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Abstract. In this paper, we show the role of modules over rings of finite cha-
racteristics in data hiding area. Applications of correcting codes and covering 
functions in data hiding are shown as special cases of our module approach.  
Applications of modules over rings of characteristic 2 to design new embedding 
schemes for hiding secret data in binary images are introduced. 
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1 Introduction 

Data hiding can be applied in copyright, annotation, and communication, and can be 
achieved by altering some nonessential pixels in the cover image. For example, in a 
given color image (including grayscale image), the least-significant bit (LSB) of each 
pixel can be changed to embed the secret data. However, two color images embedded 
by secret data are very sensitive and can be easily detected by the human eyes. One of 
the most challenging problems is hiding the secret data into binary images with a high 
ratio of secret data, and low image distortion. In case of palette images, ones need to 
prevent steganalysis, especially to histogram-based attacks (see for examples some 
analysis in [18], if the alpha ratio of the number of changed pixels to the number of 
total pixels of a given palette image is lower than 0.1, it is very difficult to guess if the 
image contains hidden data. In block-based approaches, each binary image is parti-
tioned into binary blocks of the same size N, each block can be seen as an N-bit string 
of size N. In such a block F of size N, by taking WL scheme [16] one can embed one 
bit by changing at most one bit of F. From CPT scheme proposed by Chen-Pan-Tseng 
(2000) [3], in F one can embed r=log2(N+1) bits, by changing at most two bits of F. 
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By correcting codes approach, with notion of covering codes, Crandall [5] refers to an 
unpublished article by Bierbrauer [1] that brings deep techniques to data hiding area, 
based on the point of view of a coding theorist [10,12,13]. The connection between 
linear covering codes and steganography had also appeared in one paper by Galand 
and Kabatiansky [6], and covering codes in [13] dating back 1994 by R. Struik. In a 
nice paper [7] written by J. Bierbrauer and J. Fridrich, the authors described and ex-
tended the original Bierbrauer’s work[1] which show rich contributions of covering 
functions to data hiding area. As shown in their paper, in binary images or in binary 
data formed from LSB planes of three component colors Red, Green, Blue of pixels, 
in true color images, some schemes have reached the maximum secret data ratio 
(MSDRk) based on the number of secret bits which can be embedded in a block F of 
N pixels with the restrictions: in F, at most k bits can be changed (k=1,2,3). Several 
works [2, 4, 5, 6, 7, 9, 14, 15] introduced the powerful applications of approaches 
based on correcting codes in data hiding.  

In this paper, we introduced an application of modules over rings of characteristic 
2 to data hiding area, for binary images the main case of our interest. It can be seen 
that this idea will be easily extended to others characteristics for different formats on 
multimedia environment. The relationship between two methods in data hiding, by 
module and by correcting codes methods is considered. It is shown that hiding secret 
data based on correcting codes is the special case of hiding data by module over rings 
of characteristic 2. Some new schemes for data hiding by module method are intro-
duced, showing the advantage and flexible of module approach to data hiding area. 

The paper is divided into 5 sections. Following the introduction section, section 2 
recalls applications of linear correcting codes and covering codes in binary data hid-
ing. Due to [11] we recall the notion “k-maximal secret data ratio” (MSDRk) of secret 
bits embedded in each block F of N pixels in binary images with the restriction that at 
most k –pixels can be changed in F. As shown, the results of covering codes which 
reached these limits. In section 3 we focus on modules over the ring Z2 of integers 
modulo 2, the main subject of this paper. Notions of k- base on module and k-
embedding scheme are introduced. Some aspects of MSDR are considered. To get 
new 2-bases of Z2-modules for new 2-embedding schemes applied to binary images, a 
designing method is given. In section 4 we show the relationship between correcting 
codes, covering function with module method, and present in details the arguments 
via an example of using Hamming code (7,4) in data hiding. As experimental results,  
some 2-bases obtained by our program are presented and their applications in data 
hiding schemes are discussed. Conclusion is the content of section 5. The general 
applications of modules over the rings of characteristics q, q>1, specially for the spe-
cial case of ring Zq of integers modulo q, are discussed for future study. 

