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Abstract. This paper presents efficient structure-preserving signature schemes
based on assumptions as simple as Decisional-Linear. We first give two general
frameworks for constructing fully secure signature schemes from weaker build-
ing blocks such as variations of one-time signatures and random-message secure
signatures. They can be seen as refinements of the Even-Goldreich-Micali frame-
work, and preserve many desirable properties of the underlying schemes such as
constant signature size and structure preservation. We then instantiate them based
on simple (i.e., not q-type) assumptions over symmetric and asymmetric bilinear
groups. The resulting schemes are structure-preserving and yield constant-size
signatures consisting of 11 to 17 group elements, which compares favorably to
existing schemes relying on q-type assumptions for their security.

Keywords: Structure-preserving signatures, One-time signatures, Groth-Sahai
proof system, Random message attacks.

1 Introduction

A structure-preserving signature (SPS) scheme [1] is a digital signature scheme with
two structural properties (i) the verification keys, messages, and signatures are all el-
ements of a bilinear group; and (ii) the verification algorithm checks a conjunction of
pairing product equations over the key, the message and the signature. This makes them
compatible with the efficient non-interactive proof system for pairing-product equations
by Groth and Sahai (GS) [30]. Structure-preserving cryptographic primitives promise
to combine the advantages of optimized number theoretic non-blackbox constructions
with the modularity and insight of protocols that use only generic cryptographic build-
ing blocks.

Indeed the instantiation of known generic constructions with a SPS scheme and the
GS proof system has led to many new and more efficient schemes: Groth [29] showed
how to construct an efficient simulation-sound zero-knowledge proof system (ss-NIZK)
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building on generic constructions of [17,39,34]. Abe et al. [4] show how to obtain effi-
cient round-optimal blind signatures by instantiating a framework by Fischlin [20]. SPS
are also important building blocks for a wide range of cryptographic functionalities such
as anonymous proxy signatures [22], delegatable anonymous credentials [6], transfer-
able e-cash [23] and compact verifiable shuffles [16]. Most recently, [31] show how to
construct a structure preserving tree-based signature scheme with a tight security reduc-
tion following the approach of [26,18]. This signature scheme is then used to build a
ss-NIZK which in turn is used with the Naor-Yung-Sahai [35,38] paradigm to build the
first CCA secure public-key encryption scheme with a tight security reduction. Exam-
ples for other schemes that benefit from efficient SPS are [7,11,8,32,27,5,37,24,21,28].

Because properties (i) and (ii) are the only dependencies on the SPS scheme made by
these constructions, any structure-preserving signature scheme can be used as a drop-in
replacement. Unfortunately, all known efficient instantiations of SPS [4,1,2] are based
on so-called q-type or interactive assumptions that are primarily justified based on the
Generic Group model. An open question since Groth’s seminal work [29] (only partially
answered by [15]) is to construct a SPS scheme that is both efficient – in particular
constant-size in the number of signed group elements – and that is based on assumptions
that are as weak as those required by the GS proof system itself.

Our contribution. Our first contribution consists of two generic constructions for cho-
sen message attack (CMA) secure signatures that combine variations of one-time sig-
natures and signatures secure against random message attacks (RMA). Both construc-
tions inherit the structure-preserving and constant-size properties from the underlying
components. The second contribution consists in the concrete instantiations of these
components which result in constant-size structure-preserving signature schemes that
produce signatures consisting of only 11 to 17 group elements and that rely only on ba-
sic assumptions such as Decisional-Linear (DLIN) for symmetric bilinear groups and
analogues of DDH and DLIN for asymmetric bilinear groups. To our knowledge, these
are the first constant-size structure-preserving signature schemes that eliminate the use
of q-type assumptions while achieving reasonable efficiency.

We instantiate the first generic construction for symmetric (Type-I) and the second
for asymmetric (Type-III) pairing groups. See Table 1 in Section 7 for the summary of
efficiency of the resulting schemes. We give more details on our generic constructions
and their instantiations:

– The first generic construction (SIG1) combines a new variation of one-time sig-
natures which we call tagged one-time signatures and signatures secure against
random message attacks (RMA). A tagged one-time signature scheme, denoted by
TOS, is a signature scheme that attaches a fresh tag to a signature. It is unforge-
able with respect to tags that are used only once. In our construction, a message is
signed with our TOS scheme using a fresh random tag, and then the tag is signed
with the second signature scheme, denoted by rSIG. Since the rSIG scheme only
signs random tags, RMA-security is sufficient.

– The second generic construction (SIG2) combines partial one-time signatures and
signatures secure against extended random message attacks (XRMA). The latter is
a novel notion that we explain below. Partial one-time signatures, denoted by POS,
are one-time signatures for which only a part of the one-time key is renewed for
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every signing operation. They were first introduced by Bellare and Shoup [9] under
the name of two-tier signatures. In our construction, a message is signed with the
POS scheme and then the random one-time public-key is certified by the second
signature scheme, denoted by xSIG. The difference between a TOS scheme and
a POS scheme is that a one-time public-key is associated with a one-time secret-
key. Since the one-time secret-key is needed for signing, it must be known to the
reduction in the security proof. XRMA-security guarantees that xSIG is unforgeable
even if the adversary is given auxiliary information associated with the randomly
chosen messages (it is a random coin used for selecting the message). The auxiliary
information facilitates access to the one-time secret-key by the reduction.

– To instantiate SIG1, we construct structure-preserving TOS and rSIG signature
schemes based on DLIN over Type-I bilinear groups. Our TOS scheme yields
constant-size signatures and tags. The resulting SIG1 scheme is structure-preserving,
produces signatures consisting of 17 group elements, and relies solely on the DLIN
assumption.

– To instantiate SIG2, we construct structure-preserving POS and xSIG signature
schemes based on assumptions that are analogues of DDH and DLIN in Type-III
bilinear groups. The resulting SIG2 scheme is structure-preserving, produces sig-
natures consisting of 11 group elements for uniliteral messages in a base group or
14 group elements for biliteral messages from both base groups.

The role of partial one-time signatures is to compress a message into a constant number
of random group elements. This observation is interesting in light of [3] that implies
the impossibility of constructing collision resistant and shrinking structure-preserving
hash functions, which could immediately yield constant-size signatures. Our (extended)
RMA-secure signature schemes are structure-preserving variants of Waters’
dual-signature scheme [41]. In general, the difficulty of constructing CMA-secure SPS
arises from the fact that the exponents of the group elements chosen by the adversary as
a message are not known to the reduction in the security proof. On the other hand, for
RMA security, it is the challenger that chooses the message and therefore the exponents
can be known in reductions. This is the crucial advantage for constructing (extended)
RMA-secure structure-preserving signature schemes based on Waters’ dual-signature
scheme.

Finally, we mention a few new applications. Among these is the achievement of
a drastic performance improvement when using our partial one-time signatures in the
work by Hofheinz and Jager [31] to construct CCA-secure public-key encryption
schemes with a proof of security that tightly reduces to DLIN or SXDH.

Related Works. Even, Goldreich and Micali [19] proposed a generic framework (the
EGM framework) that combines a one-time signature scheme and a signature scheme
that is secure against non-adaptive chosen message attacks (NACMA) to construct a
signature scheme that is secure against adaptive chosen message attacks (CMA).

