

M. Grossniklaus and M. Wimmer (Eds.): ICWE 2012 Workshops, LNCS 7703, pp. 97–108, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Mashup Construction Approach for Cooperation
of Mobile Devices

Korawit Prutsachainimmit, Prach Chaisatien, and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan

{korawit,prach,tokuda}@tt.cs.titech.ac.jp

Abstract. The purpose of this paper is to present a description based mashup
approach for integration of mobile applications, Web services, and Web
applications in order to realize cooperation of mobile devices. We define a
description language called C-MAIDL for describing logic of mashup. We use
a mashup generator for generating mashup applications from the description.
We aim to allow composition of existing mobile applications, extracted
information from Web pages and RESTful Web services. We use a mashup
execution environment to automate cooperation among devices. Finally, we
demonstrate that our approach allows users to create mobile mashup
applications dealing with cooperation of devices easily and efficiently.

Keywords: Mobile Mashup, Cooperation Mashup, Description Language.

1 Introduction

Mobile mashup is a new tool for mobile application development. It is a combination
of Web resources and mobile Internet for enriching mobile services and enhancing
user experiences [1]. Mobile mashup takes advantages of mobile devices’ capabilities.
Data from mobile sensors such as camera and GPS can be integrated with existing
Web resources. Mobile applications such as map-based applications or barcode
scanner applications can be an important component in mashup. With these
advantages, mashup approaches were proposed to allow users to compose mashup
applications for mobile environment. However, existing approaches share a common
characteristic where they are targeted on mashup for single device. Existing
approaches still lack attention to enable mashup for multiple mobile devices.

Recently, trend of mobile application usage is constantly changing from individual
use to collaborative use. Collaborative applications such as groupware or social
applications are adapted to the mobile platform. Similarly, mashup development for
cooperation of mobile devices is now taken into account. With the collaboration of
the devices, information from the devices can be shared and integrated with other
mashup components to produce new variety of mashup output.

Mashup with cooperation of mobile devices has clear benefits for mobile
computing. Multiple mobile devices can participate in a mashup to exchange

98 K. Prutsachainimmit, P. Chaisatien, and T. Tokuda

information and share mashup result. A simple example is the location-based mashup.
A mashup application may request location data from multiple mobile devices and
use it to compute the middle coordinate among devices. Then, the middle coordinate
can be given to mashup APIs to find the best nearest restaurant or choosing the lowest
car rental service around the location. Finally, the selected place can be shared to all
participating devices. Hence, mashup with cooperation of mobile devices can be
considered as an essential research topic in mobile mashup.

In our previous work [2], we have presented a mobile mashup approach for end-
users by using a description language and a mashup generator. We also have
presented Tethered Web service (TeWS) to support cooperative mobile application.
However, the previous work still has limitations, especially on the cooperation of
devices. Thus, this research aims to improve efficiency and extend functionalities of
our previous work. In this paper, we present a description based mashup approach
dealing with cooperation of mobile devices. Our approach is designed for flow-based
mashup where each mashup component is sequentially executed. We aim to allow the
integration of mobile applications, Web applications, and Web services with
cooperation information from multiple mobile devices. We propose a description
language for describing mashup and use a mashup generator to leverage mashup
composition effort. We develop a mashup execution environment to automate
cooperation tasks among devices.

2 Related Work

Different mobile mashup solutions have been proposed to assist end-users in
composing mashup for mobile environment. Mashup editors such as Yahoo Pipes [3]
and Intel MashMaker [4] are capable to provide mobile mashup via mobile Web
browsers. However, with these tools, we cannot integrate data from devices’ sensors
into mashup. TELAR mashup platform [5] presents a way to combine mobile devices’
features such as GPS with existing Web resources. Kaltofen et al. presents an end-
users’ mobile mashup for cross-platform deployment [6]. The proposed solutions
share a common characteristic where they focus on mashup development for single
device. They also have limited capabilities to develop mashup for cooperation of
multiple devices.

