
An Efficient Data Dissemination Approach

for Cloud Monitoring

Xingjian Lu, Jianwei Yin, Ying Li�,
Shuiguang Deng, and Mingfa Zhu

College of Computer Science and Technology,
Zhejiang University, 310027 Hangzhou, China

{zjulxj,zjuyjw,cnliying,dengsg}@zju.edu.cn, brucezmf@gmail.com

Abstract. Cloud computing brings dynamic resource scalability, pay-
per-use billing model and simplified developing platforms, however, the
monitoring of cloud today is still confronted with the flexibility, scala-
bility, efficiency and performance problems, especially when the scale of
cloud platform is being constantly expanding recent years. In this paper,
we first present an efficient and intelligent monitoring architecture for
cloud platform based on Data Distribution Service(DDS) and Complex
Event Processing(CEP), in order to cope with these challenging issues.
Then we mainly focus on the monitoring data dissemination, give more
details on how DDS is used in this architecture and propose a compre-
hensive data delivery algorithm to achieve better accuracy and efficiency.

Keywords: Cloud Monitoring, Data Distribution Service, Complex
Event Processing.

1 Introduction

As one of the hottest topics in current internet systems, cloud computing has
transferred the delivery of IT services to new level that brings comfort of tradi-
tional utilities such as water, electricity to its users by dynamically scaling the
service provision. Such dynamic scalability and service level agreement (SLA)
negotiability of cloud computing result in a strong demand for monitoring.

Resource monitoring, which has been widely used for software optimization,
profiling, performance evaluation, etc [1], is the premise of many major opera-
tions such as fault detecting, network analysis, job scheduling, and load balancing
in cloud systems [2]. Organizations that are using right mix of technologies for
cloud monitoring are more likely to enjoy following business benefits: preven-
tion and resolution of performance issues in a timely manner, ability to support
changes in business demand, ability to optimize spending decisions, etc [3].

However, monitoring the cloud at runtime is very challenging. Firstly, much
more monitoring concerns need to be covered in clouds than in traditional soft-
ware system, and individual monitoring schemas and mechanisms need to be

� Corresponding author.

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 733–747, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

734 X. Lu et al.

designed and implemented respectively, due to the heterogeneity of components
in the cloud. An integral cloud monitoring system should cover all the concerns,
for satisfying the needs of different roles in the cloud.

Furthermore, each monitoring technique needs to consume some computing
resources to take effect. Therefore, it will lead to some undesired runtime over-
head to a running cloud. It is a challenging issue to keep such overhead within
an acceptable range. Although the weaker the monitoring ability is, the lower
the runtime overhead is, enough monitoring ability is still required to ensure the
healthy operation for a running cloud. Consequently, how to balance the tradeoff
between monitoring ability and runtime overhead is one of the most important
issues in cloud monitoring system.

Lastly, due to the large number of services and end users in cloud, monitor-
ing applications have to process a massive amount of runtime information for
sending alerts or triggering some actions once something noteworthy happens.
Usually, this information is provided in a steady stream of separate events which
are detected by certain monitoring sensors. As a result, an efficient and robust
communication infrastructure is required, for facilitating the dissemination of
monitoring events with high throughput and low latency. Additionally, it will
also need to apply real-time intelligence to the management of your cloud infras-
tructure through making automated decisions. For example, we can anticipate
upcoming peak loads and provide the necessary capacity in advance to avoid
performance slowdowns through cloud monitoring.

Therefore, in order to deal with these difficulties, an efficient and intelligent
monitoring architecture for cloud platform is first proposed in this paper. In
this architecture, an efficient and robust data dissemination framework is im-
plemented to transmit the monitoring information reliably with high through-
put and low latency based on Data Distribution Service (DDS)[5]. An intelli-
gent cloud action platform is also developed to deal with infinite dynamic event
stream based on Complex Event Processing (CEP) [6]. So it can filter out the
meaningful information from the event flood to support decision making.

Then, in this paper, we mainly focus on monitoring data dissemination, after
describing how DDS is used in this monitoring architecture, an extended com-
prehensive data delivery algorithm Papx is proposed to achieve better accuracy
and efficiency based on the theory of temporal locality. Through this algorithm,
the agent of our monitoring architecture can perform well on the balance be-
tween runtime overhead and monitoring capability with the adaptive updating
frequency regulation.

