
Chapter 1
The Utility of Effective Theories

1.1 Definition of Effective Theories and Their
Purpose

“Effective Theories” are theories because they are able to organize phenomena under
an efficient set of principles, and they are effective because it is not impossibly com-
plex to compute outcomes. The only way a theory can be effective is if it is manifestly
incomplete. “Everything affects anything” is generally correct, but it saps confidence
in our ability to predict outcomes. Effective Theories modify this depressing maxim
by pointing out that “most things are irrelevant for all practical purposes.” A tree
falling in Peru does not appreciably affect a canon ball’s flight in Australia. Any
good Effective Theory systematizes what is irrelevant for the purposes at hand. In
short, an Effective Theory enables a useful prediction with a finite number of input
parameters.

With this definition of Effective Theories it appears that all theories are such, and
thus giving it a fancy capitalized name is pointless pedantry. However, the proper
name is useful to repeat at times as a reminder that the prominent views of science
were not always agreeing that theorieswere necessarily incomplete, and as a reminder
to go beyond it when and if the circumstances may arise. Furthermore, the natural
tendency of young students entering science is to believe a theory is either right
or useless, when they can never be completely right, but rather merely Effective
Theories that are “correct enough for our purposes in this domain.” Frequent and
formalized reminders of this are helpful for newcomers to the field.

The other purpose of emphasizing the name Effective Theories is to force us
to confront a theory’s flaws, its incompleteness, and its domain of applicability as
an integral part of the theory enterprise. The most useful Effective Theories are
ones where we know well their domains of applicability, and can parametrically
assess the uncertainties induced by ignoring the “irrelevant.” They may even have
a well-defined procedure for becoming more and more complex as one wishes to
compute to higher accuracies. This is the case in many Effective Field Theories
of particle physics, such as pion scattering or even graviton scattering. There is
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a science in understanding the circumstances of when questions can be addressed
using accurate, convenient Effective Theories, and it is generally acknowledged that
scale separation (Hillerbrand 2013) is one important feature of systems that enable
an Effective Theory to separate out well the “relevant” from the “irrelevant”. Indeed
the phrase “irrelevant operator” is a technical term used in particle physics (Cohen
1993) to identify small contributions to phenomena caused by dynamics at a much
different energy scale than is being probed. This issue arises in one form or another
in all Effective Theories and will be seen in the examples presented.

1.2 Galileo’s Law of Falling Bodies as an Effective
Theory

Throughout this book we will get progressively more modern in our discussion of
how to apply the concepts of Effective Theories to physics. We will move from
the harmonic oscillator to Newton to Einstein to Fermi to Higgs and others. Before
we do that, let us begin in this introductory chapter with Galileo—one of the first
scientists who had what is recognizable as a modern perspective to scientific thought.
Galileo was dedicated to knowing what was correct with less care about his or others’
preconceived ideas. He was dedicated to experimental verification as an unbiased
arbiter of theories. He investigated many things, but we will focus on his theory of
falling bodies, and within that context show, as a warm-up to more sophisticated
theories later, how the concepts of Effective Theory could have engendered further
insight into a more general theory of gravity beyond just describing a falling body.

Let us suppose that we are back in the day of Galileo, well before Newton came
along, and we are very mathematically sophisticated for the times. Upon reading
Galileo’s book the Two Sciences we come across the following passage:

When, therefore, I observe a stone initially at rest falling from an elevated position and
continually acquiring new increments of speed, why should I not believe that such increases
take place in a manner which is exceedingly simple and rather obvious to everybody? If now
we examine thematter carefullywefindno addition or incrementmore simple than thatwhich
repeats itself always in the same manner. This we readily understand when we consider the
intimate relationship between time and motion; for just as uniformity of motion is defined
by and conceived through equal times and equal spaces (thus we call a motion uniform
when equal distances are traversed during equal time-intervals), so also we may, in a similar
manner, through equal time-intervals, conceive additions of speed as taking place without
complication; thus we may picture to our mind a motion as uniformly and continuously
accelerated when, during any equal intervals of time whatever, equal increments of speed
are given to it.... And thus, it seems, we shall not be far wrong if we put the increment of
speed as proportional to the increment of time; hence the definition of motion which we are
about to discuss may be stated as follows: A motion is said to be uniformly accelerated,
when starting from rest, it acquires, during equal time-intervals, equal increments of speed
(Galileo 1638).

