeR,t

∑
i

‖K(RMi + t)−mi‖22 . (2)

Modern algorithms [1,4] efficiently solve this problem under real-time constraints
even on modest computing hardware [4].

Pose from Planar Structures: By observing a corresponding planar struc-
ture in both datasets one can extract the pose parameters directly from the
homography H [6,7] which maps the structures onto each other. In this case the
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projection equation of model Mi and 2D image points mi simplifies without loss
of generality to:

s

⎡
⎣
u
v
1

⎤
⎦ = K [r1 r2 r3 t]

⎡
⎢⎢⎣
X
Y
0
1

⎤
⎥⎥⎦ = K [r1 r2 t]

⎡
⎣
X
Y
1

⎤
⎦ , (3)

where ri denotes the i.th column of the matrix R. Therefore the model points
Mi and image points mi are related by a homography H (defined up to a scale
factor λ):

H = [h1 h2 h3] = λK[r1 r2 t]. (4)

Based on the assumption that K is known, the camera pose is given by:

q1 = λK−1h1

q2 = λK−1h2

q3 = r1 × r2
t = λK−1h3

(5)

Due to data noise the computed matrix Q = [q1 q2 q3] usually does not satisfy
the ortho-normality constraint of a rotation matrix R,RTR = I. Therefore R is
computed to minimizeR ‖R−Q‖2F s.t. RTR = I in a Frobenius norm sense. This
can be efficiently achieved [6] by a singular value decomposition of Q = U S V T

and setting R to U V T .

Pose from Intensity Based Distance Minimization: A standard approach
for pose determination in the field of medical image computing (e.g., X-Ray/CT-
computed tomography, X-Ray/MR-magnetic resonance imaging) is to simu-
late pose parametrized 2D views Vsim(R, t) from the 3D dataset which mini-
mize/maximize an intensity based distance/similarity measure D(Typ), D : RN ×
R

N → R between the acquired reference image IR and a simulated view over
the support of the image region A.

minimizeR,t

∫

A

D(Typ)(Vsim(R, t), IR). (6)

We refer to [8,9] for a comparison of common intensity based 2D/3D distance
measures e.g., Normalized Cross Correlation (NCC), Spearman Rank Order Cor-
relation (SPROCC), Gradient Correlation (GC), Correlation Ratio (CR) and
Mutual Information (MI).

Generally, intensity based similarity optimization allows for accurate registra-
tion results but is computationally expensive. Additionally, these methods often
rely on a very good initialization to avoid local optima. Local feature meth-
ods are more advantageous when significant changes of the underlying scenery
hamper global intensity based similarity computations. However, a common dif-
ficulty of the outlined approaches is the determination of 2D/3D feature/planar
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region correspondences, respectively a sufficiently close starting point for an in-
tensity based similarity computation. Local feature based correspondence meth-
ods [10,11] work very well if the image data stems from the same image modal-
ity. An excellent review can be found in [12]. Local feature approaches mostly
match common image features based on gradient information. The registration
task becomes challenging if the image data is multi-modal, e.g., the image in-
tensity data stems from different sensors with, e.g., different image acquisition
techniques, spectral sensitivities or passive/active illumination. The problem of
finding accurate local feature correspondences across different image modali-
ties is less understood. Successful multi-modal matching applications mostly
stem from medical image registration, e.g., the fusion of MR/CT or CT/PET
(positron emission tomography) images by maximization of the information the-
oretic similarity measure MI.We focus on the determination of point and region
correspondences using local multi-modal features. The main difficulty is the in-
herent trade off between feature correspondence discrimination and multi-modal
matching capabilities. We adapt the approach of Shechtman and Irani [13] who
proposed self-similarity descriptors for sketch based object and video detection
and extend it with ideas from the work of Leibe et. al. [14] to determine multi-
modal point and region correspondences. To the best of our knowledge there is
no literature about accurate multi-modal pose determination with local corre-
spondences based on self-similarity. We additionally propose to refine the pose
optimization by minimizing locally a densely computed self-similarity distance
to accurately align local image regions where standard multi-modal similarity
measures like MI or CR have major difficulties. The fusion of 2D images with
LiDAR data is still an active research field [15,16,17]. The closest work [18] with
respect to our application uses MI to register optical images with LiDAR data.
However, we claim that our method is more robust w.r.t. to pose initialization
and cluttered image data.

The outline of the paper is as follows: first we give a short overview for laser
based acquisition of 3D data. Then we describe the key parts of the approach
and discuss specific details which enable the robust local correspondence search
in the multi-modal case. We evaluate the method on different image datasets
with a focus on IR/Vis in combination with airborne (ALS) and terrestrial laser
scanning (TLS) datasets. In the end, we discuss the results and give further
research directions.

