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Abstract. In this paper, we discuss solving the DLP over GF (36·97)
by using the function field sieve (FFS) for breaking paring-based cryp-
tosystems using the ηT pairing over GF (397). The extension degree 97
has been intensively used in benchmarking tests for the implementation
of the ηT pairing, and the order (923-bit) of GF (36·97) is substantially
larger than the previous world record (676-bit) of solving the DLP by
using the FFS. We implemented the FFS for the medium prime case,
and proposed several improvements of the FFS. Finally, we succeeded in
solving the DLP over GF (36·97). The entire computational time requires
about 148.2 days using 252 CPU cores.

Keywords: pairing-based cryptosystems, ηT pairing, discrete logarithm
problems, function filed sieve.

1 Introduction

After the advent of the tripartite Diffie-Hellman (DH) key exchange scheme [21]
and ID-based encryption using pairing [11], plenty of attractive pairing-based
cryptosystems have been proposed, for example, short signature [13], keyword
searchable encryption [10], efficient broadcast encryption [12], attribute-based
encryption [30], and functional encryption [28]. Pairing-based cryptosystems
have become a major research topic in cryptography.

Pairing-based cryptosystems are constructed on the groups G1, G
′
1 and G2

of the same order with a bilinear pairing G1 × G′
1 → G2. The security of

pairing-based cryptosystems is based on the difficulty in solving several number-
theoretic problems such as the computational/decisional bilinear DH problem
(CBDH/DBDH), strong DH problem (SDH), decisional linear problem (DLIN),
and symmetric external DH problem (SXDH). However, the most important
number-theoretic problem in pairing-based cryptosystems is the discrete loga-
rithm problem (DLP) on G1, G

′
1, and G2. All the other number-theoretic prob-

lems above are no longer intractable once the DLP on G1, G
′
1, or G2 is broken.

Therefore, it is important to investigate the difficulty in solving the DLP.

� The full-version of this paper is appeared in [19].
�� The author is supported by JSPS KAKENHI Grant Number 10J56502.

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 43–60, 2012.
c© International Association for Cryptologic Research 2012



44 T. Hayashi et al.

Table 1. Summary of time data for solving DLP over GF (36·97)

phase method time machine environment

collecting relations lattice sieve 53.1 days 212 CPU cores
linear algebra parallel Lanczos 80.1 days 252 CPU cores

individual logarithm
rationalization and

15.0 days 168 CPU coresspecial-Q descent

total 148.2 days 252 CPU cores

One of the most efficient algorithms for implementing the pairing is the ηT pair-
ing [5] defined over a supersingular elliptic curve E on the finite field GF (3n),
where n is a positive integer. Since the embedding degree of E is 6, the ηT pair-
ing can reduce a DLP over E on GF (3n), which is called an ECDLP, to a DLP
overGF (36n). Joux proposed the (probably) first cryptographic scheme [21] that
uses the pairing over E. Boneh et al. then applied the pairing over E to the short
signature scheme [13], where a point (x, y) on E for extension degree n = 97 can
be represented as a signature value, e.g., x = KrpIcV0O9CJ8iyBS8MyVkNrMyE. At
CRYPTO 2002, Barreto et al. presented algorithms for efficiently computing Tate
pairing over E [6]. Many high-speed implementations of pairing over E have sub-
sequently been proposed [3, 7–9, 17, 18, 25]. For many of these implementations,
benchmark tests using the extension degree n = 97 have been conducted. There-
fore, we focus on the DLP over finite fieldGF (36·97) in this paper. The cardinality
of the subgroup of the supersingular elliptic curve is 151 bits, and that ofGF (36·97)
is 923 bits. The size of our target DLP is 247 bits larger than the previous world
record of solving the DLP over GF (36·71), whose cardinality is 676 bits [20]. The
current world record for solving an ECDLP is the 112-bit ECDLP [14]. Pollard’s
ρ method is used for solving the 112-bit ECDLP, and has not reached the ability
for solving the 151-bit ECDLP over the subgroup of E.

In this paper, we analyze the difficulty in solving the DLP overGF (36·97) by us-
ing the function field sieve (FFS), which is known as the asymptotically fastest al-
gorithm [1, 2]. Since the FFS proposed by Joux and Lercier (JL06-FFS) [24] is suit-
able for solving the DLP over a finite field whose characteristic is small, we use the
JL06-FFS and propose several efficient techniques for increasing its speed. Note
that the FFS generally consists of four phases: polynomial selection, collecting re-
lations, linear algebra, and individual logarithm, and the time-consuming phases
are collecting relations and linear algebra. For the collecting relations phase, we
applied several techniques; lattice sieve for the JL06-FFS, lattice sieve with sin-
gle instruction multiple data (SIMD), and optimization for our parameters. These
techniques enable the sieving program to run about 6 times faster. In the linear al-
gebra phase, we applied careful treatments of singleton-clique and merging [15] to
the Galois action originating from extension degree 6 ofGF (36·97), with which the
size of the matrix used for the Lanczos method is reduced to approximately 30%.
By implementing the JL06-FFS with our improvements, we succeeded in solving
the DLP over GF (36·97) by using 252 CPU cores (Core2 quad, Xeon, etc) for the
target problem discussed in Section 3.1. As shown in Table 1, the computations
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required 53.1 days for the collecting relations phase, 80.1 days for the linear alge-
bra phase, and 15.0 days for the individual logarithm phase. Thus, a total of 148.2
days were required to solve the DLP overGF (36·97) by using 252 CPU cores. Our
computational results contribute to the secure use of pairing-based cryptosystems
with the ηT pairing.