In our previous study [2], we have proposed a mobile mashup generator system for
cooperative applications of different mobile devices. Our work aims to deliver the
mashup development for end-users by using a description language and a mashup
generator. We have applied a mobile Web server and TeWS to allow cooperation of
mobile devices. However, our previous work still has limitations. To compose a
cooperation mashup, manual programming effort is still required. The participating
devices have to maintain a connection with other devices during the mashup process.
In addition, mobile applications on client devices cannot be integrated into mashup.

In existing mashup approaches, cooperation of mobile devices is not explicitly
proposed. Therefore, this research aims to find an efficient mashup approach which
enables cooperation of mobile devices. Our goals are to reduce the limitations and

 A Mashup Construction Approach for Cooperation of Mobile Devices 99

extend the functionalities of our proposed approach to create a more powerful mashup
construction system.

3 Mashup Approach

The general concept of our approach is using a description language for mashup
construction. We define an XML-based description language called C-MAIDL
(Cooperation - Mobile Application Interface Description Language). C-MAIDL
allows mashup composers to specify mashup components and details of their
integration. Our approach is designed for flow-based integration where mashup
components will be executed in sequence. The mashup components can be Web
applications, Web services and mobile applications. To build a mashup application, a
mashup composer creates a mashup description file by using C-MAIDL. Then, the
file will be used as an input for our mashup generator to generate the mashup
application. Our approach aims to support mashup on single device and cooperation
mashup on multiple devices. To enable cooperation of devices, we use a mashup
execution environment to exchange data among participating devices.

3.1 C-MAIDL

C-MAIDL is an XML-based description language which is designed for describing
mashup applications. It provides ways to describe detail and data flow of mashup
components which will be used in a mashup application. The components can be
arranged as a workflow according to logic of mashup composers. The composers then
configure each component’s parameters. Results from the components in upper
hierarchical order can be used in the lower ordered component. Finally, the
composers configure the output component and export the abstracted model to a C-
MAIDL description file.

C-MAIDL is an extension of our proposed mashup description language called
MAIDL. The general concept of MAIDL is to provide data flows between mashup
components for its execution and output. The components consist of Web Application
Component (WA), Web Service Component (WS), Mobile Application Component
(MA) and Arithmetic Component (AR). By configuring those components, mashup
composers can extract parts of Web pages, consuming Web services, invoke existing
mobile applications and perform arithmetic operations between outputs of
components. However, MAIDL still has limitations about cooperation of multiple
devices. Manual programming effort is required to create cooperative applications.
Therefore, C-MAIDL is extended from MAIDL to support cooperation tasks by
adding new components to the existing language definition. Additional mashup
components, Cooperation Component and Output Component, are added to expand
functionalities. Thus, C-MAIDL’s mashup components consist of:

1. Web Application Component (WA). Web applications are applicable to our
integration. This component is used for extracting a part of a Web page or querying
through an HTML form. Mashup composers are provided with a Web extraction

100 K. Prutsachainimmit, P. Chaisatien, and T. Tokuda

assistant tool [7] to indicate part of required information on a Web page. The
description of this component will be generated to JavaScript code and executed in
the runtime environment on a mobile device.

2. Web Service Component (WS). This component is used for consuming a REST
Web service by specifying a URL and query expressions (such as XPath or JSON).
The target Web service will be invoked to extract a whole or a part of the result.

3. Mobile Application Component (MA). A mobile application can be used as a
mashup component. This component allows the application which implemented
Intent and Service [8] messaging protocol to be integrated in mashup.

4. Arithmetic Component (AR). This component provides pre-defined mathematical
operations between results from one or more components. The operation includes
addition, subtraction, division, multiplication, summation, comparison, and GPS
distance calculation.

5. Cooperation Component (CC). This component will be used for cooperation of
multiple devices. Required information from participating devices can be described
in this component. The description of this component will be generated to code for
communicating with the mashup execution environment to exchange information
with other devices.

6. Output Component (OC). Output of mashup application can be defined by using
this component. Mashup composers can select to show the mashup result as points
on the map view or display as a Web page in the Web view.