In fact, our generic constructions can be seen as refinements of the EGM framework.
There are two reasons why the original framework falls short for our purpose. The first
is that relaxing to NACMA does not seem a big help in constructing efficient structure-
preserving signatures since the messages are still under the control of the adversary and
the exponents of the messages are not known to the reduction algorithm in the security
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proof. As mentioned above, resorting to (extended) RMA is a great help in this regard.
In [19], they also showed that CMA-secure signatures exist iff RMA-secure signatures
exist. The proof, however, does not follow their framework and their impractical con-
struction is mainly a feasibility result. In fact, we argue that RMA-security alone is
not sufficient for the original EGM framework. As mentioned above, the necessity of
XRMA security arises in the reduction that uses RMA-security to argue security of the
ordinary signature scheme, as the reduction not only needs to know the random one-
time public-keys, but also their corresponding one-time secret keys in order to generate
the one-time signature components of the signatures. The auxiliary information in the
XRMA definition facilitates access to these secret keys. Similarly, tagged one-time sig-
natures avoid this problem as tags do not have associated secret values. The second
reason that the EGM approach is not quite suited to our task is that the EGM frame-
work produces signatures that are linear in the public-key size of the one-time signature
scheme. Here, tagged or partial one-time signature schemes come in handy as they al-
low the signature size to be only linear in the size of the part of the public key that is
updated. Thus, to obtain constant-size signatures, we require the one-time part to be
constant-size.

Hofheinz and Jager [31] constructed a SPS scheme by following the EGM
framework. The resulting scheme allows tight security reduction to DLIN but the size of
signatures depends logarithmically to the number of signing operation as their NACMA-
secure scheme is tree-based like the Goldwasser-Micali-Rivest signature scheme [26].
Chase and Kohlweiss [15] and Camenisch, Dubovitskaya, and Haralambiev [13] con-
structed SPS schemes with security based on DLIN that improve the performance of
Groth’s scheme [29] by several orders of magnitude. The size of the resulting signa-
tures, however, are still linear in the number of signed group elements, and an order
of magnitude larger than in our constructions. Camenisch, Dubovitskaya, and Har-
alambiev constructed a constant-size SPS scheme based on simple assumptions over
composite-order groups [12].

Full Version. In this extended abstract, we do not have enough space to write complete
proofs, so we omitted them. Please see a full version on Cryptology ePrint Archive
(2012/285).

2 Preliminaries
Notation. Appending element y to a sequence X = (x1, . . . , xn) is denoted by (X, y),
i.e., (X, y) = (x1, . . . , xn, y). When algorithm A is defined for input x and output y,
notation y ← A(x) for x := {x1, . . . , xn} means that yi ← A(xi) is executed for
i = 1, . . . , n and y is set as y := (y1, . . . , yn). For set X , notation a ← X denote
a uniform sampling from X . Independent multiple sampling from the same set X is
denoted by a, b, c, ..← X .

Bilinear groups. Let G be a bilinear group generator that takes security parameter 1λ

and outputs a description of bilinear groups Λ := (p,G1,G2,GT , e), where G1, G2

and GT are groups of prime order p, and e is an efficient and non-degenerating bilinear
map G1 × G2 → GT . Following the terminology in [25] this is a Type-III pairing. In
the Type-III setting G1 �= G2 and there are no efficient mapping between the groups in
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either direction. In the Type-III setting, we often use twin group elements, (Ga, Ĝa) ∈
G1 × G2 for some bases G and Ĝ. For X in G1, notation X̂ denotes for an element
in G2 that logX = log X̂ where logarithms are with respect to default bases that are
uniformly chosen once for all and implicitly associated to Λ. Should their relation be
explicitly stated, we write X ∼ X̂ . We count the number of group elements to measure
the size of cryptographic objects such as keys, messages, and signatures. For Type-III
groups, we denote the size by (x, y) when it consists of x and y elements from G1 and
G2, respectively. We refer to the Type-I setting when G1 = G2 (i.e., there are efficient
mappings in both directions). This is also called the symmetric setting. In this case, we
define Λ := (p,G,GT , e). When we need to be specific, the group description yielded
by G will be written as Λasym and Λsym.

Assumptions. We first define computational and decisional Diffie-Hellman assumptions
(CDH1, DDH1) and decisional linear assumption (DLIN1) for Type-III bilinear groups.
Corresponding more standard assumptions, CDH, DDH, and DLIN, in Type-I groups
are obtained by setting G1 = G2 and G = Ĝ in the respective definitions.

Definition 1 (Computation co-Diffie-Hellman Assumption: CDH1)
The CDH1 assumption holds if, for any p.p.t. algorithm A, the probability Advco-cdh

G,A
(λ) := Pr[Z = Gxy |Λ ← G(1λ);x, y ← Zp;Z ← A(Λ,G,Gx, Gy, Ĝ, Ĝx, Ĝy) ] is
negligible in λ.

Definition 2 (Decisional Diffie-Hellman Assumption in G1: DDH1)
Given Λ ← G(1λ), G ← G∗

1, (Gx, Gy, Zb) ∈ G1
3 where Z1 = Gx+y , Z0 ← G1 for

random x and y, any p.p.t. algorithmA decides whether b = 1 or 0 only with advantage
AdvDDH1

G,A (λ) that is negligible in λ.

Definition 3 (Decisional Linear Assumption in G1: DLIN1)
Given Λ ← G(1λ), (G1, G2, G3) ← G∗

1
3 and (Gx

1 , G
y
2 , Zb) where Z1 = Gx+y

3 and
Z0 = Gz

3 for random x, y, z ∈ Zp, any p.p.t. algorithm A decides whether b = 1 or 0
only with advantage Advdlin1G,A (λ) that is negligible in λ.

For DDH1 and DLIN1, we define an analogous assumption in G2 (DDH2) by swap-
ping G1 and G2 in the respective definitions. In Type-III bilinear groups, it is assumed
that both DDH1 and DDH2 hold simultaneously. The assumption is called the sym-
metric external Diffie-Hellman assumption (SXDH), and we define advantage AdvsxdhG,C
by AdvsxdhG,C (λ) := Advddh1G,A (λ) + Advddh2G,B (λ). We extend DLIN in a similar manner as
DDH, and SXDH.

Definition 4 (External Decision Linear Assumption in G1: XDLIN1)
Given Λ← G(1λ), (G1, G2, G3)← G∗

1
3 and (Gx

1 , G
y
2 , Ĝ1, Ĝ2, Ĝ3, Ĝ

x
1 , Ĝ

y
2 , Zb) where

(G1, G2, G3) ∼ (Ĝ1, Ĝ2, Ĝ3), Z1 = Gx+y
3 , and Z0 = Gz

3 for random x, y, z ∈ Zp,
any p.p.t. algorithmA decides whether b = 1 or 0 only with advantage AdvxdlinG,A (λ) that
is negligible in λ.

The XDLIN1 assumption is equivalent to the DLIN1 assumption in the generic bilinear
group model [40,10] where one can simulate the extra elements, Ĝ1, Ĝ2, Ĝ3, Ĝ

x
1 , Ĝ

y
2 ,

in XDLIN1 from G1, G2, G3, G
x
1 , G

y
2 in DLIN1. We define the XDLIN2 assumption
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analogously by giving Ĝx+y
3 or Ĝz

3 as Zb, toA instead. Then we define the simultaneous
external DLIN assumption, SXDLIN, that assumes that both XDLIN1 and XDLIN2

hold at the same time. By Advxdlin2G,A (AdvsxdlinG,A , resp.), we denote the advantage function
for XDLIN2 (and SXDLIN, resp.).

Definition 5 (Double Pairing Assumption in G1 [4]:DBP1)
Given Λ← G(1λ) and (Gz , Gr)← G∗

1
2, any p.p.t. algorithmA outputs (Z,R) ∈ G∗

2
2

that satisfies 1 = e(Gz, Z) e(Gr, R) only with probability Advdbp1G,A (λ) that is negligible
in λ.

The double pairing assumption in G2 (DBP2) is defined in the same manner by swap-
ping G1 and G2. It is known that DBP1 (DBP2, resp.) is implied by DDH1 (DDH2,
resp.) and the reduction is tight [4]. Note that the double pairing assumption does not
hold in Type-I groups since Z = Gr, R = G−1

z is a trivial solution. The following
analogous assumption will be useful in Type-I groups.