2 Pairing-Based Cryptosystems and Discrete Logarithm
Problem (DLP)

In this section, we briefly explain the security of pairing-based cryptosystems
and give a general overview of the function field sieve (FFS). We also mention
its parameters such as the smoothness bound B.

2.1 Pairing-Based Cryptosystems and DLP

Many efficient cryptographic protocols using a bilinear pairing have been pro-
posed (for example [10–13, 21, 28]), and high-speed implementations for the ηT
pairing have been reported (for example [3, 6–9, 17, 18, 25]). We discuss the
security of pairing-based cryptosystems with the ηT paring over GF (3n) for an
integer n. The security of pairing-based cryptosystems with the ηT paring de-
pends on the difficulty in solving the DLP over the supersingular elliptic curves.
Additionally, MOV reduction [27] reduces this problem to a DLP over GF (36n)∗

since the embedding degree of the ηT pairing is 6.
In particular, the ηT pairing is a bilinear map such that ηT : G1 ×G1 → G2,

where G1 is an additive subgroup of a supersingular elliptic curve over GF (3n),
G2 is a cyclic subgroup of GF (36n)∗, and the cardinalities of G1, G2 are the same
prime number P . The security of pairing-based cryptosystems with the ηT pair-
ing depends on the difficulty of not only an ECDLP over G1 but also a DLP over
G2 by MOV reduction. To explain this fact, we take ID-based encryption con-
structed on pairing-based cryptosystems as an example. The ID-based encryp-
tion has a master key skey ∈ ZP . Each user ID is deterministically transformed
into a point QID ∈ G1, and the secret key SID is defined by [skey ]QID. Therefore,
solving the ECDLP over G1, namely SID = [skey ]QID, we obtain the master key
skey = logQID

SID. Additionally, for an arbitrary point R ∈ G1, we compute
ηT (SID ,R), ηT (QID,R) ∈ G2, and then have ηT (SID,R) = ηT ([skey ]QID,R) =
ηT (QID,R)skey ∈ G2. This implies that skey = logηT (QID ,R) ηT (SID,R) is also
available by solving the DLP over G2. In this paper, we discuss the DLP over a
subgroup of GF (36n)∗.

2.2 General Overview of FFS

The FFS is the asymptotically fastest algorithm for solving a DLP over finite
fields of small characteristics. Adleman proposed the first FFS in 1994 [1]. After
that, several variants of the FFS have been proposed; Adleman and Huang im-
proved the FFS [2], and Joux and Lercier proposed two more practical FFS’s,
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JL02-FFS [23] and JL06-FFS [24]. The details of JL06-FFS are explained in
Sections 3.2.

In this section, we give a general overview of an FFS that consists of four
phases: polynomial selection, collecting relations, linear algebra, and individ-
ual logarithm. In the overview, we aim at computing logg T where T ∈ 〈g〉 ⊂
GF (36n)∗.

Polynomial Selection Phase: We select κ from κ = 1, 2, 3, 6 for the coefficient
field of GF (3κ)[x], and a bivariate polynomial H(x, y) ∈ GF (3κ)[x, y] such that
H satisfies the eight conditions proposed by Adleman [1] and degy H = dH for
a given parameter value dH . We compute a random polynomial m ∈ GF (3κ)[x]
of degree dm and a monic irreducible polynomial f ∈ GF (3κ)[x] such that

H(x,m) ≡ 0 (mod f), deg f = 6n/κ. (1)

We then have GF (36n) ∼= GF (3κ)[x]/(f). Moreover, there is a surjective homo-
morphism

ξ :

{
GF (3κ)[x, y]/(H) → GF (36n) ∼= GF (3κ)[x]/(f)

y 	→ m.

We select a positive integer B as a smoothness bound, and define a rational
factor base FR(B) and an algebraic factor base FA(B) as follows.

FR(B) = {p ∈ GF (3κ)[x] | deg(p) ≤ B, p is monic irreducible}, (2)

FA(B) = {〈p, y − t〉 ∈ Div(GF (3κ)[x, y]/(H)) |
p ∈ FR(B), H(x, t) ≡ 0 mod p}, (3)

where Div(GF (3κ)[x, y]/(H)) is the divisor group of GF (3κ)[x, y]/(H) and
〈p, y− t〉 is a divisor generated by p and y− t. Note that FR(0) = FA(0) = {∅}.
We simply call the set FR(B) ∪ FA(B) a factor base and the set FR(k)\FR(k −
1) ∪ FA(k)\FA(k − 1) a factor base of degree k for k = 1, 2, . . . , B.

Collecting Relations Phase: We select positive integers R,S and collect a
sufficient amount of pairs (r, s) ∈ (GF (3κ)[x])2 such that

deg r ≤ R, deg s ≤ S, gcd(r, s) = 1, (4)

rm+ s =
∏

pi∈FR(B)

pai

i , (5)

〈ry + s〉 =
∑

〈pj ,y−tj〉∈FA(B)

bj〈pj , y − tj〉, (6)

for some non-negative integers ai, bj by using a sieving algorithm such as the
lattice sieve discussed in Section 4.1. To efficiently compute bj in (6), we use the
following equivalent property instead of (6):

(−r)dHH(x, −s/r) =
∏

〈pj,y−tj〉∈FA(B)

p
bj
j . (7)
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The (r, s) satisfying (4), (5), and (7) is called a B-smooth pair. Let h be the class
number of the quotient field of GF (3κ)(x)[y]/(H) and assume that h is coprime
to (36n − 1)/(3κ − 1). Then the following congruent holds:

∑
pi∈FR(B)

ai logg pi ≡
∑

〈pj ,y−tj〉∈FA(B)

bj logg sj (mod (36n − 1)/(3κ − 1)), (8)

where sj = ξ(tj)
1/h, 〈tj〉 = h〈pj, y − tj〉. We call the congruent (8) “relation”

in this paper. Moreover, free relation [20] provides additional relations without
computation with a sieving algorithm.