2 Error Correcting Codes and Covering Codes 

2.1 Correcting Codes in Steganography 

As shown in the survey work [7] of J. Bierbrauer and J. Fridrich, the covering  
function technique is originated from error correcting codes area and this brings to  
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steganography powerful ways to design high quality schemes for embedding secret 
data. For examples,  the matrix encoding technique used in F5 algorithm by Westfeld 
[15] permit us to modify at most 1 pixel  among 2k-1 pixels to hide k secret bits. The 
distortion of image then is reduced with the high ratio of the embedding scheme, 
which reached MSDR1. Matrix encoding technique using correcting codes show that 
after the embedding phase, the syndromes generated by a parity check matrix in the 
extracting phase will present exactly secret data embedded in stego-images. In cover-
ing code technique, the covering radius of the code reflects the maximal number of 
pixels changed to embed secret data and the dimension of code reflects the capacity of 
bits can be embedded, by a scheme used this approach. 

Given the linear space Wn = Fn
q of dimension n over the finite field Fq and a natural 

number d > 1. Due to Hamming’s work origined from 1947, an error correcting code 
over Fq is defined as a subset C ⊆ Wn for which d is the minimum distance between 
two distinct code words x ≠ y ∈ C. In error correcting codes area, each codeword v∈C 
can be seen as an (exact) encoded bit string we need to transmit on a noise channel. If 
there are at most r = d/2 errors appear on transmission, that is v is changed to 
v’=v+e for some error vector e whose Hamming weight w(e) ≤ r, then we can correct 
v’ to recover v after  erasing e, by some methods detecting e. The size of C is defined 
as |C|- the number of code words in C. 

If the code is linear, we can find some effective ways to detect the error vector e. 
A linear code C of type [n, k, d] is a linear subspace of Wn having its dimension k < 

n, with d the minimum (Hamming) distance between distinct code words x≠y∈C.  The 
covering radius ρ of code C is defined as ρ = max v ∈ Wd(v;C), where d(v;C) denotes 
the minimum Hamming distance from the vector v to the code C. A parity check ma-
trix of C is a matrix H of size t × n, t=n-k, which permit us to obtain for any v ∈ Wn its 
syndrome vector s(v) = H.vT, where vT is the column vector form of v, so that s(v)= 0 
if and only if v ∈ C. The syndrome s(v) is used to detect and correct the error e if 
w(e)=k (the number of errors), k ≤ r = d/2, appeared on transmission, to recover the 
correct message v from the received message v’=v+e as follows: since 
s(v’)=H.v’=H.(v+e)T=H.vT+H.eT=s(v)+s(e)=s(e), we find e so that s(e) = s(v’) and 
w(e) ≤ r = d/2, and correct v’ to v = v’-e. To obtain an efficient way recognizing the 
error e, the coset technique is developed.  

A coset C + v is the set of all vectors in Wn with the same syndrome s(v). A vector 
lr(v) of the minimum weight in C + v can be called a leader of the coset. We define the 
syndrome map s : Wn → Wt by s(v) = H . vT.  

In steganography (see [7, 9]), one can make use of the syndrome map s : Wn → Wt  
as the extracting map of the  embedding  scheme [n, t, ρ] which can be defined by: 

1. Let n and t be positive integers, t ≤ n, and let X be a finite set of symbols. An 
embedding scheme of type [n, t,ρ] over X is given by a pair of maps c : X t ×X n → X n 
and s : X n → X t such that s(c(p, v)) = p for all (plaintext) p ∈ X t  and v (stego-block)  ∈ X n. Maps c and s are the embedding and the extracting maps, respectively. The  
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covering radius of the scheme is defined as ρ = max{d(v, c(p, v)) | p ∈ X t , v ∈ X n}, 
where d is the Hamming distance. 