Fig. 1. Samples of C-MAIDL description

 A Mashup Construction Approach for Cooperation of Mobile Devices 101

To illustrate C-MAIDL, the description of Cooperation Component and Web
Service Component are shown in Figure 1. The Cooperation Component is configured
as a publisher to provide data to other components. A target mobile application and its
launching parameters are specified to activate the barcode scanning on the
participating devices. Output data from this Cooperation Component is defined, i.e. in
this case, the “scannedcode”, to be referred by the other components. The Web
Service Component is configured as a subscriber and publisher. As a subscriber, this
Web Service Component uses the scanned barcodes from the Cooperation Component
as an input of a Web Service API. As a publisher, the result from the Web service
execution will be available to the other components.

3.2 Mashup Construction Process

The mashup construction process is shown in Figure 2. To compose a mashup
application, a mashup composer creates an abstract model of mashup by using C-
MAIDL. The composer composes a C-MAIDL description file to transform the
abstract model into mashup description. The description file will be used as an input
of the mashup generator to generate Java source code. This generated code will be
compiled into a mobile application which can be deployed on a target device. The
mashup application can be used as an ordinary mobile application.

Fig. 2. Mashup Construction Process

According to the mashup generator, this tool takes a C-MAIDL description file as
an input to generate a mobile mashup application. First, the generator extracts
component’s description from the C-MAIDL, and then generates Java source code
corresponding to the specification. Next, all the source code will be manually
compiled into an Android’s package file (apk). Then, the package file will be
manually installed to the target device by using Android Debug Bridge (adb). After
the generated mashup application is installed and invoked by a mashup user, the flow
which is defined in C-MAIDL description will be executed. The connection between
participating devices will be established upon needs of cooperation information. The
mechanism of requests and responses are automatically handled by our mashup
execution environment.

102 K. Prutsachainimmit, P. Chaisatien, and T. Tokuda

3.3 Mashup Execution Environment

To achieve mashup for cooperation of devices, participating devices need a capability
to communicate with each others for exchanging mashup required information. We
use a mashup execution environment to automate this task. Our mashup execution
environment allows the devices to exchange information by using custom mobile
applications called Cooperation Agent and Cooperation Center.

In our mashup execution environment, we have categorized the participating
devices into two types which are Guest Device (Guest) and Host Device (Host). The
guest device is a mobile device which provides device’s information to be used in
mashup applications. The host device is a mobile device which executes mashup
applications by using information from the guest devices. The Cooperation Agent and
Cooperation Center will work together to enable information sharing between guests
and a host. The Cooperation Agent will be installed on the guest devices to provide
device’s information for mashup. The Cooperation Center will be installed on the host
device to collect required information from guests. Overview of our mashup
execution environment is shown in Figure 3.

With our mashup execution environment, mobile applications on guest devices can
be integrated into mashup. When a mashup application needs information from guest
devices, it will interact with the Cooperation Center. The Cooperation Center provides
programming interfaces for sending request messages to all guests. When a request
has arrived to a guest device, the Cooperation Agent will invoke a mobile application
which corresponds to the request. The target mobile application can be specified by
using the Cooperation Component in the C-MAIDL description file. For example, a
request for barcode scanning, a barcode application on guest device will be executed
to return the scanned code to the host device. When the host device received all
response messages, it starts integrating the received information with other mashup
components according to the mashup description.

Fig. 3. Overview of Mashup Execution Environment

 A Mashup Construction Approach for Cooperation of Mobile Devices 103

An important function which enables the cooperation of mobile devices is about
sending and receiving information among different devices. An efficient messaging
system must be taken into carefully consideration. Our approach presents a messaging
system for exchanging cooperation information between mobile devices. This
research uses two different mobile platforms to find an effective approach for the
messaging system. Google’s Android device was implemented as the host device
while iOS devices were implemented as guest devices. The Android phone was
selected to be the host device because it has a flexible mobile operating system. Using
special purpose mobile software is possible, especially the mobile Web server. We
apply functionalities of i-Jetty [9] mobile Web server in our messaging system. It is
used as a container of Web service APIs to enable communication between different
mobile platforms. RESTful Web services and JSON were adapted for better
performance [10].