Linear Algebra Phase: We generate a system of linear equations described as
a large matrix from those collected relations and reduce the rank of the matrix by
filtering [15]. The reduced system of linear equations is solved using the parallel
Lanczos method [4, 20] or other methods, and the discrete logarithms of elements
in the factor base are obtained:

logg p1, ..., logg p#FR(B), logg s1, ..., logg s#FA(B).

Individual Logarithm Phase: Note that our goal is to compute logg T . There-
fore, we find integers ai, bj using the special-Q descent [24] such that,

logg T ≡
∑

pi∈FR(B)

ai logg pi+
∑

〈pj,y−tj〉∈FA(B)

bj logg sj (mod (36n−1)/(3κ−1)).

The computational time for the individual logarithm phase is smaller than those
for the collecting relations and linear algebra phases.

3 Target Problem for n = 97 and Setting of Parameters
for FFS

We discuss solving the DLP over a subgroup of GF (36·97)∗, where the cardinality
of the subgroup is 151 bits. To estimate the time complexity of solving such
a DLP, we unintentionally set a target problem determined from the circular
constant π and natural logarithm e. The details are explained in Section 3.1.
To solve the target problem effectively, we select the parameter values of the
FFS and estimate important numbers, e.g., the number of elements in the factor
base, for it. The details are given in Section 3.2.

3.1 Target Problem

For pairing-based cryptosystems, many high-speed implementations of the ηT
pairing over supersingular elliptic curves on GF (3n) have been reported [3, 6–9,
17, 18, 25], and many benchmark tests using the ηT pairing have been conducted
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for GF (397). In this paper, we deal with a supersingular elliptic curve defined
by

E := {(x, y) ∈ GF (397)2 : y2 = x3 − x+ 1} ∪ {O},
where O is the point at infinity. The order of the E is 397 + 349 + 1 = 7P151

where P151 is a 151-bit prime number as follows:

P151 = 2726865189058261010774960798134976187171462721.

Next, let G1 be the subgroup of E of order P151 and let G2 be the subgroup
of GF (36·97)∗ of order P151. Note that, since orders of G1 and G2 are prime
numbers, every element of G1\{O} and G2\{1} is a generator of G1 and G2,
respectively. The ηT pairing for n = 97 is a map from G1 ×G1 to G2.

Our goal is to solve the ECDLP in G1. To set our target problem uninten-
tionally, we select two elements Qπ,Qe in G1, which correspond to the circular
constant π and natural logarithm e, respectively. We explain how we select Qπ

and Qe as follows. First, we describe GF (397) as GF (3)[x]/(x97 + x16 + 2),
where the irreducible polynomial x97 + x16 + 2 ∈ GF (3)[x] is well used for the
fast implementation of field operations. An element in GF (397) is represented by∑96

i=0 dix
i, where di ∈ GF (3) = {0, 1, 2}. To transform π and e to an element in

GF (397) respectively, we define a bijective map φ :
∑96

i=0 dix
i 	→ ∑96

i=0 di3
i ∈ Z.

We then transform π and e to the 3-adic integer of 97 digits by 
π · 395� and

e · 396�, respectively.

From these values, we define Qπ = (xπ , yπ) and Qe = (xe, ye) ∈ G1 as follows.
We first find the non-negative smallest 3-adic integers cπ and ce such that φ−1(
π·
395�+ cπ) and φ−1(
e · 396�+ ce) become x-coordinates of the elements Qπ and
Qe in the subgroup G1 on the E. In fact we can set xπ = φ−1(
π · 395�+ (11)3)
and xe = φ−1(
e · 396� + (120)3). There are two points in G1\{O} of the same
x-coordinate. We then set the corresponding y-coordinate by computing yπ =
(x3

π − xπ + 1)(3
97+1)/4 and ye = (x3

e − xe + 1)(3
97+1)/4 in GF (397), respectively.

Again, our goal is to solve the ECDLP in G1, i.e., for given Qπ, Qe ∈ G1 we
try to find integer s such that Qπ = [s]Qe. On the other hand, the ηT pairing
enables us to reduce the ECDLP in G1 to the DLP over G2 by the relationship
ηT (Qπ ,Qπ) = ηT (Qπ,Qe)

s. Therefore, we can find s by computing the discrete
logarithm

s = logηT (Qπ ,Qe) ηT (Qπ,Qπ) = logg ηT (Qπ,Qπ)/ logg ηT (Qπ ,Qe) mod P151,

for a generator g of G2.

3.2 Parameter Settings for FFS

In this section, we explain the parameter setting used for our implementations
of the FFS. Hayashi et al. [20] reported that, when n ≤ 509, the JL06-FFS [24]
is more efficient for solving the DLP overGF (36n) than the JL02-FFS [23]. Thus,
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we use the JL06-FFS for our computation. In the JL06-FFS, the condition that
“r is monic” is introduced into the collecting relations phase in order to compute
efficiently. For the remainder of this paper, the FFS refers to the JL06-FFS.

To solve our DLP over GF (36·97), we have to select several parameter values
of the FFS, such that its computational time is small enough for a fixed extension
degree n. The parameter values for n = 97 are listed in [31, Table 3], and we use
those parameter values for our computation.