Definition 6 (Simultaneous Double Pairing Assumption [14]: SDP)
Given Λ ← G(1λ) and (Gz , Gr, Hz , Hs) ← G∗4, any p.p.t. algorithm A outputs
(Z,R, S) ∈ G∗3 that satisfies 1 = e(Gz , Z) e(Gr, R) ∧ 1 = e(Hz, Z) e(Hs, S)

only with probability AdvsdpG,A(λ) that is negligible in λ.

As shown in [14] for the Type-I setting, the simultaneous double pairing assumption
holds for G if the decisional linear assumption holds for G.

3 Definitions
Common setup. All building blocks make use of a common setup algorithm Setup that
takes the security parameter 1λ and outputs a global parameters gk that is given to all
other algorithms. Usually gk consists of a description Λ of a bilinear group setup and a
default generator for each group. In this paper, we include several additional generators
in gk for technical reasons. Note that when the resulting signature scheme is used in
multi-user applications different additional generators need to be assigned to individual
users or one needs to fall back on the common reference string model, whereas Λ and
the default generators can be shared. Thus we count the size of gk when we assess the
efficiency of concrete instantiations. For ease of notation, we make gk implicit except
w.r.t. key generation algorithms.

Signature schemes. We use the following syntax for signature schemes suitable for the
multi-user and multi-algorithm setting. The key generation function takes global param-
eter gk generated by Setup (usually it takes security parameter 1λ), and the message
spaceM is determined solely from gk (usually it is determined from a public-key).

Definition 7 (Signature Scheme). A signature scheme SIG is a tuple of three
polynomial-time algorithms (Key, Sign,Vrf) that;

– SIG.Key(gk) generates a long-term public-key vk and a secret-key sk.
– SIG.Sign(sk,msg) takes sk and message msg and outputs signature σ.
– SIG.Vrf(vk,msg, σ) outputs 1 for acceptance or 0 for rejection.
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Correctness requires that 1 = SIG.Vrf(vk,msg, σ) holds for any gk generated by
Setup, any keys generated as (vk, sk) ← SIG.Key(gk), any message msg ∈ M, and
any signature σ ← SIG.Sign(sk,msg).

Definition 8 (Attack Game(ATK)). Let Osig be an oracle and A be an oracle al-
gorithm. We define a meta attack game as a sequence of execution of algorithms as
follows: ATK(A, λ) =

[
gk ← Setup(1λ), pre← A(gk), (vk, sk)← SIG.Key(gk), (σ†,msg†)← AOsig(vk)

]

Adversary A commits to pre, which is typically a set of messages, in the first run. This
formulation is to capture non-adaptive attacks. It is implicit that a state information
is passed to the second run of A. Let Qm be a set of messages, for which A requests
signatures from its oracle before outputting the resulting forgery. The output of ATK is
(vk, σ†,msg†, Qm).

Definition 9 (Adaptive Chosen-Message Attack (CMA)). Adaptive chosen message
attack security is defined by the attack game ATK where pre is empty and oracleOsig is
the signing oracle that, on receiving a message msg, performs σ ← SIG.Sign(sk,msg),
and returns σ.

Definition 10 (Random Message Attack (RMA)[19]). Random message attack se-
curity is defined by the attack game ATK where pre is empty and oracle Osig is the
following: on receiving a request, it chooses msg uniformly from M defined by gk,
computes signature σ ← SIG.Sign(sk,msg), and returns (σ,msg).

Let MSGGen be a uniform message generator. It is a probabilistic algorithm that takes
gk and outputs msg ∈ M that distributes uniformly overM. Furthermore, MSGGen
outputs auxiliary information aux that may give a hint about the random coins used for
selecting msg.

Definition 11 (Extended Random Message Attack (XRMA)). Extended random mes-
sage attack is attack game ATK where pre is empty and oracle Osig is the follow-
ing. On receiving a request, it runs (msg, aux) ← MSGGen(gk), computes σ ←
SIG.Sign(sk,msg), and returns (σ,msg, aux).

Definition 12 (Unforgeability against ATK). Signature scheme SIG is unforgeable
against attack ATK (UF-ATK) where ATK ∈ {CMA,RMA,XRMA}, if for all p.p.t. or-
acle algorithm A the advantage function Advuf-atkSIG,A := Pr

[
msg† �∈ Qm ∧ 1 =

SIG.Vrf(vk, σ†,msg†)
∣
∣ (vk, σ†,msg†, Qm)← ATK(A, λ)

]
is negligibel in λ.

Fact 1. UF-CMA ⇒ UF-XRMA ⇒ UF-RMA, i.e., Advuf-cma
SIG,A (λ) ≥ Advuf-xrma

SIG,A (λ) ≥
Advuf-rma

SIG,A (λ).

Partial one-time and tagged one-time signatures. Partial one-time signatures, also
known as two-tier signatures [9], are a variation of one-time signatures where only
part of the public-key must be updated for every signing, while the remaining part can
be persistent.
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Definition 13. [Partial One-Time Signature Scheme [9]] A partial one-time signatures
scheme POS is a set of polynomial-time algorithms POS.{Key,Update, Sign,Vrf}.

– POS.Key(gk) generates a long-term public-key pk and a secret-key sk . The mes-
sage space Mo is associated with pk . (Recall that we require that Mo be com-
pletely defined by gk.)

– POS.Update() takes gk as implicit input, and outputs a pair of one-time keys
(opk , osk ). We denote the space for opk by Kopk .

– POS.Sign(sk ,msg, osk) outputs a signature σ on message msg based on sk and
osk .

– POS.Vrf(pk , opk ,msg, σ) outputs 1 for acceptance, or 0 for rejection.

For correctness, it is required that1=POS.Vrf(pk , opk ,msg, σ) holds except for neg-
ligible probability for any gk, pk , opk , σ, and msg ∈ Mo, such that gk ← Setup(1λ),
(pk , sk)←POS.Key(gk), (opk , osk )←POS.Update(),σ ← POS.Sign(sk ,msg, osk).

A tagged one-time signature scheme is a signature scheme whose signing function in
addition to the long-term secret key takes a tag as input. A tag is one-time, i.e., it must
be different for every signing.

Definition 14 (Tagged One-Time Signature Scheme). A tagged one-time signature
scheme TOS is a set of polynomial-time algorithms TOS.{Key,Tag, Sign,Vrf}.

– TOS.Key(gk) generates a long-term public-key pk and a secret-key sk . The mes-
sage spaceMt is associated with pk .

– TOS.Tag() takes gk as implicit input and outputs tag . By T , we denote the space
for tag .

– TOS.Sign(sk ,msg, tag) outputs signature σ for message msg based on sk and
tag .

– TOS.Vrf(pk , tag ,msg, σ) outputs 1 for acceptance, or 0 for rejection.

Correctness requires that 1 = TOS.Vrf(pk , tag ,msg, σ) holds except for negligible
probability for any gk, pk , tag , σ, and msg ∈ Mt, such that gk ← Setup(1λ),
(pk , sk)← TOS.Key(gk), tag ← TOS.Tag(), σ ← TOS.Sign(sk ,msg, tag).

A TOS scheme is POS scheme for which tag = osk = opk . We can thus give a security
notion for POS schemes that also applies to TOS schemes by reading Update = Tag
and tag = osk = opk .

Definition 15 (Unforgeability against One-Time Adapative Chosen-Message At-
tacks). A partial one-time signature scheme is unforgeable against one-time adaptive
chosen message attacks (OT-CMA) if for all p.p.t. oracle algorithm A the advantage
function Advot-cma

POS,A is negligible in λ, where Advot-cma
POS,A(λ) :=

Pr

⎡

⎣
∃(opk ,msg, σ) ∈ Qm s.t.
opk † = opk ∧ msg† �= msg ∧
1 = POS.Vrf(pk , opk †, σ†,msg†)

∣∣
∣
∣
∣
∣

gk← Setup(1λ),
(pk , sk)← POS.Key(gk),

(opk †, σ†,msg†)← AOt,Osig(pk )

⎤

⎦ .