2. The embedding scheme [n t,ρ] allows us to hide p (as a string of t secret sym-
bols) into v (as an n-string v of n cover symbols), by changing at most ρ of n cover 
symbols. The following algorithm shows this idea. 

Coset Algorithm. Given p,v 
a) Compute u = s(v) − p, 
b) Set v’= c(p; v) = v − lu, where lu is a leader of the coset C + u of all the vectors 

in Wn with the same syndrome of u. The Hamming weigh w(lu) = j ≤ ρ together with 
vector lu show the exact j positions on which we need to change with the cover vector 
v by equation v’ = v - lu. So, s(lu) = u. This provides us in the extract phase: by using 
(a) above, the syndrome s(v’) = s(v)- s(lu)=s(v)- u = p is obtained, the exact plaintext 
as claimed.  

Concretely (see, such as [7]), in case X = F2 (also  Z2) for designing an embedding 
scheme [n, t,ρ], we can use a covering function COV(ρ,n,t) which permit us to embed 
any t-bit string p in any n-bit string v (as a block of n bits) by changing at most ρ posi-
tions on v. 

Good Covering Codes 
In [7] the authors show some interest classes of cover functions: 

1. COV (2, 5 · 2a−1 − 1, 2a + 1) for a ≥1 by equation (1). 
2. COV (2, 6 · 4a−1 − 1, 4a), a ≥ 2 by equation (4). The first members of this family 

are COV (2, 23, 8), COV (2, 95, 12). 

By our interest, for high quality of stego-images, in this paper we focus only on small 
values, especially for ρ=1, 2. 

2.2 k-Maximal Secret Data Ratio of Embedded Bits 

In this part,  given an image G, for simplicity we only concentrate on one fixed block 
F = (F1,F2,.., FN) of N pixels of G, and F is considered as a vector of dimension N). In 
F each entry Fi  can be understood as a pixel whenever the index i is referring, also as 
the color of this pixel whenever its color value is mentioned. Suppose each color Fi 
can be changed to q-1 new colors Fi’ closed to Fi, by one of q-1 different ways. In the 
case of binary images, q=2. In the general case q≥ 2 for color images.  

We consider here k-embedding schemes in which secret bits can be embedded in 
each block F by changing at most k entries, with k small, k = 1,2. Together with F, 
each new block F’ after changing pixels of F is called a configuration. Denote by 
MSDRk the k-Maximal Secret Data Ratio which presents the largest number of em-
bedded bits in each block F of N pixels by changing colors of at most k pixels in F. 
In the case k=1,  since we change colors in at most one element in F, with N elements, 
1+(q-1)N ways can be taken. This means that for any 1-embedding scheme, we can 
hide at most 

MSDR1 = log2(1+(q-1).C(N,1)) secret bits in each block F. 



 Relationship between Correcting Code and Module Technique in Hiding Secret Data 301 

 

In the cases k=2 or 3, similarly, we have 

                   MSDR2 = log2(1+(q-1).C(N,1)+(q-1)2.C(N,2)) and 
                   MSDR3 = log2(1+(q-1).C(N,1)+(q-1)2.C(N,2) )+(q-1)3.C(N,3)) . 

For example, in binary images, if N = 5 then MSDR2 = 4. In the case of grey images, 
with N=1, q=16, MSDR1 = log2(1+15.1)  =  4. That means in each pixel F (a block 
of 1 pixel) if its color has 15 other ways to change, then any 4 secret bits can be hid-
den in F by some appropriate change. This is the case achieved in [8]. 

3 Modules over Rings of Characteristic 2 in Hiding Secret Data 

3.1 Application of Modules in Hiding Secret Data 

Each (right) module M over the ring Zq is an additive abelian group M with zero 0 
together with a scalar multiplication “.” to assign each couple (m,t) in M × Zq with an 
element m.t in M. Let Zq = {0,1,..,q-1}. We need some following basic properties, 
which will be used in the sequent: 

 P1)  m.0 = 0; m.1=m; 
 P2)  m+n = n+m for all m,n in M. 
 P3)  m.(t+l) = m.t + m.l for all m in M, t,l in Zq. 