We select the parameter κ ∈ {1, 2, 3, 6} as follows. GF (36·97) is described
as GF (3κ)[x]/(f), where f ∈ GF (3κ)[x] is an irreducible polynomial of degree
6 ·97/κ. The appropriate value of κ is given in [31, Table 3], i.e., κ = 6. However,
we select κ = 3 for the following reasons. In the linear algebra phase, filtering [15]
is performed to reduce the size of the matrix. Then it is required that all elements
in the factor base correspond to the memory addresses of the PC for efficient
computation. The number of elements in the factor base for κ = 6 is much larger
than that for κ = 3, so κ = 3 is advantageous on this point. Additionally, [31,
Table3] shows that the computational cost of the FFS for κ = 3 is only about
twice as much as that for κ = 6. We conducted test runs for κ = 3, 6 in the
collecting relations phase, then noticed that our implementation for κ = 3 was
much faster than for κ = 6, so we set κ = 3.

Polynomial Selection Phase: We select the bivariate polynomial H(x, y) of
the form x + ydH for a given parameter dH of the FFS in the same manner as
[20]. Then we search an irreducible polynomial f ∈ GF (3κ)[x] and a polynomial
m ∈ GF (3κ)[x] which are satisfying the condition (1), by factoring H(x,m) for
a randomly picked polynomial m whose degree is dm. In fact, we randomly pick
up m from GF (3)[x], so that f is also in GF (3)[x] for use of the Galois action.
From [31, Table 3], we set dH and dm as 6 and 33, respectively.

Next, we select the smoothness bound B = 6 by using [31, Table 3] for (2)
and (3), i.e., a rational factor base FR(B) and an algebraic factor base FA(B).
#FR(B) is 67576068 and #FA(B) is 67572597, thus the number of elements of
factor base, i.e., #FR(B) + #FA(B), is 135148665.

Collecting Relations Phase: In the collecting relations phase, we use the
lattice sieve [29] and the free relation [20] and collect many relations (8); (r, s) ∈
(GF (3κ)[x])2 satisfying (4), (5), (7), where r is monic. The search range for the
lattice sieve depends on the maximum degrees R,S of r, s. We set R = S = 6
based on [31, Table 3]. The lattice sieve gives a certain amount of relations
for one special-Q, which is defined in Section 4.1. Therefore, we require a suf-
ficient number of special-Q’s so that the number of relations obtained in the
collecting relations phase is larger than that of all elements in the factor base.
The minimum sufficient number of special-Q’s is estimated by the following
process. We have to select special-Q’s from the subset FR(6)\FR(5), whose car-
dinality is 64566684. Let θmin be the minimum sufficient ratio of special-Q’s
over all elements in FR(6)\FR(5). For n = 97 and κ = 3, we can estimate
θmin = 0.01292 [31, Table 3]. Therefore, the number of special-Q’s must be
larger than �0.01292 · 64566684�= 834202. In our computation, we set 2500000
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as the number of special-Q’s to obtain more relations than we require since we
expect that these excess relations will help us reduce the size of the matrix during
filtering, especially in singleton-clique.

4 Implementation

In this section, we propose the following efficient implementation techniques;
the lattice sieve for the JL06-FFS and optimization for our parameters in the
collecting relations phase, the data structure and the parallel Lanczos method for
the Galois action in the linear algebra phase, for reducing the computational cost
of the FFS for solving the DLP over GF (36·97). Parameters (κ, dH , dm, B,R, S)
are fixed as (3, 6, 33, 6, 6, 6). The reasoning for this is explained in Section 3.2.

4.1 Collecting Relations Phase

In the collecting relations phase, we used the lattice sieve [29] in a similar fashion
to factoring a large integer [26] and solving discrete logarithm problems [22, 23].
We give an overview of our implementation of the lattice sieve in the following
paragraphs. More details are described in [19].

Lattice Sieve for JL06-FFS: Sieving with the lattice sieve is performed for
(r, s) ∈ (GF (33)[x])2 such that the formula (5) given in Section 2.2 is divisible
by an element Q chosen from a subset of the rational factor base FR(6)\FR(5)
(this Q is called a “special-Q”). Recall that deg r and deg s are not greater
than R = 6 and S = 6, respectively. Such (r, s) can be represented as (r, s) =
c(r1, s1)+d(r2, s2) for given reduced lattice bases (r1, s1), (r2, s2) ∈ (GF (33)[x])2

and any c, d ∈ GF (33)[x] such that deg(cr1 + dr2) ≤ 6, deg(cs1 + ds2) ≤ 6,
then sieving is done on the bounded c-d plane. After sieving, we conduct the
smoothness test [16] for “candidates” that are evaluated as B-smooth pairs with
high probability by using the lattice sieve.

A problem of applying the lattice sieve to the FFS is the condition “r is
monic” described in Section 3.2. Since r is represented as cr1+dr2, it is difficult
to efficiently keep r monic — it might require degree evaluations and branches.
Instead of choosing monic r, we introduce the condition r ≡ 1 mod x. To satisfy
this condition, we restrict r1 and r2 such that r1 ≡ 0 mod x and r2 ≡ 1 mod x.
Then sieving is performed on the bounded c-d plane with restriction d ≡ 1 mod x,
whose size is reduced to 1/27 compared with the original bounded c-d plane. This
sieving procedure with the restricted condition can be implemented without
extra costs such as additional degree evaluations and additional branches.

Lattice Sieve with SIMD: Since operations of GF (3) can be represented
using logical instructions [25], operations of GF (33)[x] can be performed using a
combination of logical and shift instructions. This means SIMD implementation
is appropriate for efficient computation of the lattice sieve. We represent GF (33)
as polynomial basis GF (3)[ω]/(ω3 −ω− 1), and its element is represented using
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Fig. 1. Our improvement in collecting relations phase for first two weeks

6-bit (h1, 
1, hω, 
ω, hω2 , 
ω2) ∈ GF (2)6 in our implementation. We then pack
16 elements of GF (33)[x] of degree at most 7 into 6 registers of 128 bits, and
treat 16 elements with SIMD. Note that the upper bound of the degree of our
SIMD data structure is for efficient access to each element in GF (33)[x]. On the
other hand, since we choose B,R, S as all 6, the upper bound of the degrees of
c, d, r1, s1, r2, s2 ∈ GF (33)[x] and p in the factor base, which are treated in the
lattice sieve, is also 6. Therefore, our SIMD structure can be stored elements
treated in the lattice sieve.