Qm is initially an empty list.Ot is the one-time key generation oracle that on receiving a
request invokes a fresh session j, performs (opk j , osk j)← POS.Update(), and returns
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opk j . Osig is the signing oracle that, on receiving a message msgj for session j, per-
forms σj ← POS.Sign(sk ,msgj, osk j), returns σj toA, and records (opk j ,msgj, σj)
to the list Qm.Osig works only once for every session. Strong unforgeability is defined
as well by replacing condition msg† �= msg with (msg†, σ†) �= (msg, σ).

We define a non-adaptive variant (OT-NACMA) of the above notion by integratingOt
into Osig so that opk j and σj are returned to A at the same time. Namely, A must
submit msgj before seeing opk j . If a scheme is secure in the sense of OT-CMA, the
scheme is also secure in the sense of OT-NACMA. If a scheme is strongly unforgeable,
it is unforgeable as well. By Advot-nacma

POS,A (λ) we denote the advantage of A in this non-
adaptive case. For TOS, we use the same notations, OT-CMA and OT-NACMA, and
define advantage functions Advot-cma

TOS,A and Advot-nacma
TOS,A accordingly. For strong unforge-

abiltiy, we use label sot-cma and sot-nacma.
We define a condition that is relevant for coupling random message secure signature

schemes with partial one-time and tagged one-time signature schemes in later sections.

Definition 16 (Tag/One-time Public-Key Uniformity). TOS is called uniform-tag if
TOS.Tag outputs tag that uniformly distributes over tag space T . Similarly, POS is
called uniform-key if POS.Update outputs opk that uniformly distributes over key space
Kopk .

Structure-preserving signatures. A signature scheme is structure-preserving over a bi-
linear group Λ, if public-keys, signatures, and messages are all base group elements
of Λ, and the verification only evaluates pairing product equations. Similarly, POS
schemes are structure-preserving if their public-keys, signatures, messages, and tags or
one-time public-keys consist of base group elements and the verification only evaluates
pairing product equations.

4 Generic Constructions

4.1 SIG1: Combining Tagged One-Time and RMA-Secure Signatures

Let rSIG be a signature scheme with message spaceMr, and TOS be a tagged one-time
signature scheme with tag space T such thatMr = T . We construct a signature scheme
SIG1 from rSIG and TOS. Let gk be a global parameter generated by Setup(1λ).

– SIG1.Key(gk): Run (pk t, sk t) ← TOS.Key(gk), (vkr, skr) ← rSIG.Key(gk).
Output vk := (pk t, vkr) and sk := (sk t, skr).

– SIG1.Sign(sk,msg): Parse sk into (sk t, skr). Run tag ← TOS.Tag(), σt ←
TOS.Sign(sk t,msg, tag), σr ← rSIG.Sign(skr, tag). Output σ := (tag , σt, σr).

– SIG1.Vrf(vk, σ,msg): Parse vk and σ accordingly. Output 1, if 1 = TOS.Vrf(pk t,
tag , σt,msg) and 1 = rSIG.Vrf(vkr, σr, tag). Output 0, otherwise.

We prove the above scheme is secure by showing a reduction to the security of each
component. As our reductions are efficient in their running time, we only relate success
probabilities.

Theorem 17. SIG1 is UF-CMA if TOS is uniform-tag and OT-NACMA, and rSIG is
UF-RMA. In particular, Advuf-cma

SIG1,A(λ) ≤ Advot-nacma
TOS,B (λ) + Advuf-rma

rSIG,C(λ).
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Proof. Any signature that is accepted by the verification algorithm must either reuse an
existing tag, or sign a new tag. The success probability Advuf-cma

SIG1,A(λ) of an attacker on
SIG1 is bounded by the sum of the success probabilities Advot-nacma

TOS,B (λ) of an attacker

on TOS and the success probability Advuf-rma
rSIG,C(λ) of an attacker on rSIG.

Game 0: The actual Unforgeability game. Pr[Game 0] = Advuf-cma
SIG1,A(λ).

Game 1: The real security game except that the winning condition is changed to no
longer accept repetition of tags.

Lemma 18. |Pr[Game 0]− Pr[Game 1]| ≤ Advot-nacma
TOS,B (λ)

Game 2: The fully idealized game. The winning condition is changed to reject all sig-
natures.

Lemma 19. |Pr[Game 1]− Pr[Game 2]| ≤ Advuf-rma
rSIG,C(λ)

Thus Advuf-cma
SIG1,A(λ) = Pr[Game 0] ≤ Advot-nacma

TOS,B (λ) + Advuf-rma
rSIG,C(λ) as claimed.

Theorem 20. If TOS.Tag produces constant-size tags and signatures in the size of
input messages, the resulting SIG1 produces constant-size signatures as well. Further-
more, if TOS and rSIG are structure-preserving, so is SIG1.

We omit the proof of Theorem 20 as it is done simply by examining the construction.

4.2 SIG2: Combining Partial One-Time and XRMA-Secure Signatures

Let xSIG be a signature scheme with message space Mx, and POS be a partial one-
time signature scheme with one-time public-key spaceKopk such thatMx = Kopk . We
construct a signature scheme SIG2 from xSIG and POS. Let gk be a global parameter
generated by Setup(1λ).

– SIG2.Key(gk): Run (pkp, skp) ← POS.Key(gk), (vkx, skx) ← xSIG.Key(gk).
Output vk := (pkp, vkx) and sk := (skp, skx).

– SIG2.Sign(sk,msg): Parse sk into (skp, skx). Run (opk , osk)← POS.Update(),
σp ← POS.Sign(skp,msg, osk), σx ← xSIG.Sign(skx, opk ). Output σ := (opk ,
σp, σx).

– SIG2.Vrf(vk,
σ,msg): Parse vk and σ accordingly. Output 1 if 1 = POS.Vrf(pkp, opk , σp,
msg), and 1 = xSIG.Vrf(vkx, σx, opk ). Output 0, otherwise.

Theorem 21. SIG2 is UF-CMA if POS is uniform-key and OT-NACMA, and xSIG is
UF-XRMA w.r.t. POS.Update as the message generator. In particular, Advuf-cma

SIG2,A(λ) ≤
Advot-nacma

POS,B (λ) + Advuf-xrma
xSIG,C (λ).

Proof. The proof is almost the same as that for Theorem 17. The only difference ap-
pears in constructing C in the second step. Since POS.Update is used as the extended
random message generator, the pair (msg, aux) is in fact (opk , osk). Given (opk , osk ),
adversary C can run POS.Sign(sk ,msg, osk) to yield legitimate signatures.

Theorem 22. If POS produces constant-size one-time public-keys and signatures in
the size of input messages, resulting SIG2 produces constant-size signatures as well.
Furthermore, if POS and xSIG are structure-preserving, so is SIG2.
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5 Instantiating SIG1

We instantiate the building blocks TOS and rSIG of our first generic construction to
obtain our first SPS scheme. We do so in Type-I bilinear group setting. The resulting
SIG1 scheme is an efficient structure-preserving signature scheme based only on the
DLIN assumption.

Setup for Type-I groups. The following setup procedure is common for all instantiations
in this section. The global parameter gk is given to all functions implicitly.

Setup(1λ): RunΛ = (p,G,GT , e)← G(1λ) and pick random generators (G,C, F, U1,
U2)← G∗5. Output gk := (Λ,G,C, F, U1, U2).