The organization of this paper is as follows: section 2 gives an overview of
the efficient and intelligent monitoring architecture for cloud platform. Then
in section 3, details of how DDS is used in this architecture and the concrete
implementation of Papx are presented. After that, section 4 shows the experi-
mental evaluation results of the proposed algorithm. In section 5, relevant work
concerning cloud monitoring is introduced. Finally, we summarize conclusions.

An Efficient Data Dissemination Approach for Cloud Monitoring 735

2 Efficient and Intelligent Monitoring Architecture for
Cloud Platform

The scale of cloud computing platform has being constantly expanding recent
years. According to reports, Google cloud computing platform already has more
than one million servers. Amazon, IBM, Microsoft, Yahoo and other companies
each also has hundreds of thousands of servers for their cloud computing. Besides
the powerful computing and storage capacity, this kind of fairly large scale also
brings some challenging issues for cloud monitoring.

One one hand, how to transmit the huge monitoring data to the server with
high throughput and low latency is one of the most challenging issues, especially
when it deals with thousands to millions physical servers. On the other hand,
due to large amount of real-time data will be generated in this large scale cloud
monitoring system, how to extract user required information from these con-
fused data to provide strong support for decision making is also one of the most
challenging issues in cloud monitoring.

In order to deal with these challenges, an efficient and intelligent monitoring
architecture for cloud platform is proposed based on DDS and CEP in this sec-
tion. As described in Fig. 1, different types of monitoring facilities are contained
in a monitoring agent to collect runtime information from entities of each level
of the cloud in timely manner. Then these runtime information will be encap-
sulated to events, so as to be delivered to the server by DDS efficiently and
timely. After that, on the one hand, for facilitating manual control, analysis and
display, monitoring server will save these data in database and system logs for
persistency and then show to cloud operators, service developers and end users
through different views. On the other hand, the cloud action platform will do a
variety of complex checking and statistics to trigger related operations through
CEP, in order to provide intelligent decisions for cloud management system.

Why and how we use DDS to transmit the huge monitoring information will
be described more details in section 3. Due to space limitation, we just give
an overview of the cloud action platform in this paper. The core component of
the cloud action platform is a CEP engine, which can coordinate and refine the
simple events to abstract the complex event for intelligent decision according to
the monitoring rules and event schemas [8].

In addition, for reducing the coupling of event rules and decision actions and
making the code reading and maintain easy, a portal that can help users configure
the complex events based on customized monitoring rules is also developed in
this cloud action platform. In this way, users or the third-party systems can
define their own complex events conveniently, and they can also modify the
rules dynamically when users’ requirements or system runtime status changed.

3 Efficient Data Dissemination for Cloud Monitoring

As the number of nodes in clouds reaches a high value, vast runtime information
will be send to monitoring server. It is likely to cause network congestion and

736 X. Lu et al.

Fig. 1. Efficient and Intelligent Monitoring Architecture for Cloud Platform

make system throughput decline. For neutralizing the impact of this challenge,
DDS will be used to delivery these huge monitoring data. Furthermore, an ex-
tended data delivery algorithm that can deal with the balance between runtime
overhead and monitoring capability will be made to cope with this challenge too.

3.1 Data Dissemination Based on DDS

DDS is an emergent platform-independent standard that defines a data cen-
tric publish/subscribe interaction paradigm. It particularly addresses the needs
of real-time applications that require deterministic information exchange, low
memory footprints and high robustness requirements.

Design of the Data Model. Entities required to be monitored in cloud sys-
tem can be classified into five categories: hardware, virtualization, middleware,
application and interaction [4]. However, due to the tradeoff between efficient
data transfer and flexible interpretation of these data, the data of each entity
are not published as a whole in our cloud monitoring architecture. We divide
the monitoring data of each entity into three categories: EntityBasicInfo, Enti-
tyStatus and EntityEvent. Note that the entities of interaction can be subsumed
to a specific EntityEvent.

An Efficient Data Dissemination Approach for Cloud Monitoring 737

The category of EntityBasicInfo contains the basic information of each mon-
itored entity. These basic information are often published to initialize the entity
and rarely to be modified during the runtime. Below an example is provided
for the data structure for virtual machine basic information. Each attribute is
defined with a data type and a name.

struct VMBasicInfo {
long vm id; long pm id;
int cpu amount; int memory size;
int disk size; string owner;

}

The category of EntityStatus defines all the runtime status information for each
entity. This information come from various monitoring metrics and will be pub-
lished periodically. As an example, the data structure for virtual machine status
is provided below.

struct VMStatus {
long vm id; string status;
double cpu util; double disk util;
double memory util;

}

The event data occurs in a running cloud will be pushed to the server imme-
diately. Furthermore, this kind of events occurs as not frequently as the status
updates, so we make it independent from the data type of entity status. There
maybe serval kinds of event data types for one entity, while each entity has
only one data type for the basic information and status. For example, there are
create, start, user login, shutdown, delete events for some specific application.
Due to the different causes and participants of these events, all of them will be
modeled as a data type individually in our cloud monitoring architecture.