History of Our Optimizations: Figure 1 shows the process of our improve-
ments in the collecting relations phase for the first two weeks. We improved
our implementation of the lattice sieve four times during this period. We first
used large prime variation to omit sieving for the factor base of degree 6 and
implemented the lattice sieve for the FFS with SIMD implementation. We then
ran the program for the first four days (stage I in Fig. 1). At that point, the
estimated total number of days for the collecting relations phase was about 360
days. While the sieving program was running, we found that sieving for the
factor base of degree 5 requires heavier computation than sieving for the factor
bases of degree 1, 2, 3 and 4. Therefore, we improved sieving for the factor base
of degree 5; thus, our sieving program became over 3 times faster than before
(stage II in Fig. 1). Next, we optimized register usage for input values and omit-
ted wasteful computations (stage III in Fig. 1). Additionally, we omitted sieving
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for the factor base of degree 1 (stage IV in Fig. 1), since that computational time
was larger than that for the factor bases of degree 2, 3, 4, and 5. Moreover, we
improved our sieving program to use 128-bit registers more efficiently (stage V in
Fig. 1). Finally, our sieving program became about 6 times faster than the first
one (stage I in Fig. 1) and the estimated total number of days for the collecting
relations phase became about 53.1 days. In the next paragraph, we explain the
details of the improvement in stage II, which is the most effective and important
improvement in our implementation of the lattice sieve.

Details of Stage II: In the lattice sieve, the main computation of sieving
for given lattice bases (r1, s1), (r2, s2) ∈ (GF (33)[x])2 is as follows. For fixed
d ∈ GF (33)[x], whose degree is upper-bounded by a degree boundD, we compute
c0 ≡ −d(r1t+s1)

−1(r2t+s2) mod p for all pairs (p, t) ∈ {(p, t) | p ∈ FR(B), t ≡ m
(mod p)} ∪ {(p, t) | 〈p, y − t〉 ∈ FA(B)}, and compute c ∈ GF (33)[x], whose
degree is upper-bounded by a degree bound C, such that c = c0 + kp where
k ∈ GF (33)[x]. We call the computation “sieving at d” in this section. For given
lattice bases, sieving at d is performed for all d of degree not larger than D. Note
that c0 does not need to be computed when (r1t + s1) ≡ 0 (mod p); therefore
we assume (r1t+ s1) �≡ 0 (mod p) in the following description.

In stage I of our implementation, we found that the time of sieving at d for
deg p = 5 takes over 100 msec, but each sieving time at d for deg p = 1, 2, 3
and 4 takes about 10 mesc or less. Therefore, we tried to improve the sieving
of degree 5. When we compute c0 for p of degree 5, the degree of c0 becomes 4
with probability about 26/27. On the other hand, the degree of the lattice bases
r1, s1, r2, s2 is 3 in most cases because the degree of special-Q is 6. On such
bases, degree bounds C and D can be chosen as 3 to satisfy condition (4), i.e.,
deg r ≤ 6 and deg s ≤ 6. These facts show that about 26/27 of the computation
of sieving for p of degree 5 are waste computations. Therefore, we discuss how to
sieve only with the polynomial c0, whose degree is not larger than 3, as follows.

Let α ∈ GF (33)[x] be−(r1t+s1)
−1(r2t+s2) mod p, then we have c0 = dα mod

p. Let αi ∈ GF (33) be the coefficient of the fourth-order term of xiα mod p
for i = 0, 1, 2, 3. Since deg d ≤ 3, d is represented as d3x

3 + d2x
2 + d1x + 1 for

d3, d2, d1 ∈ GF (33). Recall that we restricted d ≡ 1 mod x in our implementation
of the lattice sieve. Here we know that the degree of c0 is not larger than 3 if
d3α3 + d2α2 + d1α1 + α0 = 0. Therefore, it is sufficient to perform sieving at d
for p in the factor base of degree 5 for only d satisfying the following property:

d1 =

{ −Kα−1
1 if α1 �= 0

any element in GF (33) if α1 = 0 and K = 0
(9)

where K = d3α3 + d2α2 + α0. When α1 = 0 and K = 0, we should compute
c0 for d whose d1 is any element in GF (33), and we cannot cut off any d1;
therefore, we assume that α1 �= 0 in the following description. Suppose that
we now fix lattice bases (r1, s1), (r2, s2) and a pair (p, t) where deg p = 5, then
each αi for i = 0, 1, 2, 3 is also fixed. Therefore, since K depends on d2 and d3,
the d1 satisfying (9) is given by d2 and d3 and uniquely determined for given
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d2 and d3. This implies that, since d1 is in GF (33) whose cardinality is 27, we
can ignore 26 d1’s not satisfying (9) for given d2 and d3. In fact, the time of
sieving at d for all pairs (p, t) where deg p = 5 is reduced to about 1.5 msec by
ignoring d1 not satisfying (9). Note that we need to compute K for given d2 and
d3 for all pairs (p, t). The time of computing K for all (p, t) takes about 150
msec in our implementation. Therefore, for all pairs (p, t) where deg p = 5, the
computations of K and sieving at d require about 7.1 msec at stage II, which is
over 10 times faster than the computation of sieving at d at stage I. As a result,
our implementation of the lattice sieve at stage II becomes over 3 times faster
than that at stage I.