To enable cooperation between an Andriod and iOS devices, we found that there is
an important limitation on iOS platform. The iOS platform does not allow a custom
mobile application to run as a background process. With this limitation, the capability
of communication software which requires listening to incoming request is limited.
From this reason, our messaging system applies different techniques for request and
response activities to overcome the limitation.

Request Message. For collecting cooperation information from guest devices, the
Cooperation Center on the host device creates and sends request messages to all guest
devices. The messages will be sent via a standard messaging protocol such as SMS or
Email. The Cooperation Agent on guest devices will receive the messages and reply
the requested information. However, according to the iOS limitation, the Cooperation
Agent has to be an active mobile application to reply the request messages to the host
device. To activate the Cooperation Agent we use a technique called URL Scheme
Mapping [11]. The custom URL scheme (e.g. cma://) can be registered to the iOS
device for invoking a particular mobile application. When a URL with registered
scheme was touched by a user, the corresponding application will be brought to active
context of the iOS device. In our system, the messages that are sent to guests are
included with a registered URL Scheme and additional parameters. Guest device’s
users can invoke the URL from the received messages. Then, the Cooperation Agent
is brought up to extracts query parts of the URL and determines which information is
requested. User interfaces of the Cooperation Agent will ask for confirmation before
replying the request. An example of request URL is shown in Figure 4-A.

A. An example of Request for Location (URL Scheme)

B. An example of Location Response (HTTP)

Fig. 4. Examples of Request and Response URL

cma://host/cooperation/request?mid=cm001&gid=cma@me.com&cmd=gps&lat=[lat]&lng=[lng]

http://host/cooperation/request?mid=cm001&gid=cma@me.com&cmd=gps&lat=36.1551&lng=15

104 K. Prutsachainimmit, P. Chaisatien, and T. Tokuda

Response Message. To return a requested data to a host device, the Cooperation
Agent will determine the required resources by extracting parameters from the URL
in the received message. When the URL was decoded, Cooperation Agent will invoke
the target mobile application to acquire the requested information. For example, a
request for barcode scanning, the Cooperation Agent will invoke a barcode scanner
application and get the result after user has finished scanning. The integration of
existing mobile applications is done by using x-callback-url specification [12]. The x-
callback-url for the iOS platform is aimed to standardize the inter-application
communication. However, only several numbers of iOS applications are now
supporting the x-callback-url specification. Therefore, we developed testing
applications conform to the x-callback-url specification to demonstrate how to enable
inter-application integration in the iOS platform. To send the data back to the host
device, the Cooperation Agent builds a reply HTTP request by adapting from the
original requested URL, and then submits to Web service APIs on the host device.
The Web services APIs are implemented with Java Servlet on i-Jetty mobile Web
server. An example of response URL is shown in Figure 4-B.

4 Implementation

In order to demonstrate capabilities of our mashup construction approach, we have
implemented sample mobile mashup scenarios. In this paper, we present two
cooperation mashup sample called Shopping Assistance and Meeting Point. We have
also discussed various aspects of our approach in this section.

To enable host’s functionalities, some software is required. The Cooperation
Center and i-Jetty mobile Web server must be installed on the host device. For guest
devices, Cooperation Agent must be installed to accommodate connectivity among
devices. In addition, to demonstrate mobile application integration on guest devices,
custom mobile applications (e.g. GPS Locator and Barcode Scanner) have been
installed to the guest devices.

4.1 Cooperation Mashup Scenarios

Shopping Assistance: Camera and Data Integration Mashup. This sample
scenario simulates a shopping situation in a department store for 3 or more users.
Goal of this mashup is to help users to compare prices of products on a local store
with online stores, and then create a summary list of selected products. An Android
device works as a host device. Two iOS devices coordinate with the host as guests.
The guest devices will scan barcodes of selected products and send it to the host
device. The host device then executes the mashup by using the collected barcodes to
get information of selected products.