The parameters gk fix the message spaceMr := {(Cm1 , Cm2 , Fm1 , Fm2 , Um1
1 , Um2

2 )
∈ G

6 | (m1,m2) ∈ Z
2
p} for the RMA-secure signature scheme defined below. For

our generic framework to work, the tagged one-time signature schemes should have the
same tag space.

Tagged one-time signature scheme. Basically, a tag in our scheme consists of a pair of
elements in G. However, due to a constraint from rSIG we show in the next section, the
tags will have to be in an extended form. We therefore parameterize the one-time key
generation function Update with a flag mode ∈ {normal, extended} so that it outputs
a key in the original or extended form. Although mode is given to Update as input,
it should be considered as a fixed system-wide parameter that is common for every
invocation of Update and the key space is fixed throughout the use of the scheme.
Accordingly, this extension does not affect the security model at all.

TOS.Key(gk): Parse gk = (Λ,G,C, F, U1, U2). Pick random xr, yr, xs, ys, xt, yt, x1,
y1, . . . ,xk, yk inZp such that such thatxrys �= xsyr and computeGr := Gxr , Hr :=
Gyr , Gs := Gxs , Hs := Gys , Gt := Gxt , Ht := Gyt , G0 := Gx0 , H0 :=
Gy0 , . . . , Gk := Gxk , Hk := Gyk . Outputpk := (Gr, Gs, Gt, Hr, Hs, Ht, G0, . . . ,
Gk, H0, . . . , Hk) and sk := (xr , xs, xt, yr, ys, yt, x0, . . . , xk, y0, . . . , yk)

TOS.Tag(): Take generators G,C, F, U1, U2 from gk. Choose w1, w2 ← Z∗
p and com-

pute tag := (Cw1 , Cw2 , Fw1 , Fw2 , Uw1
1 , Uw2

2 ). Output tag .
TOS.Sign(sk ,msg, tag): Parse msg to (M1, . . . ,Mk) and tag to (T1, T2, . . . ). Parse

sk accordingly. Choose random m ← Zp and let value M0 := Gm
∏k

i=1 M
−1
i .

(This is uniformly distributed.) Compute A := G−xtT−m
1

∏k
i=0 M

−xi

i and B :=

G−ytT−m
2

∏k
i=0 M

−yi

i . Since xrys �= xsyr we can compute
(

α β
γ δ

)
= ( xr xs

yr ys )
−1.

(The determinant is nonzero.) Compute Z := AαBβ and W := AγBδ . Output
σ := (Z,W,M0).

TOS.Vrf(pk , tag ,msg, σ): Accept if the following equalities hold:

e(Gr, Z) · e(Gs,W ) · e(Gt, G)

k∏

i=0

e(GiT1,Mi) = 1

e(Hr, Z) · e(Hs,W ) · e(Ht, G)

k∏

i=0

e(HiT2,Mi) = 1
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We remark that the correctness of the extended tag (T3, . . . , T6) is not examined within
this scheme. (We only need to show that the extended part is simulatable in the security
proof.) Since the tag is given to SIGr as a message, it is the verification function of SIGr
that verifies the correctness with respect to its message space, which is the same as the
tag space. The scheme is obviously structure-preserving and the correctness is easily
verified by simple calculation.

Theorem 23. The above TOS scheme is OT-CMA under the SDP. In particular, for
any A that makes at most qs signing queries, Advot-cma

TOS,A(λ) ≤ qs · AdvsdpG,B(λ) + 1/p
holds.

Proof. We show a reduction algorithm that simulates the one-time adaptive chosen mes-
sage attack game for the adversary. The reduction gets an instance of the simultaneous
double pairing assumption, Λ,Gr, Gs, Hr, Hs, and proceeds as follows.

Setup and Key Generation. It chooses ξ, η, μ and sets Gt := Gξ
rG

η
s , and Ht := Hξ

rH
μ
s .

It chooses G ∈ G and random ω, ν, ν1, ν2, and computes gk = (Λ,C, F, U1, U2) =
(Λ,Gω, Gων , Gων1 , Gων2). It chooses random ρi, σi, τi, computesGi = Gρi

r Gσi
s Gτi

t =
Gρi+ξτi

r Gσi+ητi
s and Hi = Hρi

r Hσi
s Hτi

t = Hρi+ξτi
r Hσi+μτi

s for i = 0 . . . k, and sets
pk = (G,Gr , Gs, Gt, Hr, Hs, Ht, G0, . . . Gk, H0, . . . , Hk). (Note that Gi, Hi are cor-
rectly distributed and give no information about τi.) It sends pk , gk to the adversary.
The reduction will pick a random session j∗, and assume that the adversary will try to
reuse tag from that session.

Queries to oracle Ot. When the adversary makes a query to the tag oracle Ot, choose
the next new session index j.

– For session j �= j∗: Pick random values ρ, σ, τ ← Zp. Compute (T1, T2) =
(Gρ

rG
σ
sG

τ
t , H

ρ
rH

σ
s H

τ
t ) = (Gρ+ξτ

r Gσ+ητ
s , Hρ+ξτ

r Hσ+μτ
s ), and set T = (T1, T2,

T ν
1 , T

ν
2 , T

ν1
1 , T ν2

2 ). Store (j, ρ, σ, τ), and return T to the adversary.
– For session j∗. Pick random values ρ, σ ← Zp. Compute (T1, T2) = (Gρ

rG
σ
s ,

Hρ
rH

σ
s ). Let T = (T1, T2, T

ν
1 , T

ν
2 , T

ν1
1 , T ν2

2 ). Store (j∗, ρ, σ), and return T to the
adversary.

Queries to oracleOsig. When the adversary queriesOsig for message M = (M1, . . . ,
Mk) ∈ Gk and session j, proceed as follows.

– If theOt has not yet produced a tag for session j, orOsig has already been queried
for session j, return ⊥.

– For session j �= j∗: Look up the stored tuple (j, ρ, σ, τ). Compute M0 = (G
∏k

i=1

M τ+τi
i )

− 1
τ0+τ . Note that for this choice of M0, it will be the case that e(Gt, G)

∏k
i=0 e(G

τi+τ
t ,Mi) = e(Gt,M

τ0+τ
0 G

∏k
i=1 M

τi+τ
i ) = 1 and similarly e(Ht, G)

∏k
i=0 e(H

τi+τ
t ,Mi) = e(Ht,M

τ0+τ
0 G

∏k
i=1 M

τi+τ
i ) = 1. Note also that the tag

is independent of τ , and since τ is uniformly distributed, then M0 is independent of
τ0, . . . , τk even given tag . (To see this, let m0, . . . ,mk be the discrete logarithms
of M0, . . . ,Mk respectively and note that for any choice of m1, . . . ,mk, τ0, . . . , τk
and for any m0 such that m0 �= −

∑k
i=1 mi, there is a 1

q chance that we will

choose τ =
−1−∑k

i=0 miτi∑k
i=0 mi

which will yield M0 = (G
∏k

i=1 M
τi+τ
i )−

1
τ0+τ .) Now
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compute Z =
∏k

i=0 M
−ρi−ρ
i and W =

∏k
i=0 M

−σi−σ
i and output the signature

(Z,W,M0).
Note that these are the unique values such that e(Gr, Z) · e(Gs,W ) ·

e(Gt, G)
∏k

i=0 e(GiT1,Mi) = 1 and similarly e(Hr, Z) · e(Hs,W ) ·
e(Ht, G)

∏k
i=0 e(HiT2,Mi) = 1. Thus, Z,W are uniquely determined by

M0,M1, . . . ,Mk, tag , and pk . M1, . . . ,Mk are provided by the adversary and,
as we have argued, M0, tag, pk are statistically independent of τ0, . . . , τk. We con-
clude that Z,W reveal no additional information about τ0, . . . , τk even given the
rest of the adversary’s view.