In mathematical language Galileo is saying δv = gδt , where v is the speed and g is
the constant of proportionality. In differential calculus language δv, δt → dv, dt .
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Bringing dt to the other side of the equation one can rewrite Galileo’s Law as
dv/dt = g. But change in velocity with respect to time is nothing other than
the acceleration, and Galileo’s law becomes a = g, which is “uniform acceleration”
as Galileo himself called it. Notice that the mass of the stone falling is not in this
equation. More on that later. Another way to write the above equation is

z̈ = −g (Galileo’s Law of Falling Bodies), (1.1)

in the convention that z is the position of the ball with increasing z in the opposite
direction of the acceleration vector.

As an aside, every first year physics student has computed the trajectory of a
ball in a uniform gravitational field. The equation of motion is usually derived from
Newton’s Second Law of Motion F = ma. In this case the force is −mg where
g = 9.8m/s is the acceleration downward due to gravity on the Earth’s surface, and
a = z̈ is the second time derivative of the ball’s motion—the actual acceleration of
its trajectory. The equation of motion is then z̈ = −g, which is exactly Galileo’s
Law. Despite everyone knowing this, the reader is here requested to forget the more
sophisticated later era of Newton, where this particular equation z̈ = −g is a simple
derivation of a deeper law. Instead, I would like to ask the reader to treat z̈ = −g as a
law of nature that has no parent—it is something stand-alone discovered by Galileo.
That is why I am giving it a fancy name: “Galileo’s Law of Falling Bodies”, or GLFB
for short. Let us press forward with GLFB, and ask what Effective Theories may say
about it.

To give us something concrete to talk about with regard to GLFB, let us compute
the time it takes for a body at rest to drop from a height h. The position of the body
as a function of time is

z(t) = h − 1

2
gt2. (1.2)

Falling a distance h then takes time T = √
2h/g. Notice, this does not depend

on the mass of the body—an interesting conclusion that Galileo understood well.
He knew that air friction caused bodies to slow down, and he even understood the
concept of terminal velocity,1 but most impressively he realized that air friction was
a complication that was not fundamental to the problem:

Nowseeing howgreat is the resistancewhich the air offers to the slightmomentum [momento]
of the bladder and how small that which it offers to the large weight [peso] of the lead, I am
convinced that, if the medium were entirely removed, the advantage received by the bladder
would be so great and that coming to the lead so small that their speeds would be equalized
(Galileo 1638).

In other words, in the limit that the density of the body was much higher than the
density of the air, the air friction was not important. Galileo repeated this principle

1 “... there is no sphere so large ... or so dense... that the resistance of the medium, although very
slight, would check its acceleration and would, in time reduce its motion to uniformity” (Galileo
1638).
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in other places, and understood it well: the fundamental law of falling bodies with
resistance-less medium is uniform acceleration.

Another demonstration of Galileo’s genius was that he understood better than
anyone at that time that scientific claims were not only about deep thoughts that
sounded good, but required experiment to test them and that any result was subject
to question. At one point he took a swipe at Aristotle for holdingwhatGalileo thought
was an unjustified opinion: “... I greatly doubt that Aristotle ever tested by experiment
whether it be true ...” (Galileo 1638). Galileo was certainly no respecter of persons,
but rather had unswerving loyalty to determining what was correct. Even when he
introduced his theory of falling bodies he qualified it by saying, “we shall not be far
wrong” if we agree to his theory. Tentativeness, testing and refinement, the hallmarks
of science, were important to his approach.

Galileo surely would not have minded any correction to his law that was not in
conflict with what appeared to be sacrosanct symmetries of nature, such as invari-
ance under rotations and space and time translations (Arnold 1989). A correction
that seems quite reasonable is to disrupt uniform acceleration slightly by adding a
correction term that depends on height position z.2 Thus let us add the correction
z̈ = −g + cz, where c is some “small” constant.