4.2 Linear Algebra Phase

After the collecting relations phase, we obtain a system of linear equations mod-
ulo P151, which is described in Section 2.1. The Galois action [20, 24] can re-
duce the number of variables of the system of linear equations to one-third.
Additionally, after the Galois action, the numbers of equations and variables of
the system of linear equations can be further reduced using filtering [15], i.e.,
singleton-clique and merging. To solve the system of linear equations defined by
this reduced matrix, we use the parallel Lanczos method [4, 20].

Galois Action: The Galois action to GF (36·97)/GF (33·97) enables us to reduce
the number of variables of the system of linear equations to one-third (details
of the Galois action are discussed in [20, 24]). However, when we use the Galois

action, 151-bit large integers such as e0 + e1τ + e2τ
2, where τ = 397

2
mod P151

and ei is a small integer of a few bits, are added to elements of the system of linear
equations. This unfortunate fact eventually increases the data size of the reduced
matrix; therefore, high-capacity memory is required. To allay the increase in the
representation size of the elements, we store only a triplet (e1, e2, e3) in the PC
memory, not a large 151-bit integer. Since ei is small enough to be represented
by 8 bits, the size of the elements is reduced from 151 to 24 bits on average. We
call this representation the “τ -adic structure”. Note that the τ -adic structure is
used for the Galois action and singleton-clique.

Singleton-Clique and Merging: Filtering consists of two parts, singleton-
clique and merging. Singleton-clique deletes unnecessary rows and columns to
reduce the size of the matrix. In our implementation of singleton-clique, we per-
formed by maintaining 20000 more rows than columns to prevent accidentally
decreasing the rank of the matrix. After that, merging, a weight-controlled Gaus-
sian elimination, is performed. In merging, for small integer k, the column with a
weight not larger than k is deleted by row elimination with controlling the pivot
selection so that the weight of the matrix is as small as possible. This operation
is called k-way merging. In our implementation of merging, we converted the
data representation of the matrix from the τ -adic structure to a large 151-bit
integer structure, since merging on the τ -adic structure cannot reduce the size
of the matrix enough due to the restriction of the pivot selection. More details
are described in [19].
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Parallel Lanczos Method: By using the parallel Lanczos method [4, 20], we
solve the system of linear equations defined by the matrix reduced via the Galois
action, singleton-clique, and merging. For parallel computing, the matrix should
be split into sub-matrices, i.e., split into N = N1×N2 sub-matrices for N nodes,
and nodes communicate among N1 nodes or N2 nodes. To reduce the synchro-
nization time before communicating, the matrix is split so that each sub-matrix
has almost the same weight. Our machine environment for the parallel Lanczos
method consisted of 22 nodes, and each node had 12 CPU cores and 2 NICs.
The 2 NICs were connected to a 48-port Gbit HUB, i.e., 44 ports were used for
connecting 22 nodes. All 22 nodes could be used, so we had a choice for machine
environment; 20 = 5× 4, 21 = 7× 3 or 22 = 11× 2. Using 20 nodes requires the
least communication costs but the most computational costs, and using 22 nodes
requires the most communication costs but the least computational costs. Using
21 nodes was the best for our implementation; therefore, we used 21 nodes.

For computation in the parallel Lanczos method, many modular multiplica-
tions of 151-bit integers × 151-bit integers modulo P151 are required due to the
Galois action. We implemented Montgomery multiplication optimized to 151-bit
integers using assembly language. Our program then becomes several times faster
than straightforwardmodular multiplication using GMP (http://gmplib.org/)
for multiple precision arithmetic.

After the computation of the parallel Lanczos method started, we improved
our codes of the parallel Lanczos method (for example, efficient register usage,
overlapping communications and computations). These improvements are about
15% faster than our initial implementation.

4.3 Individual Logarithm Phase

As mentioned in Section 3.1, logg ηT (Qπ,Qπ) and logg ηT (Qπ,Qe) are required
to solve our target problem. To compute them, rationalization and special-Q
descent [24] were used. For simplicity, let T be ηT (Qπ,Qπ), or ηT (Qπ,Qe) in
the following paragraphs.

In the rationalization, we randomize T such that the randomized element is
M -smooth for a small enough integer M > B by the following process. First,
we randomize T by z ≡ gγT (mod f) for a random integer γ ∈ ZP151 . We
then rationalize z as z ≡ z1/z2 (mod f) where degrees of z1 and z2 are about
deg f/2, and check whether both z1 and z2 are M -smooth. Then, computing
logg T is reduced to computing logarithms of irreducible factors of M -smooth
elements z1 and z2.

M -smooth elements zi for i = 1, 2, contain some irreducible factors of degree
larger than B whose logarithms are not computed in the linear algebra phase.
To compute these logarithms, the special-Q descent [24] is usually used. In the
special-Q descent, the lattice sieve is recursively conducted with an irreducible
factor of degree larger than B, which is contained in zi or in a relation generated
during the special-Q descent, as a special-Q.

http://gmplib.org/
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5 Experimental Results

We succeeded in solving a DLP overGF (36·97) by using the FFS with our efficient
implementation techniques discussed in Section 4. In this section, we report our
computational results, such as the computational time of each phase of the FFS
and the number of relations.

5.1 Polynomial Selection

The FFS has six parameters κ, dH , dm, B,R, and S, as defined in Section 2.2,
and we set (κ, dH , dm, B,R, S) = (3, 6, 33, 6, 6, 6) for our target problem, based
on the reason given in Section 3.2. In the polynomial selection phase, we can
extract appropriate polynomials such as the definition polynomial H(x, y) of a
function field described in Section 3.2 in one minute, so the computational cost
of the polynomial selection phase is negligibly small.