Design of the Topic Structure. Topics, which hold one specific type of object
defined by one data type, play an important part when designing a distributed
publish/subscribe system [7]. In a DDS application, publishers write to topics
while subscribers read from them. For our cloud monitoring architecture, a lot
of topics will be defined, and each of them is bound to one data type. So we
classified them into five categories which are described in Fig. 2.

In the centre of this figure, data topic categories are displayed and the cor-
responding data types are provided in brackets. The arrow directions indicate
whether a participant is a publisher or subscriber with respect to a certain topic.
When the monitoring system initializes, agents will publish data into the topic
category BasicInfoInitiation to register the entities. If required you can publish
data into the topic BasicInfoModification to modify these basic information.
Then during runtime, all the status information are published periodically into
the topic category EntityStatusUpdate to update the runtime information for

738 X. Lu et al.

each entity, while the event information are published into the topic category
EntityEventReport to report these kinds of information in timely manner. In ad-
dition, server can publish the command data into the topic category Command
to control or configure the agent dynamically.

Fig. 2. Topic structure of cloud monitoring system

3.2 Comprehensive Data Delivery Algorithm

As one of the most challenging issues of cloud monitoring, the balance between
runtime overhead and monitoring capability has caught the attention of re-
searchers. In addition to dynamically adding or subtracting monitoring facilities
of the agent to achieve this balance, a comprehensive data delivery model that
combines the pull-based model and push-based model is proposed to deal with
cloud monitoring in [2], for decreasing updating times and costs.

However, the Pap algorithm proposed in [2] is inadequate in some respects.
First, User Tolerant Degree (UTD) proposed to describe how tolerant a user is
to the status inaccuracy, depends on specific application environment and can
not vary with the current runtime status dynamically. On the other hand, the
increased or decreased pull interval in the pull algorithm is fixed and can not be
adjusted according to the current change degree of pulled value.

In order to cope with these deficiencies, we extend this algorithm based on
the theory of temporal locality to achieve better accuracy and efficiency in our
monitoring architecture. Compared with the Pap algorithm, the extended PapX
algorithm can efficiently capture the significant change of monitored values and
dynamically adjust UTD and pull interval, for not losing the important updates
and improving the accuracy of monitored values.

An Efficient Data Dissemination Approach for Cloud Monitoring 739

The extended PapX model consists of two mutual exclusive algorithms: Push
algorithm and Pull algorithm. By comparing current change degree of monitored
values with dynamic user tolerant degree, the Push and Pull models are alter-
nated adaptively. Before introducing the details of this algorithm, let’s have a
look at the assumptions and definitions in the following.

Change Degree (CD), defined in Eq. (1), describes the extent of change for
monitoring status value between a producer and the corresponding consumer at
certain time point.

CD(t) =
|P (t)− C(t)|
Max−Min

(1)

Where P (t) denotes the status value of the producer at time t, while C(t) rep-
resents the value maintained in the consumer at time t. Max and Min are the
maximal and minimal possible value of status separately.

Additionally, in order to capture the change of monitored resource status
in recent period, we maintain a sliding window of information about previous
updated values for each resource status. Assume A0, A1, ..., Ai, i ≤ N , represents
the successive updates to the server in this window, whose size is N . Then the
average amount of change (Avg AC), which describes the average amount of
change for the resource status in the sliding window, can be defined as:

Avg AC =

∑N
i=1(|Ai −Ai−1| ∗ i)

∑N
j=1 j

(2)

The Dynamic User Tolerant Degree (d UTD), defined in Eq. (3), describes how
tolerant a user is to the status inaccuracy in current sliding window, when taking
the average change degree of resource status in current sliding window as ad-
justable parameters. The value of d UTD is initialized to user defined UTD and
is dynamically calculated. If current change degree of the monitored resource
status is larger than the d UTD, the value will be updated.

d UTD = UTD× (1 − Avg AC

Max−Min
) (3)

The core idea behind d UTD is to decrease the value of UTD, for not losing
the important updates, when status changes significantly during current sliding
window. Since according to the theory of temporal locality, the larger the status
change is, the more attention we should pay on these updated values.