The constant c is unknown and so this theory is not very predictive. However, we
can make some intelligent guesses of roughly what value it could take. For one, we
know that somehow we have to make cz have units of acceleration. This requires c
to have units of acceleration/length. This is an awkward set of units. However we
can simplify it by utilizing the one and only constant of our original theory, which is
g and has units of acceleration. Thus, the obvious thing to do is let c → g/R, where
R is some unknown fixed constant of length. What could R possibly be? The test
bodies are being pulled to earth, and they are all being pulled with (nearly) uniform
acceleration independent of the size of the test body,3 and so it is very reasonably to
assume that we need to look to the Earth to provide us with a “natural length scale”
to assign R. The radius of the Earth, Re = 6400 km, is the obvious candidate.4

If we were dogmatic and very arrogant we would say that our choices were
“obvious” and that this new law, the Adjusted GLFB (ALFB), is the correct first
correction and write z̈ = −g(1 − z/Re) and then start computing. However, let us
be humble scientists and suggest that this correction is perhaps “not far wrong”, as
Galileo might say, and insert a “constant of tentativeness” η, which is dimensionless

2 This is not in conflict with Galilean translation invariance, as z is shorthand for a difference in
position of the body with respect to the earth’s surface z = r − Rearth .
3 Furthermore, using the size of a small test body as the parameter R would lead to dramatically
too large effects, and for that reason also it can be dismissed as an option.
4 There are several other length scales that perhaps might be equally justified, including the cir-
cumference of the earth (R = 40,000 km), the height of the tallest mountain (R = 9 km), or the
depth of the deepest sea (R = 11 km). The latter two are perhaps less intuitively relevant and could
be dismissed as serious candidates. Nevertheless, if one kept an open mind to them all, the length
scales are all within about a factor of 103 of each other, which might appear disastrously large to
estimate a correction term, but it is decidedly better than not knowing how to estimate within a
factor of ∞.
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and perhaps not far from 1. Our new ALFB can be written as

z̈ = −g

(
1 − η

z

Re
+ · · ·

)
(Adjusted Galileo’s Law of Falling Bodies). (1.3)

Writing theories down with extra terms that have “natural sizes” and are consistent
with symmetries is a cornerstone of the Effective Theory approach. This example is
intended to demonstrate that a new theory can be generated by having this mindset,
and the new theory is more correct, even if a little less predictive.

Ignoring the higher order “· · · ” terms, the solution to the problem of position as
a function of time now becomes

z(t) = h cosh

(√
η
g

Re
t

)
− 1

2
gt2 (1.4)

and the time it takes to reach z = 0 is

T =
√
2h

g

(
1 + η

2

h

Re
+ O

(
h2

R2
e

))
. (1.5)

A body dropped from 200m takes about a tenth of a second longer according to
ALFB with η = 1 compared to the 6.5 s predicted by the GLFB.

In an alternative scientific history this effect of longer dropping time could have
been measured and the anomaly noted before Newton’s theory of gravity was deci-
sively understood. The measurements would have converged on η = 2 to within
experimental uncertainties. A discrepancy with Galileo’s pure GLFBwould not have
been the subject of deep worries about human’s ability to understand the laws of
the universe since Galileo himself was tentative about his law. In time, Newton’s
theory would then develop, and the value of η would be computed to be exactly
2, and Newton’s law of gravity would then replace GLFB as the overarching the-
oretical framework by which to understand and compute the trajectories of falling
bodies.

We have seen from this simple example that one does not need to know the
more fundamental theory of Newtonian gravity to anticipate corrections, compute
their effects, and compare with data. The Effective Theory of ALFB is better than
Galileo’s original law, despite being less predictive, because ultimately it can accom-
modate the data better and reflects Newton’s deeper theory. We will see another
example of this in the chain of theories in a later chapter that shows how one
could have anticipated phenomenological implications of Einstein’s General Rel-
ativity by taking a more tentative, Effective Theory approach to Newton’s Law
of Gravity.
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