– For session j∗: Look up the stored tuple (j, ρ, σ). Let M0 = (G
∏k

i=1 M
τi
i )

− 1
τ0 ).

Note that for this choice ofM0, it will be the case that e(Gt, G)
∏k

i=0 e(G
τi
t ,Mi) =

e(Gt,M
τ0
0 G

∏k
i=1 M

τi
i ) = 1 and similarly e(Ht, G)

∏k
i=0 e(H

τi
t ,Mi) =

e(Ht,M
τ0
0 G

∏k
i=1 M

τi
i ) = 1. Note that T1, T2 are correctly distributed, that M0

is statistically close to uniform since τ0, . . . , τk are chosen at random, and further-
more that the only information revealed about τ0, . . . , τk is that G

∏k
i=0 M

τi
i = 1.

Now, compute Z =
∏k

i=0 M
−ρi−ρ
i and W =

∏k
i=0 M

−σi−σ
i , and output

the signature (Z,W,M0). Again all values are independent of τ0, . . . , τk with the
exception now of M0, which is chosen so G

∏k
i=0 M

τi
i = 1.

Processing the adversary’s forgery. Now, suppose that the adversary produces
(M †

1 , . . .M
†
k) and (Z†,W †,M †

0 , T ) for T = (T1, T2, . . . ) used in the j∗th query. Look
up the stored tuple (j∗, ρ, σ). Then with non-negligible probability (whenever the ad-
versary succeeds) we have TOS.Vrf(pk , T, (M †

1 , . . . ,M
†
k), (Z

†,W †,M †
0 )) = 1. This

means

1 = e(Gr, Z
†Gξ

k∏

i=0

(M †
i )

ρi+ρ+ξτi)e(Gs,W
†Gη

k∏

i=0

(M †
i )

σi+σ+ητi), and

1 = e(Hr, Z
†Gξ

k∏

i=0

(M †
i )

ρi+ρ+ξτi)e(Hs,W
†Gμ

k∏

i=0

(M †
i )

σi+σ+μτi).

So if Z†Gξ
∏k

i=0(M
†
i )

ρi+ρ+ξτi �= 1, then

(Z�, R�, S�) := (Z†Gξ
k∏

i=0

(M†
i )

ρi+ρ+ξτi ,W †Gη
k∏

i=0

(M†
i )

σi+σ+ητi ,W †Gμ
k∏

i=0

(M†
i )

σi+σ+μτi)

is a valid solution for the simultaneous double pairing assumption.
Z†Gξ

∏k
i=0(M

†
i )

ρi+ρ+ξτi = Z† ∏k
i=0(M

†
i )

ρi+ρ(G
∏k

i=0(M
†
i )

τi)ξ , and a part of Z† ∏k
i=0

(M†
i )

ρi+ρ is information theoretically hiding. Note that the only information that the
adversary has about τ0, . . . , τ1 is that in the j∗th session M0 was chosen so that
G

∏k
i=0 M

τi
i = 1 (where M = (M1, . . . ,Mk) is the message signed in the j∗th ses-

sion). If M†
i �= Mi for at least one i, then the probability that G

∏k
i=0(M

†
i )

τi = 1

conditioned on the fact that G
∏k

i=0 M
τi
i = 1 is 1/p. As a result, the probability that

Z†Gξ
∏k

i=0(M
†
i )

ρi+ρ+ξτi = 1 is 1/p.
Thus, if the guess for j∗ is right, we succeed with all but probability 1/p whenever A

does. We therefore have Advot-cma
TOS,A(λ) ≤ qs · AdvsdpG,B(λ) + 1/p.
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RMA-secure signature scheme. For our random message signature scheme we will use
a construction based on the dual system signature proposed in [41]. While the orig-
inal scheme is CMA-secure under the DLIN assumption, the security proof makes
use of a trapdoor commitment to elements in Zp and consequently messages are el-
ements in Zp rather than G. Our construction below resorts to RMA-security and re-
moves this commitment to allows messages to be a sequence of random group ele-
ments satisfying a particular relation. As mentioned above, the message spaceMx :=
{(Cm1 , Cm2 , Fm1 , Fm2 , Um1

1 , Um2
2 ) ∈ G6 | (m1,m2) ∈ Z2

p} is defined by generators
(C,F, U1, U2) in gk.

rSIG.Key(gk): Given gk := (Λ,G,C, F, U1, U2) as input, uniformly select
V, V1, V2, H from G∗ and a1, a2, b, α, and ρ from Z∗

p. Then compute and out-
put vk := (B,A1, A2, B1, B2, R1, R2,W1,W2, V, V1, V2, H,X1, X2) and sk :=
(vk,K1,K2) where

B := Gb, A1 := Ga1 , A2 := Ga2 , B1 := Gb·a1 , B2 := Gb·a2

R1 := V V a1
1 , R2 := V V a2

2 , W1 := Rb
1, W2 := Rb

2,

X1 := Gρ, X2 := Gα·a1·b/ρ, K1 := Gα, K2 := Gα·a1 .

rSIG.Sign(sk,msg): Parse msg into (M1,M2,M3,M4,M5,M6). Pick random
r1, r2, z1, z2 ∈ Zp. Let r = r1 + r2. Compute and output signature σ :=
(S0, S1, . . . S7) where

S0 := (M5M6H)r1 , S1 := K2V
r, S2 := K−1

1 V r
1 G

z1 , S3 := B−z1 ,

S4 := V r
2 G

z2 , S5 := B−z2 , S6 := Br2 , S7 := Gr1 .

rSIG.Vrf(vk, σ,msg): Parse msg into (M1,M2,M3,M4,M5,M6) and σ into
(S0, S1, . . . , S7). Also parse vk accordingly. Verify the following pairing product
equations:

e(S7,M5M6H) = e(G,S0)

e(S1, B) e(S2, B1) e(S3, A1) = e(S6, R1) e(S7,W1)

e(S1, B) e(S4, B2) e(S5, A2) = e(S6, R2) e(S7,W2) e(X1, X2)

e(F,M1)=e(C,M3), e(F,M2)=e(C,M4), e(U1,M1)=e(C,M5), e(U2,M2) = e(C,M6)

The scheme is structure-preserving by construction and the correctness is easily veri-
fied.

Theorem 24. The above rSIG scheme is UF-RMA under the DLIN assumption. In par-
ticular, for any p.p.t. adversary A against rSIG that makes at most qs signing queries,
there exists p.p.t. algorithm B for DLIN such that Advuf-rma

rSIG,A(λ) ≤ (qs+2) ·AdvdlinG,B(λ).

Proof. We refer to the signatures output by the signing algorithm as a normal signature.
In the proof we will consider an additional type of signatures to which we refer to
as simulation-type signatures that are computationally indistinguishable but easier to
simulate. For γ ∈ Zp, simulation-type signatures are of the form σ = (S0, S

′
1 = S1 ·

G−a1a2γ , S′
2 = S2 ·Ga2γ , S3, S

′
4 = S4 ·Ga1γ , S5, . . . , S7). We give the outline of the

proof using some lemmas.
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Lemma 25. Any signature that is accepted by the verification algorithm must be
formed either as a normal signature, or a simulation-type signature.

We consider a sequence of games. Let pi be the probability that the adversary succeeds
in Game i, and pnorm

i (λ) and psim
i (λ) that he succeeds with a normal-type respectively

simulation-type forgery. Then by Lemma 25, pi(λ) = pnorm
i (λ) + psim

i (λ) for all i.

Game 0: The actual Unforgeability under Random Message Attacks game.

Lemma 26. There exists an adversary B1 such that psim
0 (λ) = AdvdlinG,B1

(λ).

Game i: The real security game except that the first i signatures that are given by the
oracle are simulation-type signatures.