Different from the fixed incremental of pulling interval in [2], the server peri-
odically pull from the agents with a dynamic rate in our PapX algorithm. The
pulling rate is adaptively determined based on last pull interval and current
damping factor of pull interval, which depends on current average change degree
in the window and the user predefined initial incremental value in our algorithm,
so the dynamic pull interval (DPI) can be defined as:

DPI(t) =

{
�DPI(t0) + STEP × (1 − Avg AC

Max−Min)�, ifΔ ≤ 0,

�DPI(t0)− STEP × (1 − Avg AC
Max−Min)�, ifΔ > 0.

(4)

740 X. Lu et al.

Δ = CD(t) − d UTD(t) (5)

Where DPI(t0) is the last pull interval at time t0, STEP presents the user
predefined incremental of pulling interval. Fig. 3 and Fig. 4 show details of the
Push and Pull algorithm separately. In order to avoid Push and Pull operations
concurrently happen in a same period, the two operation identifiers, isPulled
and isPushed are set to be mutual exclusive to reduce updating times.

 1 WHILE TRUE
2 set Pull operation identifier isPulled←FALSE waiting for Push_interval
3 IF isPulled equals to TRUE during Push_interval
4 update status information (s_now) that Server currently holds,
5 update the values in the sliding window(can be modeled as a Length

 Fixed Queue)
6 ELSE //check whether need to Push
7 get sensor's current value (sensor_now) at Agent,
8 calculate the value of CD(t), Avg_AC, d_UTD according to Eq. (1), (2),
9 (3) separately
10 IF CD(t)>d_UTD
11 isPushed←TRUE, s_now←sensor_now,
12 push s_now to the Server
13 ENDIF
14 ENDIF
15 ENDWHILE

Fig. 3. PapX-Push Algorithm

When the value of d UTD is relatively small, the Push method dominates,
because the condition at line 10 in Fig. 3 is easily to be met, and the Push oper-
ations are frequently triggered. On the other side, although the Pull algorithm
is trying to minimize Pull interval’s value, the PULL INTERVAL MIN blocks
this trend when Pull interval becomes very small (line 20 to line 22 in Fig. 4).

Similarly, when the value of d UTD is relatively large, the Pull-based method
will dominates. Only when the value of d UTD is relatively moderate, none of
Push and Pull dominates and both of them act frequently. More details about
the evaluation and comparison between our extend PapX algorithm and the Pap
algorithm proposed in [2] will be described in Section 4.

4 Evaluation

The balance between updating times and accuracy of monitored values plays a
very important role on reducing costs and improving efficiency of cloud monitor-
ing. In this sectioon, we evaluate the key performance indexes of the proposed
PapX algorithm through experimental based tests.

An Efficient Data Dissemination Approach for Cloud Monitoring 741

 1 Initialize Pull operation's initial interval: PULL_INIT_INL,
minimal possible interval: PULL_INL_MIN and maximal possible interval:
PULL_INL_MAX, initial incremental interval: STEP

2 Pull_interval←PULL_INIT_INL
3 WHILE (TRUE)
4 set Push operation identifier isPushed←FLASE
5 waiting for Pull_interval
6 IF isPushed equals to TRUE
7 update status information (s_now) that Server currently holds,
8 update the values in the sliding window (can be modeled as a Length

Fixed Queue)
9 ELSE
10 isPulled←TRUE, Pull the Agent
11 update s_now,
12 update the sliding window
13 ENDIF
14 calculate the value of CD(t) according to Eq. (1)
15 calculate the value of d_UTD according to Eq. (2) and (3)
16 calculate the value of DPI(t) according to Eq. (4)
17 IF CD(t)≤d_UTD
18 Pull_interval=min{DPI(t), PULL_INL_MAX}
19 ENDIF
20 ELSE IF CD(t)>d_UTD
21 Pull_interval =max{DPI(t), PULL_INTERVAL_MIN}
22 ENDIF
23 s_last←s_now
24 ENDWHILE

Fig. 4. PapX-Pull Algorithm

4.1 Experimental Environment

In this experiment, we choose two PCs as a transmission pair to evaluate the
performance of our proposed PapX algorithm and the Pap algorithm proposed
in [2]. One PC plays as a Producer and the other plays as a Consumer. Each
PC is equipped with two Pentium(R) Dual-Core CPU E5200@2.50GHz, 2 GB
memory and Ubuntu Release 10.0.4(lucid). To simplify the experiment, we use
only the CPU load percentage to test performance of the two models.