Definition 1. Given a natural number v > 0, a subset U ⊆ M-{0}, we call U a v-base 
of M if for any x∈M – {0}, x can be presented by a linear combination of at most v 
elements in U. That means there exist n elements u1,u2,..,un in U, n≤v, together with 
t1,t2,..,tn in Zq such that  x =  u1.t1+u2.t2+..+un.tn. 

We call a k-embedding scheme any embedding scheme that permits in each block 
F of N elements ones can change at most k elements to hide data. In the case v=1, it is 
obvious that U=M-{0} is the unique 1-base.            

In this paper, the main of our interest are the cases v = 1,2 for binary images (ac-
cording to the  characteristic q =2 and M =Z2 × Z2×..× Z2 is the n-fold cartesian prod-
uct of Z2, which can be seen as a (right) Z2-module.  For binary image we have q=2. 
The addition in Z2 can be seen as the operation XOR (exclusive –OR) on bits, Each 
element x=(x1,x2,..,xn) in M can be presented as an n-bit string x=x1x2..xn, with opera-
tions defined as follows: 

D1)  x+y = z1z2..zn where zi=xi ⊕yi, i=1,..,n , For x=x1x2..xn, y=y1..yn in M, k in Z2, 
D2) x.k= z1z2..zn where zi=xi.k  = xi AND k. 

Given a binary image G, we set CG= Z2 ={0,1} as the set of two colors of G. The 
color changing function Next: Z2 → Z2 is given by:  

(3.1 ) c’= c+1 = Next(c), for all c in Z2 and changing a color c means that c is re-
placed by c’ = Next(c). 

As one can see, an 1-embedding scheme can be reduced from a 2-embedding scheme. 
Hence, at first we consider 2-embedding schemes.     
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3.2 Application of 2-Bases for 2-Embedding Schemes 

Let U ⊆ M-{0}, U be a 2-base of a Z2 –module M. Suppose |U| =n. Consider any bi-
nary block F =(F1, F2,.., Fs) of a given binary image G, and binary secret key K= 

(K1,K2,..,Ks), Fi, Ki ∈ Z2, i=1, .., N.  

Suppose s ≥ n. For F, we can assign a surjective function hF : {1,2,..,N} → U as a 

weight function of indexes i of Fi. Since F is fixed in the scope, for simplicity we 

write h instead.  We can embed any secret element d ∈ M in F by changing colors of 

at most 2 elements in F as the following 2-embedding scheme.  

3.2.1 Embedding a Secret Element d   
     Set S[F,K] =  1≤ i≤ N h(i).Ti , by taking operations on the Z2 – right module M. 

Step 0) Given a secret key as a binary vector K=(k0, k1,.., kN), ki ∈ Z2.  

          Change the color Fi  of each Fi ∈ F  into a marked color Ti=Fi+ki (in Z2).   

          We present this computation by T=F⊕K; 
Step 1) Compute m = S[F,K]; 
Step 2) Compare m and d: 

- Case m = d: keep F intact; 

- Case d ≠m: then find d –m=a, for some a ∈ M-{0}. There are two following cases 
happen:   

i) a ∈ U: since h is surjective, there exists Fq in F , such that h(q) = a =d-m. Then     
  change the color Fq to new color Fq’=Next(Fq)=Fq+1.  

ii) a ∉ U : Since U is a 2-base of  M - a Z2-module - we can find (successfully) 
two elements x,y in U such that a=x+y, and therefore find two entries  Fp,Fq in F such 
that h(p)=x, h(q)=y.  

Then we change Fp to new color Fp’=Fp+1, and change Fq to new color Fq’=Fq+1;  

3.2.2 Extracting the Secret Element Embedded in F 
Step 1) Computing u=S[F,K];  
Step 2) Return u as the secret element d embedded in S (that is u=d) .  