2 Laser-Based 3D Data Acquisition

Remote sensing of 3D structures in the far-field is commonly approached with
multi-view image analysis as well as active illumination techniques. In this con-
text, LiDAR (light detection and ranging) is a comparatively new method that
enables direct acquisition of 3D information [19]. LiDAR sensors emit laser radi-
ation and detect its reflection in order to determine the precise distance between
sensor and illuminated object. Currently available laser scanners are capable
of performing hundreds of thousands of range measurements per second, thus
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allowing a complete 3D scenery to be captured in a reasonably short time inter-
val. Two main types of laser scanners can be distinguished that follow different
concepts of range determination: phase shift and time-of flight laser scanners. In
case of phase-shift scanners, a continuous laser beam is emitted with sinusoidally
modulated optical power. The distance to the reflecting object is estimated based
on the phase shift between received and emitted signal. Phase-shift scanners are
well suited for static terrestrial laser scanning. When operating the scanning
head on a rigid tripod, ranging accuracies of few millimeters at distances up to
hundred meters can be achieved. Mobile methods like airborne laser scanning
usually combine a time-of-flight LiDAR device with high-precision navigational
sensors mounted on a common sensor platform. The ranging accuracy of such a
system is typically limited to few centimeters, while maximum distances up to
one kilometer can be measured.

Currently available time-of-flight laser scanners are capable of acquiring the
full waveform of reflected pulses, thus enabling new methods of data analysis [20].
The portion of the reflected energy can be considered in relation to the emitted
radiation and the measured distance. This ratio reveals the local reflectivity at
the specific laser wavelength, which typically lies in the near infrared due to eye-
safety reasons. High-speed scanning and exploitation of reflectivity information
results in highly detailed textured 3D point clouds. However, unlike ambient
background light, the reflection of directed laser radiation is significantly affected
by the incidence angle and the surface characteristics of the illuminated objects.

3 Method

The multi-modal 2D/3D registration procedure can be summarized as follows:
first we utilize a point based rendering approach to generate a synthetic 2D
View from the 3D dataset to enable the correspondence search. Then we es-
tablish 2D/2D point and local region correspondences based on local features.
Correct correspondences are robustly identified by searching for small regions
with a similar geometric relationship of local features by employing a Gener-
alized Hough Transform. The 3D positions for the synthetically generated 2D
features can easily be determined using the depth buffer information from the
rendering procedure. The registration is then carried out by solving a PnP based
pose determination. The calculated pose is finally refined with an intensity based
registration. This refinement step is intended for applications with very high ac-
curacy requirements, e.g., multi-spectral texturing of 3D models, multi-modal
camera calibration or multi-modal super-resolution. Summarizing, the method
can be divided (cf., Fig.1) as follows:

1. Synthetic 2D View Generation
2. Feature Extraction
3. Feature Correspondence Search and Constraint Filtering
4. Feature Correspondence Based Pose Determination
5. Intensity Based Multi-Modal Registration
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Fig. 1. Registration algorithm overview: (a) extracted local image regions, (b) feature
matching by searching geometrically consistent feature matches and fundamental ma-
trix filtering, (c) 3D backprojection of 2D feature matches, (d) pose determination. The
registration result (bottom image) shows a superposition (red cross) of the airborne IR
image and the textured LiDAR view from the left side.

Synthetic 2D View Generation: We propose a direct point based rendering
approach [21] for synthetic view generation. The automated generation of texture
mapped models (e.g., Fig. 4i) is still error prone and a time consuming process.
To this end we use a simple rendering of the 3D point cloud data based on small
spheres with adaptive sizes. In this work we selected the initial pose for the view
generation manually. However, the proposed feature based method shows a wide
convergence range.

Feature Extraction: We extract local features over different scales and use
standard descriptors for an initial correspondence search. To this date we evalu-
ated SIFT [10], SURF [11] and recently proposed self-similarity descriptors [13].