This experiment aims for a high accuracy and low intrusiveness data trans-
mission for cloud monitoring. So we analyze and evaluate the two algorithms
from the two aspects. For better comparing the accuracy, we define Inaccuracy
Degree (ID) to denote the degree of inaccuracy between the value holds on the
server and the real value collected by the agent, the expression can be described
as follows:

ID(t) =
1

et− st
×
∫ et

st

[C(t)− P (t)]2dt (6)

742 X. Lu et al.

where st and et represent the start and end time of monitoring separately. C(t)
denotes the value that the server holds at time t, while P (t) denotes the value
collected by agent at time t.

4.2 Experimental Analysis

For facilitating repeating the experiments to analyze the efficiency and accuracy
of the two algorithms, we first collected and saved 1000 times of
updating. Then in later experiments, the Push interval of the agent was set
to 10s, and the server’s PULL INIT INTERVAL, PULL INTERVAL MIN, and
PULL INTERVAL MAX were set to 5s, 3s and 12s, respectively. In addition,
the STEP of Pull interval increment was set to 1s.

Table 1 describes the comparative results of PapX and Pap algorithm under
different window size and UTD. In this group of experiments, we set the presen-
tative values 2, 6, 10, 20, and 50 for window size. And the value of UTD varies
from 0 to 1 with an incremental interval of 0.1. For each cell of this table, the
value before ”/” is the result of Pap algorithm and the value after ”/” is the
result of PapX algorithm. Due to the limitation of space, the comparative results
when UTD is 0.3 and 0.7 are ignored in this table.

Table 1. Comparative results of PapX and Pap algorithm

0.1 0.2 0.4 0.5 0.6 0.8 0.9

2
Updates 319/310 154/152 96/99 90/93 88/88 87/88 87/88

Inaccuracy 0.12/0.10 0.23/0.22 0.31/0.30 0.35/0.34 0.35/0.31 0.39/0.36 0.37/0.35

6
Updates 319/314 154/146 96/96 90/93 88/89 87/88 87/88

Inaccuracy 0.12/0.12 0.23/0.24 0.31/0.29 0.35/0.32 0.35/0.32 0.39/0.36 0.37/0.34

10
Updates 319/310 154/151 96/100 90/93 88/88 87/88 87/88

Inaccuracy 0.12/0.13 0.23/0.28 0.31/0.30 0.35/0.34 0.33/0.32 0.39/0.36 0.37/0.36

20
Updates 319/323 154/155 96/97 90/93 88/88 87/88 87/88

Inaccuracy 0.19/0.13 0.23/0.22 0.31/0.30 0.35/0.33 0.35/0.32 0.39/0.35 0.37/0.36

50
Updates 319/326 154/158 96/97 90/94 88/88 87/88 87/88

Inaccuracy 0.12/0.15 0.23/0.22 0.31/0.33 0.35/0.33 0.35/0.32 0.39/0.36 0.37/0.36

Now, we will analyze these data in table 1. First, we fix the window size,
and vary UTD to reveal the relation between updating number and UTD. Fig.
5(a) describes the result when window size is fixed to 6 and UTD varies from
0 to 1. Overall, the total updating number decreases with UTD rising, and the
Push operations’ number drops dramatically, while the Pull operations’ number
grows slightly. The reason for this phenomenon is that the rate of Pull opera-
tions’ number increasing is much less than the rate of Push operations’ number
decreasing. The figure also proves our analytical result described in section 3.1.
That is when UTD is relatively low, most of the updating operations are push,
and when UTD is relatively high, the number of Pull operations is dominant.

Also we observe the number of Push operation is not 0 but a small value when
the UTD is 1 in our PapX algorithm, it is because the positive feedback effect of

An Efficient Data Dissemination Approach for Cloud Monitoring 743

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

500

600

700

800

900

1000

UTDs

U
pd

at
e

T
im

es
Update Times With Different UTDs (Window Size = 6)

Push Times
Pull Times
Total Times

(a)

2 6 10 20 50
0

20

40

60

80

100

120

Window Size

U
pd

at
e

T
im

es

Update Times With Different Window Size (UTD=0.3)

Push Times
Pull Times
Total Times

(b)

Fig. 5. Updating number of PapX at different (a)UTDs and (b)window size

dynamic UTD to the rare dramatically changes of monitoring values. In order
not to lose the important updating, the PapX algorithm proposed in this paper
needes to capture and transmit the significant changes even the UTD is relatively
high. In addition, as UTD increases, the number of pull operation increases
slowly until it to be stabilized. During this process, little fluctuations occur due
to the responding result of dynamic pull interval DPI(t) to the dramatically
change of monitoring information.