Correctness of the Method 

Theorem 1. The element u extracted in step 1 of the extracting stage 3.2.2 above is 
exactly the secret element d hidden into S in the embedding stage 3.2.1. 

Proof. We need consider only the case d ≠ m and prove that u=d.  
Indeed, if the step (2i) in 3.2.1 is taken place, after changing the color Fq to Fq’ 

=Fq+1 by step 2(ii) in 3.2.1 with h(q)=a=d-m, we get Tq’= Tq+1. Then,    
 u =   1≤ q≠ i≤ N h(i).Ti + h(q).(Tq+1) =  1≤ q≠ i≤ N h(i).Ti + h(q).(Tq) +h(q).1  
    =  1≤ i≤ N h(i).Ti + h(q)=m+d-m =d. 
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For the case that the step (2ii) in 3.2.1 is taken place, using d –m =a = x+ y, h(p)=x, 
h(q)=y, by  the same arguments we deduce Tp’=Tp+1 and Tq’=Tq+1. Therefore by 
properties of modules  

u =1≤p,q≠i≤N h(i).Ti +h(p).Tp’+h(q).Tq = 1≤p,q≠i≤N h(i).Ti + h(p).Tp+h(p)+h(q).Tq+h(q) 
  = 1≤ i≤ N h(i).Ti + h(p).Tp+ h(q).Tq+ h(p)+h(q) 

  =  1≤ i≤ N h(i).Ti + h(p)+h(q) = m+a = m+d-m = d. This completes the proof. || 

Example 1. The subset U={0001,0010,0100,1000,1111} is a 2-base of the module   
M = Z2 × Z2× Z2× Z2. Therefore, we can use it to hide data. In any block F of 5 

pixels, we can change at most two pixels to hide 4 bits. That is the MSDR2 is ob-
tained: MSDR2= log2(1+5(5+1)/2)  = 4 = log2(|M|).  
 
Remark 1. Applications of k -bases for k-embedding schemes are similarly estab-
lished, for any k>0, hence we do not mention in details. 

3.3 Designing 2 – Bases of Z2
n 

In this part we introduce a method to design 2-bases of Z2
n inductively. 

Denote by Vn= Z2
n = Z2 × Z2 ×.. × Z2  the Z2- module whose elements can be pre-

sented  simply as the form b = bnbn-1..b1 , an n- bit strings.   
Denote by PRk(Vn) the projection getting k right components in Vn and PLk(Vn) the 

projection getting k left components in Vn.  
Concretely, PRk(bnbn-1..br..b1) = bkbk-1..b1 and PLk(bnbn-1..b2b1)= bnbn-l.. bn-k+2bn-k+1. 
Denote by CLk,t  a class of  2-bases X of  Vn satisfying |X|=2k + 2t -3,n=k+t, and  

PLk(X) = Vk. 
Denote by CRk,t  a class of 2-bases X of  Vn satisfying  |X|=2k + 2t -3,n=k+t, and  

PRt(X) = Vt. 

Lemma 2. If X is a 2-base of  Vn such that PLm(X) =Vm for some integer 0 < m < n, 
then there exist a 2-base Y of Vn+1 such that PLm(Y) =Vm and |Y|=|X|+2r, m+r=n. 

Proof. Define Y is the set of all n+1-bit string x in one of two following forms:  

(i) bnbn-1..b10, with any bnbn-1..b1 in X and whose right most bit is 0.  
(ii) 00..0xrxr-1..x11 with any xrxr-1..x1 ∈ Vr.  

By assumption on X, any element of the form y1..ym0 in Vn+1 can be presented as a 
linear combination of at most two elements in Y. For any element of the form 
y1..ymx1..xr1 in Vn+1, by PLm(X) =Vm there exists n-bit string of X of the form 
y1..ymv1..vr, for some r-bit string v1..vr. So y1..ymv1..vr0 belongs to Y  by definition.    