Lemma 27. There exists an adversary B2 such that |pnorm
i−1 (λ) − pnorm

i (λ)| =

AdvdlinG,B2
(λ).

Game q: All sigantures that given by the oracle are simulation-type signatures.

Lemma 28. There exists an adversary B3 such that pnorm
q (λ) = AdvcdhG,B3

(λ).

We have shown that in Game q, A can output a normal-type forgery with at most
negligible probability. Thus, by Lemma 27 we can conclude that the same is true in
Game 0 and it holds

Advuf-rma
rSIG,A(λ) = p0(λ) = psim

0 (λ) + pnorm
0 (λ) ≤ psim

0 (λ) +

q∑
i=1

|pnorm
i−1(λ)− pnorm

i (λ)|+ pnorm
q (λ)

≤ Advdlin
G,B1

(λ) + qAdvdlin
G,B2

(λ) + Advcdh
G,B3

(λ) ≤ (q + 2) · Advdlin
G,B(λ) .

Let MSGGen be an extended random message generator that first chooses
aux = (m1,m2) randomly from Z2

p and then computes msg =
(Cm1 , Cm2 , Fm1 , Fm2 , Um1

1 , Um2
2 ). Note that this is what the reduction algo-

rithm does in the proof of Theorem 24. Therefore, the same reduction algorithm works
for the case of extended random message attacks with respect to message generator
MSGGen. We thus have the following.

Corollary 29. Under the DLIN assumption, rSIG scheme is UF-XRMA w.r.t. the mes-
sage generator that provides aux = (m1,m2) for every message msg = (Cm1 , Cm2 ,
Fm1 , Fm2 , Um1

1 , Um2
2 ). In particular, for any p.p.t. adversary A against rSIG that is

given at most qs signatures, there exists p.p.t. algorithm B such that Advuf-xrma
rSIG,A (λ) ≤

(qs + 2) · AdvdlinG,B(λ).

Security and efficiency of resulting SIG1. Let SIG1 be the signature scheme obtained
from TOS (with mode = extended) and rSIG by following the first generic construction
in Section 4. From Theorem 17, 20, 23, and 24, the following is immediate.

Theorem 30. SIG1 is a structure-preserving signature scheme that yields constant-size
signatures, and is UF-CMA under the DLIN assumption. In particular, for any p.p.t.
adversaryA for SIG1 making at most qs signing queries, there exists p.p.t. algorithm B
such that Advuf-cma

SIG1,A(λ) ≤ (qs + 3) · AdvdlinG,B(λ) + 1/p.
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6 Instantiating SIG2

We instantiate the POS and xSIG building blocks of our second generic construction
to obtain our second SPS scheme. Here we choose the Type-III bilinear group setting.
The resulting SIG2 scheme is an efficient structure-preserving signature scheme based
on SXDH and XDLIN.

Setup for Type-III groups. The following setup procedure is common for all building
blocks in this section. The global parameter gk is given to all functions implicitly.

– Setup(1λ): Run Λ = (p,G1,G2,GT , e)← G(1λ) and choose generators G ∈ G
∗
1

and Ĝ ∈ G∗
2. Also choose u, f2, f3 randomly from Z∗

p, compute F2 := Gf2 ,

F3 := Gf3 , F̂2 := Ĝf2 , F̂3 := Ĝf3 , U := Gu, Û := Ĝu, and output gk :=
(Λ,G, Ĝ, F2, F3, F̂2, F̂3, U, Û).

A gk defines a message space Mx = {(F̂m
2 , F̂m

3 , Ûm) ∈ G
∗
2 | m ∈ Zp} for the

signature scheme in this section. For our generic construction to work, the partial one-
time signature scheme should have the same key space.

Partial one-time signatures for uniliteral messages. We construct a partial one-time
signature scheme POSu2 for messages in Gk

2 for k > 0. The suffix ”u2” indicates
that the scheme is uniliteral and messages are taken from G2. Correspondingly,POSu1
refers to the scheme whose messages belong to G1, which is obtained by swapping G2

and G1 in the following description. Our POSu2 scheme is a minor refinement of the
one-time signature scheme introduced in [4]. It comes, however, with a security proof
for the new security model.

Basically, a one-time public-key in our scheme consists of one element in the base
group G1 that is the opposite of the group G2 messages belong to. This property
is very useful to construct a POS scheme for signing bilateral messages. As well
as tags of TOS in Section 5, the one-time public-keys of POS will have to be in
an extended form to meet the constraint from xSIG presented in the sequel. We use
mode ∈ {normal, extended} for this purpose again.

– POSu2.Key(gk ): Take generators U and Û from gk . Choose wr randomly from
Z∗
p and compute Gr := Uwr . For i = 1, . . . , k, uniformly choose χi and γi from

Zp and compute Gi := UχiGγi
r . Output pk := (Gr, G1, ..., Gk) ∈ G

k+1
1 and

sk :=(χ1, γ1, ..., χk, γk, wr).
– POSu2.Update(mode): Take F2, F3, U from gk . Choose a ← Zp and output
opk := Ua ∈ G1 if mode = normal or opk := (F a

2 , F
a
3 , U

a) ∈ G3
1 if

mode = extended. Also output osk := a.
– POSu2.Sign(sk ,msg, osk): Parse msg into (M̂1, . . . , M̂k) ∈ Gk

2 . Take a and wr

from osk and sk , respectively. Choose ρ randomly from Zp and compute ζ :=

a − ρwr mod p. Then compute and output σ := (Ẑ, R̂) ∈ G
2
2 as the signature,

where Ẑ := Û ζ
∏k

i=1 M̂
−χi

i and R̂ := Ûρ
∏k

i=1 M̂
−γi

i

– POSu2.Vrf(pk , σ,msg, opk ): Parse σ as (Ẑ, R̂) ∈ G2
2, msg as (M̂1, . . . , M̂k) ∈

Gk
2 , and opk as (A2, A3, A) or A depending on mode. Return 1, if e(A, Û) =

e(U, Ẑ) e(Gr, R̂)
∏k

i=1 e(Gi, M̂i) holds. Return 0, otherwise.
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Scheme POSu2 is structure-preserving and has uniform one-time public-key property
from the construction. We can easily verify that it is correct by simple calculation.

Theorem 31. POSu2 is strongly unforgeable against OT-CMA if DBP1 holds. In par-
ticular, Advsot-cma

POSu2,A(λ) ≤ Advdbp1G,B (λ) + 1/p.

Partial one-time signatures for bilateral messages. Using POSu1 for msg ∈ G
k1+1
1

andPOSu2 formsg ∈ G
k2
2 , we construct a POSb scheme for signing bilateral messages

(msg1,msg2) ∈ G
k1
1 × G

k2
2 . The scheme is a simple two-story construction where

msg2 is signed by POSu2 with one-time secret-key osk2 ∈ G1 and then the one-time
public-key opk2 is attached to msg1 and signed by POSu1. Public-key opk2 is included
in the signature, and opk1 is output as a one-time public-key for POSb.

– POSb.Key(gk ): Run (pk1, sk1) ← POSu1.Key(gk ) and (pk2, sk2) ←
POSu2.Key(gk ). Set pk := (pk1, pk2) and sk := (sk1, sk2), and output (pk , sk).

– POSb.Update(mode): Run (opk , osk)← POSu1(mode) and output (opk , osk).
– POSb.Sign(sk ,msg, osk): Parse msg into (msg1,msg2) ∈ G

k1
1 × G

k2
2 , and sk

into (sk1, sk2). Run (opk2, osk2)← POSu2.Update(normal), and compute σ2←
POSu2.Sign(sk2,msg2, osk2) and σ1 ← POSu1.Sign(sk1, (msg1, opk2), osk ).
Output σ := (σ1, σ2, opk2).