Mashup model and screenshots of the mashup application show in Figure 5. In this
mashup, a host device sends a request for a barcode to all guest devices. The guest
devices read a barcode of selected product and submit it to the host device. The
barcode is given to Google’s Search API for Shopping [13] to find available online

 A Mashup Construction Approach for Cooperation of Mobile Devices 105

stores and prices. The arithmetic component filters and extracts the lowest price. The
price is converted into the designed currency with Exchange Rate API [14]. Selected
products from each guest is processed and combined into a list. Finally, the list of
products and comparable prices is shared among all devices.

Fig. 5. Mashup Model and Screenshots of Shopping Assistance

Meeting Point: Geolocation Mashup. This mashup scenario aims to find the best
ranked restaurant located near the middle point between each device’s locations.
Geolocation of 3 devices are used as an input to find the middle point. The middle
point from arithmetic calculation is used to find the nearest train station via Google
Place API Web services [15]. The best nearest restaurant around the selected train
station was discovered by Gourmet Navigator API [16]. Finally, detail of the meeting
point is shared among all devices by using map views.

Fig. 6. Mashup Model and Screenshots of Meeting Point

106 K. Prutsachainimmit, P. Chaisatien, and T. Tokuda

4.2 Discussion

Performance. From the sample scenario, we have noticed that the major performance
factors of the cooperation mashup application depend on performance of consuming
Web resources and performance of the messaging system. By using multiple Web
resources in a mashup application, the host device has to create multiple Internet
connections to get the results. This task is resource-consuming. For instance, in the
shopping assistance scenario, the major workload of the host device is for querying to
Google Products Web services. As for the Cooperation Messaging performance, since
our system has applied a standard protocol (e.g. Mail and SMS) for sending and
receiving cooperation messages, the additional performance issue is up to the
performance of theses protocols. Waiting time for sending and arriving of a message
is up to servers and network utilization at that time.

Privacy Protection. For usability, users may use the cooperation mashup applications
mostly with other mobile applications. The user interfaces of Cooperation Center will
guide users through all the process of mashup. For guest users, our approach also
provides a mechanism for privacy protection. The confirmation dialogs of the
Cooperation Agent allow users to verify which information will be shared in the
mashup. However, there is a trade-off between mashup execution and privacy
protection. When we apply the privacy protection which required users to interact in
sharing mashup information, the capability of automatic mashup execution will be
disabled. User interaction is required through all process of the mashup.

Messaging System. With cooperation messaging, we assumed that participating
devices are connected by using global IP addresses. Guests and host require Internet
connection to consume Web resources and connect to each others. In some case,
problem of losing network connection may interrupt the mashup execution. However,
our messaging system leverages the failure of this case by using asynchronous
manner. A host and guest devices will wait for the messages similar to waiting for an
Email or SMS. User will be notified about incoming messages via the notification
features of the mobile operating system. This allows the guest devices to temporarily
disconnect from the network after they have shared mashup required information.
Later, guest devices require the connection again when mashup result is ready.
Anyway, timeout configuration should be considered in case of permanently or long-
time disconnected.

Mashup Composition. The implementation of the sample scenario indicates that
our approach provides an efficient solution for cooperation mobile mashup. However,
our approach is not designed to support event-based mashup where mashup
components are executed by events. In event-based mashup, guest devices may
publish its information to the host and updating their data when an event is triggered.
Host device has to aware for changing of cooperation information to update mashup
result. For instance, our approach will request for locations from guests only once, but
in some case, the participating devices may move to other locations. Host device
needs to trace for the new locations to update the mashup results.

 A Mashup Construction Approach for Cooperation of Mobile Devices 107

Scope of Integration. According to the integration of mashup components, our
system is able to create mashup applications which integrate various types of mashup
components. However, we found that some specific type of resources cannot be
included in our mashup composition, e.g., Java Applet, Flash Object, authentication
required Web services, especially, mobile applications that are not implemented with
application integration mechanism. In general, a mobile application is created for a
specific purpose. They may not provide the mechanism to collaborate with other
applications. Thus, this kind of mobile applications cannot be used in our system.