Define u1..ur= x1..xr  ⊕ v1..vr. Then y1..ymx1..xr1 = 00..0u1..ur1 ⊕ y1..ylv1..vr. Hence Y 
is a 2-base of Vn+1 . Obviously, |Y|=|X|+2r, m+r=n and PLm(Y) =Vm. || 

 
Remark 2. By duality, from a 2-base X satisfying PRr(X)=Vr , we can define a 2-base 
Z of Vn+1 having all elements in one of two forms: 1y1..ym00..0, with any m-bit string  
y1..ym in Vm , and 0x1..xmu1..ur , with any n-bit string x1..xmu1..ur in X. 
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Theorem 3. For any n ≥ 4, there exist 2-bases X in CLm,r,, Y in  CRm,,r such that if m,r 
>1, m+r=n  then   |X|, |Y| ≤  2m + 2r -3. 

Proof. Firstly, one can see that:  

a) CL2,2  contains the set Z={0001, 0010, 0100, 1110, 1001}, this set satisfies the 
claim  |Z| = 5 = 22+22-3 , and  CR2,2 contains the set T={1000,0100,0010,0111,1001} 
with |T|=5 which satisfies the claim.  
b) For all CLm,r, CRm,r, m+r=n, n ≥ 4, m, r >1, one can prove easily the theorem by 
induction on n, starting from two 2-bases Z, T above and applying Lemma 2 together 
with Remark 2 by duality.                                                                                              □ 

 

Example 1 
a) the class CL2,1 contains the set X={110,100,010,001}, and CR1,2 contains the set Y 
= {011,001,010,100}. 

Generally, for any n>0, we can define the set X contains all n+1- bit strings in one 
of two forms: bnbn-1..b10 ≠ 00..0  and 00..01. Then X belongs to CLn,1. We define the 
set Y contains all n+1- bit strings of two forms: 0bnbn-1..b1 ≠00..0 and 100..0, then Y 
belongs to CLn,1 .  

b) CL2,3 contains the set of 9 elements  X = {00010, 00100, 01000, 11100, 10010, 
00001, 00011, 00101, 00111}          

c) CL3,3 contains the set of 13 elements {000010, 000100, 001000, 011100, 
010010, 000001, 000011, 000101, 000111,  100000, 110000, 101000, 111000}. 

4 Correcting Codes and Module Method in Data Hiding 

4.1 Correcting Code and Covering Function as Special Cases of Module 
Method 

In data hiding area, by the essential relation between correcting code and covering 
function, for simplicity we need only to show the relation between correcting codes 
and module methods. Indeed, by the coset algorithm in the part 2.1, section 2, in the 
extract phase, a plaintext p hidden in the cover-string v’ can be extracted from v’ by 
computing the syndrome of v’ as p = s(v’)=H.v’T, where v’= v - lu and H is the parity 
checking matrix of size t × n which can be presented as  H = (C1,..,Ci,..,Cn), where 
each column vector Ci with size t × 1 is considered an element in Wt, a Z2 - module. 
Suppose v’= (x1,..,xn), xi ∈Z2, i=1,..,n.  It is obvious that the syndrome s(v’) = H.v’ = 
Σ1≤ i ≤ n Ci. xi  is exactly the sum we compute by module method, where the weight  
function h: {1,..,n} →M-{0} is defined by  h(i) = Ci for all i=1,..,n with  the Z2-
module M = Wt . Computing v’= v - lu means that we need to find some positions on v 
to flip if in the coset leader lu of u = s(v)-p, the corresponding  positions are different 
from 0. In the following example, we present the arguments in details. 