Feature Correspondence Search and Constraint Filtering: To enable a
robust local feature based 2D/3D registration approach for multi-modal data
we utilize the concept of simultaneously matching local features inside small im-
age regions. The selection of these image regions serves as a starting point for
the correspondence search. Each region defines a local coordinate frame, where
the geometric layout of contained features is determined. Our experiments show
that it is favorable to use image regions with strongly distinct features in or-
der to increase the number of correct region matches. In this work we used
constant region sizes (60x60px) and a simple heuristic based on Harris corners,
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Fig. 2. Local feature correspondence search algorithm (IR/Vis example): (a) extracted
local image regions (Harris/Foerstner), (b) feature matching by searching geometrically
consistent feature matches, (c) best hypothesis supporting feature matches, (d) inten-
sity based local image region alignment, (e) final point correspondences for one local
image region. The right columns shows local patch alignments (Init/MI/Self-Sim).

which serve as the origin. We employ a Generalized Hough Transform similar
to the one used in [14]. We also use a technique called soft-matching [14] for
local feature matching which incorporates the k (e.g., 2-4) nearest neighbors
in descriptor space as potential matches. Due to fundamentally different ob-
ject appearances, many initial local feature matches are not correct and would
lead to an enormous amount of wrong point correspondences (see Fig. 2a left).
Therefore each local feature casts a vote for a corresponding region center ac-
cording to the geometric layout in its reference coordinate system [14]. Under
the assumption that wrong correspondences spread their votes randomly, we de-
termine the corresponding image region center with a simple maximum search.
The final 2D/2D point correspondences are feature matches which contributed
a vote near to the maximum in voting space. We refer to Leibe et. al. [14] for
a detailed description of the voting principle. However, the voting space maxi-
mum in multi-modal image pairs does not always correspond to a correct region
match. We use point correspondences that contributed a vote near the maximum
in voting space (backprojection of best hypothesis supporting feature matches)
to estimate (RANSAC) a local affine transformation Ta of the corresponding
image patch (e.g., 60x60px). We then discard matches with a high self-similarity
distance (eqn. 12) based on an empirical determined threshold.

Intensity Based Optimization of Local Planar Patches: Due to small er-
rors in the determined feature correspondences we also applied a local intensity
based multi-modal distance optimization to find local region correspondences
(cf., Fig.2right). Formally, we search for a set of optimal transformation param-
eters θ̂ which minimize a multi-modal distance measure D : RN → R over the
support of a local image region Ai around the determined point correspondences:
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θ̂ = argminθ D(θ), (7)

D(θ) =

∫

Ai

D(·)(ITθ
, IR). (8)

To this end we use parametric (projective) transformations Tθ with 8 degrees
of freedom for distance minimization. The local image region Ai should be as
small as possible for projective transformations since they inherently imply pla-
narity. The affine transformation Ta serves as a starting point for the image
alignment optimization. The nonlinear optimization is based on a specific pat-
tern search method which does not rely on gradient information. Basically, we
approximate the distance function D(θ) with a multi-variate polynomial of de-
gree 2 and recenter/rescale a search pattern at the optimum of the surrogate
polynomial. Given a proper initialization, the method needs only a few distance
function evaluations to converge to a local optimum and is especially designed
for computationally expensive distance functions. We plan to directly compute
an accurate pose from the local projective transformations Tθ as described in
Sec. 1.1. However, to this end we use this computationlly expensive step only for
an optional point correspondence optimization, when we omit a global intensity
based similarity optimization.

Feature Correspondence Based Pose Determination: The corresponding
3D feature positions from the 2D rendering are efficiently backprojected into 3D
by using the depth buffer information from the rendering process2. Given the
2D/3D correspondences we calculate the pose using a standard PnP algorithm.
We used the recently proposed EPnP [4] algorithm, which expresses the n 3D
feature positions as a weighted sum of four virtual control points. This algo-
rithm proved to be superior w.r.t. speed and accuracy compared to the popular
POSIT algorithm [22]. To robustly detect outliers in the 2D/3D correspondence
set we employed a RANSAC approach. We used n = 8 subset sizes and a 5px
reprojection error (cf. eqn. 2) threshold for the inlier set. The computed pose
was additionally refined by a non-linear Gauss-Newton minimization of the re-
projection error (eqn. 2) w.r.t. the inlier set.

Intensity Based Multi-Modal Registration: To accurately align the multi-
modal data sets we additionally minimize/maximize an intensity based distance/
similarity measure. The convergence range of intensity based multi-modal 2D/3D
methods is usually very small. However, the local feature based pose computation
usually provides a sufficiently close starting point. An important design choice is
the selection of an appropriate distance measure.Mutual Information [9] is consid-
ered the gold standard similarity measure for multi-modal matching. It measures
the mutual dependence of the underlying image intensity distributions:

2 It’s important to transform the data into an adequate coordinate system to reduce
inaccuracies caused by a limited Z-Buffer resolution.
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D(MI)(IR, ITθ
) = H(IR) +H(ITθ

)−H(IR, ITθ
) (9)

where H(IR) and H(ITθ
) are the marginal entropies and

H(IR, ITθ
) =

∑
X∈ITθ

∑
Y ∈IR

p(X,Y )log(
p(X,Y )

p(X)p(Y )
) (10)

is the joint entropy. p(X,Y ) denotes the joint probability distribution func-
tion of the image intensities X,Y in IR and ITθ