5.2 Collecting Relations Phase

In the collecting relations phase, we search many relations that are equations of
the form (8) to generate a system of linear equations by using the lattice sieve and
the free relation. We explain our computational results of the collecting relations
phase, e.g., the number of relations obtained in this phase, the computational
time of the lattice sieve for one special-Q.

Lattice Sieve. Each special-Q has to be chosen from FR(6)\FR(5). The num-
ber of elements of FR(6)\FR(5) is 64566684, and the size of the table of those
elements is about 500 MB. Since our program of the lattice sieve is computed
using many nodes, it is not convenient to pick up the element from that 500-MB
table as a special-Q. Therefore, we selected a special-Q by randomly generating
an irreducible polynomial in GF (33)[x] of degree 6, which is in FR(6)\FR(5),
and iterated the computation of the lattice sieve for the special-Q.

We prepared 47 PCs (in total 212 CPU cores) for the lattice sieve. The com-
putation of the lattice sieve began on May 14, 2011, and we continued optimizing
our program of the collecting relations phase. As discussed in Section 4.1, we
applied several improvements to our program of the collecting relations phase;
the lattice sieve for the JL06-FFS, the lattice sieve with SIMD, and optimization
for our parameters. Figure 1 in Section 4.1 shows the process of our improve-
ments in the collecting relations phase for the first two weeks. The total time for
the collecting relations phase shortened due to our improvements. Finally, the
computation finished on September 9, 2011 and required 118 days. including the
loss-time of some programming errors, updating our codes, and power outages.
The real computational time of the lattice sieve was equivalent to 53.1 days using
212 CPU cores such as Xeon E5440.

Table 2 summarizes the process of generating relations in the collecting rela-
tions phase. It might seem that the number of duplicate relations is very small
compared to the integer factorization case using the number field sieve. This
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Table 2. Number of collected relations in collecting relations phase

lattice sieve 159032292 relations obtained from 2500000 special-Q’s
(64.91 relations/special-Q, 389 sec/special-Q)
153815493 unique (non-duplicated) relations
obtained from 2449991 unique special-Q’s

free relation 33786299 relations
total 187602242 relations (consist of 134697663 elements in the factor base)

Table 3. Compressing matrix using Galois action, singleton-clique and merging

method size of matrix

before compressing 187602242 equations × 134697663 variables

Galois action 159394665 equations × 45049572 variables

singleton-clique 14060794 equations × 14040791 variables

6-way merging 6141443 equations × 6121440 variables

arises from the fact that the size of the sieving space in our parameters is so
large compared to that case.

Free Relation. The free relation gives us additional relations not generated by
a sieving algorithm such as the lattice sieve. The details of the free relation is
given in [20]. As shown in Table 2, the free relation gave us 33786299 relations.
Eventually, we obtained a system of linear equations consisting of 187602242
equations and 134697663 variables. Note that there are 451002 elements in the
factor base, which does not appear in the 187602242 relations.

5.3 Linear Algebra Phase

In the linear algebra phase, we firstly reduced the size of the matrix by the
Galois action and filtering, and then performed the parallel Lanczos method for
the reduced matrix. Table 3 shows that the process of the compression of the
matrix.

Galois Action. As mentioned in Section 4.2, the Galois action reduced the
size of the matrix generated in the collecting relations phase to one-third since
κ = 3. To allay the fact that the size of each element of the matrix increases
from a few bits to 151 bits due to the Galois action, we used the τ -adic structure
mentioned in Section 4.2.

Singleton-Clique andMerging. After using the Galois action, we additionally
reduce the variables and equations of the matrix by singleton-clique and merging
[15]. Using aPC, the computation for singleton-clique took about 3 hours, and that
formerging took about 10 hours. After 6-waymerging, we started the computation
of the parallel Lanczos method for the 6-way merged matrix. See [19] for more
details about our results of singleton-clique and merging.
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Table 4. Computational time of parallel Lanczos method for 6-way merged matrix

calculation time/loop 626.3 msec
synchronization time/loop 46.5 msec
communication time/loop 457.3 msec

total time/loop 1130.1 msec

number of loops 6121438

total time 80.1 days

Parallel Lanczos Method. We used the parallel Lanczos method [4, 20] to
solve the system of linear equations defined by the 6-way merged matrix. Note
that this matrix is sparse and defined over ZP151 , where P151 is the 151-bit
prime number given in Section 3.1. The computation of the parallel Lanczos
method started on January 16, 2012, and was conducted on 21 PCs, which were
connected via a 48-port Gbit HUB. As mentioned in Section 4.2, we continued
improving our codes of the parallel Lanczos method after computation began.
The computational times of our improved codes are listed in Table 4. Finally,
computation finished on April 14, 2012. The computation for the parallel Lanczos
method took 90 days including time losses similar to our implementation of the
lattice sieve. The real computational time is equivalent to 80.1 days using 252
CPU cores such as Xeon X5650.

5.4 Individual Logarithm Phase

Our target is to compute logg ηT (Qπ,Qe) and logg ηT (Qπ,Qπ) for some g ∈ G2,
as mentioned in Section 3.1.