Example 2. The Hamming code can supply us an instance for module approach in 
hiding data. In details, we have the embedding scheme [7,3,1] by using the Hamming 
code (7, 4), taking W3-{0} = {1,2,..,7} and considering each column C1,C2,..,C7 of the 
parity checking matrix H of size 3 × 7 as a 3-bit presentation of these numbers 
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Fig. 1. Parity checking matrix H in Hamming code (7,4) 

Each block F of the binary image can be seen as a column vector u of 7 entries: u= 
(x1,x2,..x7)

T. Then taking operations on Z2-module we can write H.u = C1.x1 + C2.x2 + 
... + C7.x7 where each column Ci can be seen as a vector in V3=Z2

3
 and the set C={C1, 

C2, C3, C4, C5, C6, C7} is nothing but an 1-base in Z2 - module V3.  For security rea-
son, one can choose an extra binary key k - as a column vector of 7 entries, 
k=(k1,k2,..,k7)

T  and taking operation XOR, with u we get v =u ⊕ k = (y1,y2,..,y7) and 
H.v= C1.y1+C2.y2+..+C7.y7 .  

Replacing a position xj in u by xj⊕1 implies that the same position yj in v is re-
placed by yj⊕1. This gives us the marked vector v’ satisfying the equation H.v’ =  
H.v ⊕ Cj. Now, suppose H.v=e and we need to hide a vector d (of 3 bits) which is 
considered as an element in W3. We can flip at most one position xj in u to hide d as 
follows:  

Case d=e, the block u is kept intact, so that in the extracting phase, ones recover H.v = 
d. Case d ≠ e, or equivalent, e-d ≠ 0, we can find in C (an 1-base of W3) a vector Cj so 
that Cj = e-d (that means C= e ⊕d in W3). After flip xj to xj⊕1 in u, we have H.v’ = 
H.v ⊕ Cj = e ⊕ e ⊕ d=d, the result one needs to recover in the extract phase. Let us 
remark that the sum C1.y1+C2.y2+..+C7.y7 is exactly the result we get by the steps in 
3.2.1 where Ci.yi is nothing but h(i).Ti in that steps, with h(i)=Ci  for i=1,2,..,7.  

4.2 Experimental Results for Finding 2-Bases 

As some results generated from our program, we obtained:  

(i) The 2-base X={0001, 0010, 0100, 1110, 1001} and Y= {1000, 0100, 0010, 
0111, 1001} provide us 2- embedding schemes which permit in each block of 5 
pixels, by changing at most two pixels one can hide 4 bits. Hence regarding 2-
embedding schemes, our schemes can be seen as some expanded for the list 
COV (2, 6 · 4a−1 − 1, 4a) with a=1, by equation (4)[7] mentioned in section 2. 

(ii) The 2-base X = {1, 2, 3, 4, 5, 6, 8, 16, 24, 37, 45, 53, 58} and Y= {1, 2, 3, 4, 5, 
6, 8, 16, 24, 32, 47, 55, 63} in W6 = Z2

6 (the numbers can be seen as 6-bit 
strings). We provide new 2-bases with 13 elements, which permit us to hide 6 
bits in each block of 13 pixels. Then we can extend them by the techniques 
mentioned in Lemma 2 to obtain new 2-bases for hiding 7-bit strings.     

5 Conclusion 

By flexibility of module approach for which correcting codes and covering function 
techniques are considered as the special cases, we can offer more new and powerful 
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schemes to hide data without of using radius or distances as in correcting and covering 
codes. 

In color images (24bpp with three channels Red, Green, Blue), or in palette im-
ages, especially for grayscale images, ones can obtain a higher ratio of secret bits 
hiding in each block of images by using some other module, such as Zq, q>2.  

Several works consider some ways to hide as much as secret data in each block of 
pixels with low image distortion if it is possible. In preventing from steganalysis at-
tacks, ones need a very high quality of stego-images, generally in palette images, 
hiding bits in each pixel is not good enough for security reason. In these situations, 
changing only a small k = 1, 2, 3 pixels in each block of pixels, using a huge number 
of key matrices to prevent effectively from exhausted attacks, by some k- embedding 
scheme modified for color images we can obtain stego-images with the high quality. 
These will be studied in future works. 
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