, and p(X) and p(Y ) are the
marginal probability distribution functions. However, MI is very difficult to es-
timate (e.g.,see Fig. 3) for small image regions and does not cope well with
spatially-varying intensity fluctuations (eqn. (10)). Therefore we propose to
minimize a self-similarity distance of corresponding image regions in IR and
ITθ

. To compute the self-similarity description for an image patch point we
compare a small image patch with a larger surrounding image region cen-
tered at q ∈ Ri using simple sum of squared differences (SSD) between im-
age intensities normalized by the image patch intensity variance and noise
c(I)noise,variance:

Sq(x, y) = exp

(
− SSDq(x, y)

c(I)noise,variance

)
(11)

This correlation image Sq(x, y) is then transformed into a log polar coordinate
system and partitioned into bins (e.g., 20 angles, 4 radial intervals) where the
maximal correlation value in each bin is used as an entry for the self-similarity

dimension description of the vector S
I(·)
q (x, y) located at the image position

(x, y) ∈ Ai. Each vector is then linearly normalized to [0, 1]. The distance mea-
sure now simply computes the sum of squared distances of the self-similarity

description vectors S
I(·)
q computed at the region Ai:

D(SSim)(ITθ
, IR) =

∑
(x,y)∈Ai

‖SIR
q (x, y)− S

ITθ
q (x, y)‖2. (12)

In multiple experiments we plotted the values of the optimization func-
tion while varying function parameters as shown in Fig. 3f,g. The plots
of this distance measure show unique maxima and relatively smooth and
monotonically increasing function shapes especially for small local image
regions.

3.1 Implementation Details and Runtime Information

The implemented point based rendering and intensity based 2D/2D and 2D/3D
registration software is based on the OpenCV and VTK [23] C/C++ libraries.
We used the SiftGPU [24] and OpenSURF [11] implementation for the local de-
scriptor computation. Since the voting based correspondence approach requires
many feature correspondence searches, it is important to use fast search struc-
tures [25] for nearest neighbor determination in descriptor space (L2 norm).
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(a) GC (b) MI (c) MI+Grad (d) SPROCC

(e) Self-Sim (f) MI-local (g) Self-Sim-local (h) Optimal Pose

Fig. 3. Plots of global distance/similarity values (a-e) for deviations from the found
value by the optimization algorithm (camera translation in x and y direction (±2.5m)).
Comparison of local MI and Self-Sim values (f,g) for a small image patch (60x60px)
(image translation in x and y direction) from the found value by the optimization
algorithm. The optimal value for the pose (h) is shown at where all parameters
are zero.

Since our implementation is not runtime-optimized, the reported time measure-
ments provide only a rough estimate for the actual overall algorithm runtime.
The determination of 500 region correspondences ranges from 60-200s on an In-
tel Q9550 System. An intensity based local image patch refinement (60x60px)
needs 10-15s (single core) for one image patch optimization (Self-Similarity fea-
tures and distance measure).

4 Results

We evaluated the voting based feature correspondence method (Sec.3) by count-
ing point correspondences w.r.t. a robustly estimated fundamental matrix (8-pt
algorithm, RANSAC, 1.25px inlier threshold). When possible, e.g., in case of
IR/Vis aerial images we estimated a global homography (RANSAC, 2.5px inlier
threshold) to evaluate correct correspondences. In total we used 10 Vis/IR, 50
Vis/IR aerial and 2 LiDAR/IR/Vis image pairs. Our experiments show (Tab.
1, Fig. 4) that this method enables a robust determination of multi-modal fea-
ture correspondences. The self-similarity descriptors proved to be well suited
for this task compared to well established local feature approaches like SIFT
[10] or SURF [11] (see Fig. 4). A visualization comparing SIFT, SURF and
Self-Similarity features for TLS/Vis image data is shown in Fig.4. This effect
especially holds for ALS based renderings from close view points where render-
ing holes drastically affect gradient histogram based descriptors (e.g., Fig.4h).
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Table 1. Averaged rounded (found/correct) point correspondences. The correctness of
point correspondences was additionally checked by visual inspection in case of funda-
mental matrix constraint filtering.