Fig. 5(b) shows the experimental result of PapX algorithm with different
window size and a fixed UTD 0.3. From this figure, we can see that overall the
differentiation of the results of different window size is small. The main reason
for this phenomenon is that the average change degree of the sliding window is
calculated according to the weighted moving average of the change of each two
adjacent monitored values, so the influence of the window size is weakened. This
is consistent with the theory of temporal locality, since the latest change of these
monitored values often has the greatest impact on the eventual result.

From table 1, we also find the updating number of PapX algorithm is a little
bigger than the Pap algorithm. However, the accuracy of PapX is much better
than Pap. We tried to give an intuitionistic comparison of the accuracy for
the two algorithms in one figure. Unluckily, the amount of the data is so large
that the differences of them are not evident in one figure. So in the following
experiments, we select the first 200 updates to compare the accuracy of them.
Since the window size has a little influence on the eventual result, we fix it to 6.

When UTD is 0, users can not tolerant the deviation of monitored values, so
the two alogorithms degenerate to the pure push algorithm, and the inaccuracy of
them are both 0. When UTD is relatively low, take 0.2 (Fig. 6(a)) for example,
the PapX algorithm has evident superiority than Pap algorithm on accuracy.
Although the updating number of PapX and Pap algorithm are both 42, the
inaccuracy degree of PapX is 0.67, while Pap is 0.74. This phenomenon is mainly
caused by the dynamic UTD. When significant changes of monitored values
occur, the dynamic UTD of PapX algorithm will decrease to do more push
operations, so the accuracy is improved evidently in PapX.

744 X. Lu et al.

When UTD is relatively high, take 1.0 (Fig. 6(b)) for example, the push oper-
ations of the two algorithms are not triggered in this example. However, the Pap
algorithm just modifies the pull interval according to the constant incremental,
while the PapX algorithm can modify the pull interval dynamically according to
the change degree of monitored values. So when significant change occurs, the
pull interval of PapX algorithm may decrease to a lower value immediately, and
improve the accuracy of monitored values. As described in Fig. 6(b), although
the updating number of PapX and Pap algorithm are both 19, the inaccuracy
degree of PapX is 1.08, while Pap is 1.11.

When UTD is relatively moderate, as described in Fig. 7(a) (UTD=0.6), PapX
algorithm also has evident superiority than Pap algorithm on accuracy. PapX
algorithm just updates one more time and the inaccuracy degree decreases from
0.91 to 0.85. The reason for this phenomenon is mainly the combined influence
by dynamic UTD and pull interval described before when significant changes
occur.

Through the above logical analysis and experimental comparison, we con-
clude that the proposed adaptive PapX algorithm can work efficiently with the
change of user requirements and monitoring status for cloud monitoring. When
compared with the Pap algorithm, PapX has a higher degree of intelligence,
since it can efficiently capture the mutations of monitored values to decrease the
number of updating and increase the accuracy of monitored values. Fig. 7(b)
shows the comparative result on updating number and accuracy for the two algo-
rithms. From this figure, we can see that when the total updating number is low,
the accuracy of PapX algorithm is much better than Pap algorithm under the
same updating number. As the number of updating increases, the superiority of
PapX algorithm on accuracy decreases slowly until the performance of them are
analogous.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Time Stamp (Window Size = 6)

V
al

ue
s

Accuracy comparison (UTD=0.2)

Source(Total:200)
Pap(Update:42, ID=0.74)
PapX(Update:42, ID=0.67)

(a)

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Time Stamp (Window Size = 6)

V
al

ue
s

Accuracy comparison (UTD=1.0)

Source(Total:200)
Pap(Update:19, ID=1.11)
PapX(Update:19, ID=1.08)

(b)

Fig. 6. Accuracy comparison between PapX and Pap when (a) UTD=0.2 and (b)
UTD=1.0, window size is 6

An Efficient Data Dissemination Approach for Cloud Monitoring 745

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Time Stamp (Window Size = 6)