First, we computed the rationalization described in Section 4.3. Let g be a
polynomial (x+ω)(3

6·97−1)/P151 ∈ G2, where ω is a polynomial basis of GF (33) ∼=
GF (3)[ω]/(ω3−ω−1). Note that g is a generator of G2 ⊂ GF (36·97)∗ and x+ω is
a monic irreducible polynomial in FR(B) of degree 1. We setM = 15 and search a
pair (z1, z2) (and (z′1, z

′
2)) ∈ (GF (33)[x])2 such that ηT (Qπ,Qe)·gγ1 = z1/z2 (and

ηT (Qπ ,Qπ) · gγ2 = z′1/z
′
2), where zi (and z′i) are Mi-smooth (where Mi ≤ M)

for some γ1, γ2 ∈ ZP151 and i = 1, 2. We found z1 and z2, which are 13- and
15-smooth (and z′1 and z′2 which are 15- and 14-smooth), respectively. These
computations were conducted on 168 CPU cores and required 7 days for each
computation.

ηT (Qπ,Qe) · gγ1 = (13-smooth)/(15-smooth),

γ1 = 2514037766787322013334785428291787565870435706,

ηT (Qπ,Qπ) · gγ2 = (15-smooth)/(14-smooth),

γ2 = 2657516740789758289434702436228062607247517136.

Next, we performed special-Q descent for each irreducible factor of smooth ele-
ments obtained by the rationalization. These computations were conducted on
168 CPU cores and took about 0.5 days for each ηT (Qπ ,Qe) and ηT (Qπ ,Qπ).
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Thus, the computation of the individual logarithm phase took 15 days; (7 days
(for rationalization) + 0.5 days (for special-Q descent)) × 2 elements.

By using the logarithms of the corresponding elements in the factor base
obtained from the linear algebra phase, we could compute logg ηT (Qπ,Qe) and
logg ηT (Qπ,Qπ). The logarithm of each element is as follows:

logg ηT (Qπ,Qe) = 1540966625957007958347823268423957036469656370,

logg ηT (Qπ,Qπ) = 1630281950635507295663809171217833096970449894.

Finally, we obtained the logarithm of the target element:

s = logηT (Qπ,Qe) ηT (Qπ,Qπ)

= 1752799584850668137730207306198131424550967300.

This is the solution of the ECDLP of equation Qπ = [s]Qe.

6 Concluding Remarks

We evaluated the security of pairing-based cryptosystems using the ηT pairing
over supersingular elliptic curves on finite field GF (3n). We focused on the case
of n = 97 since many implementers have reported practically relevant high-speed
implementations of the ηT pairing with n = 97 in both software and hardware. In
particular, we examined the difficulty in solving the discrete logarithm problem
(DLP) over GF (36·97) by our implementation of the function field sieve (FFS).

To reduce the computational cost of the FFS for solving the DLP, we proposed
several efficient implementation techniques. In the collecting relations phase,
we implemented the lattice sieve for the JL06-FFS with SIMD and introduced
improvements by optimizing for factor bases of each degree; therefore, our lattice
sieve for the JL06-FFS became about 6 times faster than the first one. The main
difference from the number field sieves for integer factorization is the linear
algebra phase, namely, we have to deal with a large modulus of 151-bit prime for
the computation of the FFS. We thus performed filtering (singleton-clique and
merging) by carefully considering the data structure of large integers developing
from the Galois action, so that we can efficiently conduct the parallel Lanczos
method. From the above improvements, we succeeded in solving the DLP over
GF (36·97) in 148.2 days by using PCs with 252 CPU cores. Our computational
results contribute to the security estimation of pairing-based cryptosystems using
the ηT pairing. In particular, they show that the security parameter of such
pairing-based cryptosystems must be chosen with n > 97.

Finally, we show a very rough estimation of required computational power for
solving the DLP over GF (36n) with n > 97. Our experiment on the DLP over
GF (36n) with n = 97 used 252 CPU cores of mainly 2.67 GHz Xeon for 148.2
days, which are equivalent to 262.9 clock cycles. From the analysis of [31], the
computational complexities of breaking the DLP over GF (36n) with n = 163
and 193 become 215.4 and 219.1 times larger than that with n = 97, respectively.
Therefore, we could estimate that about 278.3 and 282.0 clock cycles are required
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for breaking the DLP over GF (36n) with n = 163 and 193, respectively. On
the other hand, the currently second fastest supercomputer K has a through-
put of about 10.5 petaflop/s from http://www.top500.org/, and it performs
about 278.1 floating-point operations for one year. If one floating-point opera-
tion on the CPU of the K is equivalent to one clock cycle of logical operation
on the Xeon core, we might be able to break the DLP over GF (36·163) using our
implementation on supercomputer K for one year.
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P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmer-
mann, P.: Factorization of a 768-Bit RSA Modulus. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

27. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. IT 39(5), 1639–1646 (1993)

28. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General
Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

29. Pollard, J.M.: The lattice sieve. In: The development of the number field sieve.
LNIM, vol. 1554, pp. 43–49 (1993)

30. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

31. Shinohara, N., Shimoyama, T., Hayashi, T., Takagi, T.: Key Length Estimation of
Pairing-Based Cryptosystems using ηT Pairing. In: Ryan, M.D., Smyth, B., Wang,
G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 228–244. Springer, Heidelberg (2012)

http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0509&L=nmbrthry&T=0&P=3690
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0509&L=nmbrthry&T=0&P=3690

	Breaking Pairing-Based Cryptosystems Using ηT Pairing over GF(397)

	Introduction
	Pairing-Based Cryptosystems and Discrete Logarithm Problem (DLP)
	Pairing-Based Cryptosystems and DLP
	General Overview of FFS

	Target Problem for n=97 and Setting of Parameters for FFS
	Target Problem
	Parameter Settings for FFS

	Implementation
	Collecting Relations Phase
	Linear Algebra Phase
	Individual Logarithm Phase

	Experimental Results
	Polynomial Selection
	Collecting Relations Phase
	Linear Algebra Phase
	Individual Logarithm Phase

	Concluding Remarks
	References