Features IR/Vis (2D/2D) IR/Vis (Aerial 2D/2D) ALS/IR

SIFT 0 / 0 63 / 85% 0 / 0

SURF 0 / 0 35 / 91% 0 / 0

Self-Sim 3706 / 49% 2185 / 64% 4881 / 23%

Given high quality synthetic renderings and high point densities local feature
methods based on gradient information can still work. Fig.4(a-f) shows corre-
spondences and PnP based pose computations for SIFT, SURF and Self-Sim
features. However, the number and distribution of correct correspondences was
considerably higher for Self-Sim features. In case of IR/ALS (cf., Fig.4h) data
we were not able to compute correct correspondences using standard local fea-
tures like SIFT and SURF. To evaluate the pose determination accuracy from
the found point correspondences we calculated ground truth pose information
by jointly matching small sets of 3-5 images in order to calculate accurate ex-
trinsic and intrinsic parameters. Then we artificially perturbed the camera po-
sitions from TCam

World to T pertCam
World . The translation parameters were randomly

perturbed by maximally ±5 m and the rotation parameters were perturbed
by maximally ±3 deg. After registration we calculated the Euler angle repre-
sentation of the deviation matrix Tdev using the calculated registration matrix
TWorld
regCam.

Tdev = TWorld
regCamTCam

World. (13)

The average point based pose estimation accuracy for 20 TLS/Vis views showed
rotational deviations of 0.95 (x), 1.12 (y) and 0.74 (z) degree and an average
translational deviation of 0.93 (x), 0.72 (y), 0.69 (z) m for voting based SURF
feature correspondences. Self-Similarity feature correspondences led to rotational
deviations of 0.89 (x), 1.02 (y) and 0.97 (z) degree and an average translational
deviation of 0.89 (x), 0.93 (y), 0.67 (z) m. For the intensity based multi-modal
registration, we evaluated various intensity based distance measures like MI, CR,
GC, SPROCC, linear combinations of MI+GC and the proposed densely com-
puted Self-Similarity. First we evaluated intensity based registration performance
for local patches by visual inspection with respect to MI, Spearman Rank Corre-
lation Coefficient and Self-Similarity. We evaluated the number of (correct/false)
alignments for a representative set of 113 local image patches. SPROCC led to
34% correct alignments, MI to 31%, and Self-Sim to 94% correct alignments
(e.g., Fig.2right). By using the global intensity based 2D/3D camera pose es-
timation step we finally achieved very accurate visual registration results (cf.,
Fig. 5).
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(a) SIFT (b) SURF (c) Self-Sim

(d) SIFT-Pose (e) SURF-Pose (f) Self-Sim-Pose

(g) TLS/Vis (h) IR/ALS (i) TLS (TextureMap)/Vis

Fig. 4. Voting based correspondences using (a) SIFT, (b) SURF and (c) Self-Similarity
features for identical Vis/TLS images. The second row (d-f) shows resulting poses using
the PnP approach. The last row depicts Self-Similarity feature correspondences for
TLS/Vis (g), IR/ALS (h) and TLS(Texture Mapped)/Vis (i) data. All correspondences
are fundamental matrix constraint (RANSAC, 2.25px) filtered.
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(a) Vis/TLS Result (b) IR/TLS Result (c) IR/ALS Result

Fig. 5. Intensity based camera pose estimation results for Vis/TLS-LiDAR (a),
IR/TLS-LiDAR (b) and IR/ALS-LiDAR (c) image pairs

5 Conclusion and Future Work

In this work we proposed and implemented a robust method to determine ac-
curate local multi-modal 2D/3D correspondences. The method is based on si-
multaneously matching geometrically consistent feature correspondences. Very
accurate multi-modal 2D/3D alignments can be achieved in combination with
local intensity based optimization which allows for a precise multi-spectral tex-
turing of 3D models, sensor data fusion and multi-spectral camera calibration.

The registration of multi-modal 2D/3D datasets is inherently difficult due to
fundamental differing object appearances. Multi-modal distance measures are
usually application dependent and the suitability of self-similarity as a gen-
eral multi-modal distance measure remains open. However, experiments show a
clear dominance of the proposed self-similarity distance measure for IR/Vis and
ALS/TLS/IR/Vis image pairs in case of small region sizes (see Fig.2right). In
addition, we find the approach of locally matching self-similar structures [13]
very intriguing since it does not assume a global functional relationship like
correlation ratio or clusters in the joint intensity distribution like MI [9]. Most
importantly Self-Sim copes well with spatially varying intensity fluctuations.
Future research directions are manifold. The fast computation of self-similarity
descriptors and distances is crucial for the practicability of the method. More-
over, we work on an extension of the voting procedure to enable wide baseline
scenarios. We also plan to extend the method to allow a robust and accurate
multi-modal 2D/3D registration starting from a sparsely sampled set of 2D ren-
derings of large scale 3D models without any knowledge of extrinsic and intrinsic
camera parameters.
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