V
al

ue
s

Accuracy comparison (UTD=0.6)

Source(Total:200)
Pap(Update:20, ID=0.91)
PapX(Update:21, ID=0.85)

(a)

50 100 150 200 250 300 350
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Update Times

ID
s

Performance Comparison (Window Size = 6)

pap
papx

(b)

Fig. 7. (a) Accuracy comparison between PapX and Pap when UTD=0.6, window size
is 6; (b) Comparison on updating number and accuracy for PapX and Pap

5 Related Work

Well-known clouds in the industry all have their own monitoring system. The
representative one is App Engine System Status Dashboard, which can be used
to show how the applications work in Google App Engine [11]. In addition, a
third-party tool CloudStatus [12] is also developed by Hyperic Inc. to monitor
Amazon service and Google App Engine.

However, research work concerned with cloud monitoring is relatively less.
Due to monitoring of cloud systems typically contains three main activities:
collection, dissemination and processing of monitoring information, below we
will focus the discussion of related work on them respectively.

Monitoring Data Collecting: A RESTful approach is proposed in [13] to
monitor and manage cloud infrastructures. Entities in the cloud are modeled
with REST in a tree structure. However, such an organization of monitored
information is suitable for cloud infrastructure, and other entities in the cloud
can not be modeled appropriately. Therefore, in [4], the authors propose a more
universal runtime model for cloud monitoring (RMCM). All the raw monitoring
data gathered by multiple monitoring techniques can be organized by this model
to present an intuitive representation of a cloud.

Monitoring Data Dissemination: There are two basic data delivery mod-
els for communications between consumers and producers: the pull model and
the push model [14]. However, a pure push or pull model is not suited for so
many different kinds of virtualized resources in cloud system. So a hybrid re-
source monitoring model called P&P model is proposed in [2] for cloud system.
Compared with this hybrid model, our extended model PapX can achieve better
suitability and efficiency for cloud monitoring, due to the dynamic UTD and
pull interval based on the theory of temporal locality.

For data dissemination methods, the standards-based QoS-enabled pub/sub
platforms are promising approaches to build and evolve large-scale monitoring

746 X. Lu et al.

systems. As an emergent standard for QoS-enabled pub/sub communication,
DDS [5] attracts more and more attentions in mission-critical distributed real-
time and embedded systems. Compared with the traditional pub/sub platforms,
such as CORBA [15], SOAP [16], JMS [17], DDS perform significantly better
and are well-suited for data-critical real-time systems [18]. Additionally, in [7],
the authors discussed the applicability of DDS for the development of automated
and modular manufacturing systems. As far as we know, we are the first to bring
DDS into the data dissemination for cloud monitoring.

Monitoring Data Processing:Monitoring applications often involves process-
ing a massive amount of data from a possibly huge number of data sources [19].
CEP [6] has evolved as the paradigm of choice to determine meaningful situa-
tions (complex events) for decision making by performing stepwise correlation
over event streams in many domains, such as processing of environmental sensor
data, trades in financial markets and RSS web feeds [19, 20]. In [21], a complex
event language that significantly extends existing event languages to meet the
needs of a range of RFID enabled monitoring applications is introduced first,
then a query plan-based approach and some optimization techniques are used to
efficiently implementing this language.

6 Conclusion

In this paper, an efficient and intelligent monitoring architecture for cloud plat-
form is proposed to deal with the flexibility, scalability and efficiency challenges
of cloud monitoring. In this architecture, an efficient and robust data dissem-
ination framework is implemented to transmit the huge runtime information
reliably with high throughput and low latency based on DDS. An intelligent
cloud action platform is developed to provide decision making support for cloud
management system based on CEP. In addition, an extended comprehensive
data delivery algorithm Papx is also proposed to achieve better balance between
runtime overhead and monitoring capability in this architecture.

Acknowledgment. This work was supported by National Science and Tech-
nology Supporting Program (No.2012BAH06F02, No.2011BAD21B02), Research
Fund for the Doctoral Program by Ministry of Education of China
(No.20110101110066), Science and Technology Program of Zhejiang Province
(No.2011C14004), Zhejiang Provincial Natural Science Foundation of China un-
der grant (No.LY12F02029), and National Technology Support Program under
grant (No.2011BAH16B04).