Mobile Platform. As for the host device, in this research, we implemented host’s
functionality only on Andriod device. Since our messaging system uses Web services,
the target platform must be able to function as a Web server and Web services
container. We found that Andriod devices are suited to be the host device because
several mobile Web servers are available. However, if there is a new mobile device
platform which can be used as the Web service container, it may be applied as a host
device for our approach. For guest devices, the participating devices have to install
the Cooperation Agent that we have provided for both Android and iOS platform. We
can expand coverage of mobile platforms by developing Cooperation Agent software
for additional mobile operating system.

5 Conclusion and Future Work

This paper has presented a mashup construction approach that enables composition of
cooperation mobile mashup. The mashup created by our approach targeted for
multiple mobile devices working together for cooperation. We proposed a description
language called C-MAIDL, which enables defining mashup logic and collaboration
behavior. The mashup generator is implemented as a fast-paced mashup development
tools aiding end-user’s mashup composition. We have presented the mashup
execution environment that is used to automate cooperation of devices. We have
demonstrated our system applicability for cooperation mobile mashup with the
sample scenario.

Our future research is targeted towards designing, implementing, and evaluating a
novel mashup construction approach for cooperation of mobile devices. We want to
enable event-based mashup where mashup components are executed by events. We
also aim at easing the mashup composition by using a GUI mashup designer tool to
create and deploy the mashup applications. Furthermore, user’s evaluation should be
conducted.

References

1. Jin, L., Song, M., Song, J.: Mobile Mashup architecture solution, direction and proposal.
In: 2010 IEEE 2nd Symposium on Web Society, SWS (2010)

2. Chaisatien, P., Prutsachainimmit, K., Tokuda, T.: Mobile Mashup Generator System for
Cooperative Applications of Different Mobile Devices. In: Auer, S., Díaz, O.,
Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 182–197. Springer,
Heidelberg (2011)

108 K. Prutsachainimmit, P. Chaisatien, and T. Tokuda

3. Yahoo Pipes, Inc. (2008), http://pipes.yahoo.com/
4. Intel Corp.: Mash maker (2007), http://mashmaker.intel.com/web/
5. Brodt, A., Nicklas, D., Sathish, S., Mitschang, B.: Context-Aware Mashups for Mobile

Devices. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE
2008. LNCS, vol. 5175, pp. 280–291. Springer, Heidelberg (2008)

6. Kaltofen, S., Milrad, M., Kurti, A.: A Cross-Platform Software System to Create and
Deploy Mobile Mashups. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE
2010. LNCS, vol. 6189, pp. 518–521. Springer, Heidelberg (2010)

7. Guo, J., Chaisatien, P., Han, H., Noro, T., Tokuda, T.: Partial Information Extraction
Approach to Lightweight Integration on the Web. In: Daniel, F., Facca, F.M. (eds.) ICWE
2010. LNCS, vol. 6385, pp. 372–383. Springer, Heidelberg (2010)

8. Android Developers, http://developer.android.com/index.html
9. i-Jetty, http://code.google.com/p/i-jetty/

10. Tsai, C.-L., Chen, H.-W., Huang, J.-L., Hu, C.-L.: Transmission reduction between mobile
phone applications and RESTful APIs. In: Proceedings of the 2011 ACM Symposium on
Applied Computing (SAC 2011) (2011)

11. iOS Dev Center,
https://developer.apple.com/devcenter/ios/index.action

12. x-callback-url, http://x-callback-url.com/
13. Search API for Shopping,

http://code.google.com/apis/shopping/search/
14. Exchange Rate API, http://www.exchangerate-api.com/
15. Google Place API Web Services,

http://code.google.com/apis/maps/places/
16. Gourmet Navigator API, http://api.gnavi.co.jp/api/manual.html

	A Mashup Construction Approach for Cooperation of Mobile Devices
	Introduction
	Related Work
	Mashup Approach
	C-MAIDL
	Mashup Construction Process
	Mashup Execution Environment

	Implementation
	Cooperation Mashup Scenarios
	Discussion

	Conclusion and Future Work
	References