– POSb.Vrf(pk , opk , σ,msg): Parse msg into (msg1,msg2) ∈ G
k1
1 × G

k2
2 ,

and σ into (σ1, σ2, opk2). If 1 = POSu1.Vrf(pk1, opk , σ1, (msg1, opk2)) =
POSu2.Vrf(pk2, opk2, σ2,msg2), output 1. Otherwise, output 0.

For a message in G
k1
1 ×G

k2
2 , the above POSb uses a public-key of size (k + 2, k + 1),

yields a one-time public-key of size (0, 1) (for mode = normal) or (0, 3) (for mode =
extended), and a signature of size (3, 2). Verification requires 2 pairing product equa-
tions. A one-time public-key in extended mode, which is treated as a message to xSIG
in this section, is of the form opk = (F̂ a

2 , F̂
a
3 , Û

a) ∈ G
3
2. Structure-preservance and

uniform public-key property are taken over from the underlying POSu1 and POSu2.

Theorem 32. Scheme POSb is unforgeable against OT-CMA if SXDH holds. In partic-
ular, Advot-cma

POSb,A(λ) ≤ AdvsxdhG,B (λ)+2/p.

XRMA-secure signature scheme. Our construction bases on a variant of Waters’ dual
system encryption proposed by Ramanna, Chatterjee, and Sarkar [36]. Recall that gk =
(Λ,G, Ĝ, F2, F3, F̂2, F̂3, U, Û) with Λ = (p,G1,G2,GT , e) is generated by Setup(1λ)
in advance.

xSIG.Gen(gk): On input gk, select generators V, V ′, H ← G1, V̂ , V̂ ′, Ĥ ∈ G2

such that V ∼ V̂ , V ′ ∼ V̂ ′, H ∼ Ĥ, F2 ∼ F̂2, F3 ∼ F̂3 and exponent
a, b, α ← Zp and ρ ← Z∗

p, compute R := V (V ′)a, R̂ := V̂ (V̂ ′)a, and set

vk := (gk, Ĝb, Ĝa, Ĝba, R̂, R̂b, sk := (V K,Gα, Ga, Gb).
xSIG.Sign(sk,msg): On input message msg = (M̂1, M̂2, M̂0) = (F̂m

2 , F̂m
3 , Ûm) ∈

G3
2 (m ∈ Zp), select r1, r2 ← Zp, set r := r1 + r2, compute σ0 := (M̂0Ĥ)r1 ,

σ1 := GαV r, σ2 := (V ′)rG−z , σ3 := (Gb)z , σ4 := (Gb)r2 , and σ5 := Gr1 , and
output σ := (σ0, σ1, . . . , σ5) ∈ G2 ×G

5
1.
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Table 1. Efficiency of our schemes (SIG1 and SIG2) and comparison to other schemes with
constant-size signatures. The top section is for the Type I variant, the middle section is for uni-
lateral messages and the lower section is for bilateral messages. Notation (x, y) represents x
elements in G1 and y in G2.

Schemes |msg| |gk|+ |vk| |σ| #(PPE) Assumptions
AHO10 k 2k + 12 7 2 q-SFP
SIG1 k 2k + 25 17 9 DLIN
AHO10 (k1, 0) (4, 2k1 + 8) (5, 2) 2 q-SFP
AGHO11 (k1, 0) (1, k1 + 4) (3, 1) 2 q-type
SIG2 : POSu1 + xSIG (k1, 0) (7, k1 + 13) (7, 4) 5 SXDH, XDLIN1

POSb + AHO10 (k1, k2) (k2 + 5, k1 + 12) (10, 3) 3 q-SFP
AGHO11 (k1, k2) (k2 + 3, k1 + 4) (3, 3) 2 q-type
SIG2 : POSb + xSIG (k1, k2) (k2 + 8, k1 + 14) (8, 6) 6 SXDH, XDLIN1

xSIG.Vrfy(vk, σ,msg): On input vk,msg = (M̂1, M̂2, M̂0), and signature σ, compute

e(F2, M̂0) = e(U, M̂1), e(F3, M̂0) = e(U, M̂2), e(σ5, M̂0Ĥ) = e(G, σ0)

e(σ1, Ĝ
b)e(σ2, Ĝ

ba)e(σ3, Ĝ
a) = e(σ4, R̂)e(σ5, R̂

b)e(Gρ, Ĝαb/ρ).

The scheme is structure-preserving by the construction. We can easily verify the cor-
rectness.

Theorem 33. If the DDH2 and XDLIN1 assumptions hold, then above xSIG scheme
is UF-XRMA with respect to the message generator that returns aux = m for every
random message msg = (F̂m

2 , F̂m
3 , Ûm). In particular for any p.p.t. adversary A for

xSIG making at most q signing queries, there exist p.p.t. algorithmsB1,B2,B3 such that
Advuf-xrma

xSIG,A (λ) < Advddh2G,B1
(λ) + qAdvxdlin1G,B2

(λ) + Advco-cdh
G,B3

(λ).

Security and efficiency of resulting SIG2. Let SIG2 be the scheme obtained from POSb
(with mode = extended) and xSIG. SIG2 is structure-preserving as vk, σ, and msg
consist of group elements from G1 and G2, and SIG2.Vrf evaluates pairing product
equations. From Theorem 21, 32, and 33, we obtain the following theorem.

Theorem 34. SIG2 is a structure-preserving signature scheme that is unforgeable
against adaptive chosen message attacks if SXDH and XDLIN1 hold for G.

7 Efficiency, Applications and Open Questions
Efficiency. Table 1 summarizes the efficiency of SIG1 and SIG2. For SIG2 we consider
both uniliteral and biliteral messages. We count the number of group elements excluding
a default generator for each group in gk, and distinguish between G1 and G2 and use k1
and k2 for the number of message elements in G1 and G2, respectively. For comparison,
we include the efficiency of the schemes in [4] and [2]. For bilateral messages, AHO10
is combined with POSb from Section 6.
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Applications. Structure-preserving signatures (SPS) have become a mainstay in cryp-
tographic protocol design in recent years. From the many applications that benefit from
efficient SPS based on simple assumptions, we list only a few recent examples. Using
our SIG1 scheme from Section 5 both the construction of a group signature scheme with
efficient revocation by Libert, Peters and Yung [33] and the construction of compact ver-
ifiable shuffles by Chase et al. [16] can be proven purely under the DLIN assumption.
All other building blocks already have efficient instantiations based on DLIN.

Hofheinz and Jager [31] construct a structure-preserving one-time signature scheme
and use it to build a tree-based SPS scheme, say tSIG. Instead, we propose to use our
partial one-time scheme to construct tSIG. As the resulting tSIG is secure against non-
adaptive chosen message attacks, it is secure against extended random message attacks
as well. We then combine the POSb scheme and the new tSIG scheme according to
our second generic construction. As confirmed with the authors of [31], the resulting
signature scheme is significantly more efficient than [31] and is a SPS scheme with a
tight security reduction to SXDH. One can do the same in Type-I groups by using the
tagged one-time signature scheme in Section 5 whose security tightly reduced to DLIN.

As also shown by [31], SPS schemes allow to implement simulation-sound NIZK
proofs based on the Groth-Sahai proof system. Following the Naor-Yung-Sahai [35,38]
paradigm, one obtains structure-preserving CCA-secure public-key encryption in a
modular fashion.

Open Questions. 1) Can we have (X)RMA-secure schemes with a message space that
is a simple Cartesian product of groups without sacrificing on efficiency? 2) The RMA-
secure signature schemes developed in this paper are in fact XRMA-secure. Can we
have more efficient schemes by resorting to RMA-security? 3) Can we have tagged
one-time signature schemes with tight reduction to the underlying simple assumptions?
4) What is the exact lower bound for the size of signatures under simple assumptions?
Is it possible to show such a bound?
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