References

1. Delgado, N., Gates, A., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Transactions on Software Engineering, 859–872 (De-
cember 2004)

An Efficient Data Dissemination Approach for Cloud Monitoring 747

2. Huang, H., Wang, L.: P&P: a Combined Push-Pull Model for Resource Monitoring
in Cloud Computing Environment. In: IEEE 3rd International Conference on Cloud
Computing (2010)

3. White Paper from ManageEngine. Four Keys for Monitoring Cloud Services (March
2010), http://www.manageengine.com

4. Shao, J., Wei, H., Wang, Q., Mei, H.: A Runtime Model Based Monitoring Ap-
proach for Cloud. In: IEEE 3rd International Conference on Cloud Computing
(2010)

5. Object Management Group. Data Distribution Service (DDS) Brief (2011)
6. Wu, E., Diao, Y., Rizvi, S.: High-Performance Complex Event Processing over

Streams. In: SIGMOD 2006, Chicago, Illinois, USA, June 27-29 (2006)
7. Ryll, M., Ratchev, S.: Application of the Data Distribution Service for Flexible

Manufacturing Automation. Proceedings of World Academy of Sciency, Engineer-
ing and Technology 31 (July 2008)

8. Si-Tu, F.: Event-based Monitoring and Management of the Distributed System,
M.Sc. Dissertation, Shanghai Jiao Tong University, Shanghai, P.R. China (2009)

9. Baldoni, R., Bonomi, S., Lodi, G., Querzoni, L.: Data Dissemination supporting col-
laborative complex event processing: characteristics and open issues. In: DD4LCCI
2010, Valencia, Spain (2010)

10. Bry, F., Eckert, M., Etzion, O., Riecke, J., Paschke, A.: Event Processing Lan-
guages. Tutorial in DEBS 2009 (2009)

11. Google App Engine. Google Inc., http://code.google.com/appengine/
12. Cloudstatus. Hyperic Inc., http://www.cloudstatus.com/
13. Han, H., Kim, S., Jung, H., Yeom, H.Y., Yoon, C., Park, J., Lee, Y.: A restful

approach to the management of cloud infrastructure. In: Proc. IEEE International
Conference on Cloud Computing, CLOUD 2009, September 21-25 (2009)

14. Chung, W.-C., Chang, R.-S.: Chang A new mechanism for resource monitoring in
Grid computing. Future Generation Computer Systems 25, 1–7 (2009)

15. Krishna, A.S., Schmidt, D.C., Klefstad, R., Corsaro, A.: Real-time CORBA Mid-
dleware. In: Mahmoud, Q. (ed.) Middleware for Communications. Wiley and Sons,
New York (2003)

16. Abu-Ghazaleh, N., Lewis, M.J., Govindaraju, M.: Differential Serialization for
Optimized SOAP Performance. In: Proceedings of HPDC-13: IEEE International
Symposium on High Performance Distributed Computing, Honolulu, Hawaii, pp.
55–64

17. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Message Service.
Sun Microsystems Inc., Santa Clara (2002)

18. Xiong, M., Parsons, J., Edmondson, J., Nguyen, H., Schmidt, D.C.: Evaluating
the Performance of Publish/Subscribe Platforms for Information Management in
Distributed Real-time and Embedded Systems

19. Poul, N., Migliavacca, M., Pietzuch, P.: Distributed Complex Event Processing
with Query Rewriting. In: DEBS 2009, Nashville, TN, USA, July 6-9 (2009)

20. Volz, M., Koldehofe, B., Rothermel, K.: Supporting Strong Reliability for Dis-
tributed Complex Event Processing Systems. In: Proceedings of 13th IEEE Interna-
tional Conference on High Performance Computing and Communications (HPCC
2011), Banff, Alberta, Canada, pp. 477–486 (September 2011)

21. Wu, E., Diao, Y., Rizvi, S.: High-Performance Complex Event Processing over
Streams. In: SIGMOD 2006, Chicago, Illinois, USA, June 27-29 (2006)

http://www.manageengine.com
http://code.google.com/appengine/
http://www.cloudstatus.com/

	An Efficient Data Dissemination Approach
for Cloud Monitoring
	Introduction
	Efficient and Intelligent Monitoring Architecture for Cloud Platform
	Efficient Data Dissemination for Cloud Monitoring
	Data Dissemination Based on DDS
	Design of the Data Model.
	Design of the Topic Structure.

	Comprehensive Data Delivery Algorithm

	Evaluation
	Experimental Environment
	Experimental Analysis

	Related Work
	Conclusion
	References

