Ensuring Well-Formed Conversations

between Control and Operational Behaviors
of Web Services

Scott Bourne, Claudia Szabo, and Quan Z. Sheng

School of Computer Science
The University of Adelaide, SA 5005, Australia
{scott.bourne,claudia.szabo,michael.sheng}@adelaide.edu.au

Abstract. Despite a decade’s active research and development, Web
services still remain undependable. Designing effective approaches for
highly dependable Web service provisioning has therefore become of
paramount importance. Our previous work proposes a novel model that
separates the service behavior into operational and control behaviors for
flexible design, development, and verification of complex Web services.
In this paper, we further this research with a set of conversation rules
to facilitate the verification of rich conversations between control and
operational behaviors. The rules are specified as temporal logic formu-
las to formally check rich conversation patterns. The proposed approach
is realized using state-of-the-art technologies and experiments show its
feasibility and benefits.

1 Introduction

Web services have been the focus of active research in the past decade [1-4].
Unfortunately, techniques on Web services design and deployment have not
fully matured yet. Recent statistics show that only 28,600 Web services exist
on the We, and many have serious issues such as timeout, dependability and
unexpected behavior, due to market pressures that require ad-hoc deployment
without proper quality assurance. An important challenge remains verifying the
soundness and completeness of a Web service at design time. This permits devel-
opers to identify major design flaws before costly development and will further
the quality of the developed Web service |3, |5, 16].

Towards the verification of Web services at design time, our earlier work has
proposed a novel model that separates the service behavior into control and op-
erational behaviors, allowing for flexible design, development, and verification of
complex Web services [3]. The control behavior guides the execution of the sys-
tem and maintains a transactional state, while the operational behavior defines
the underlying business logic. The conversation between control and operational
behavior is formed by messages that direct the operational behavior and re-
port events to the control behavior. The verification of the Web service can be

! http://webservices.seekda.com

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 507-pI5] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

508 S. Bourne, C. Szabo, and Q.Z. Sheng

thus translated into verifying that the control and operational behavior contain
conversations that are well-formed.

In this paper, we define well-formed conversations between our proposed op-
erational and control behaviors as conversations that start and end properly and
for which several syntactic and semantic properties are met. This provides high
flexibility and facilitates the definition and validation of rich conversations be-
tween operational and control behavior, at design time, before the Web service
is developed. In particular, we propose to ensure well-formed conversations be-
tween control and operational behavior by defining a set of conversation rules,
which ensure that (i) a conversation starts and ends correctly, and (ii) sequences
of message exchange that may lead to deadlock and other undesired properties
are not permitted. The main contributions of our work are as follows:

— A set of conversation rules to facilitate the verification of complex Web
services.

— A service verification approach based on model checking that extracts tem-
poral logic properties from a set of pre-defined rules.

— A prototype implementation that extends our existing set of tools with a
conversation verifier to facilitate the automated verification of Web service
design.

The remainder of this paper is organized as follows. Section [2] presents an
overview of our Web service model for separating operational and control be-
haviors. Section [3] presents the conversation rules. We show how these rules are
transformed to LTL properties in Section M and present an example in Section
Bl Finally, we discuss related work and conlude in Section

2 Background

In this section, we briefly overview our Web service behavior model presented
in [3]. Our model enables a richer description of Web services by abstracting
and separating a Web service’s behavior into control and operational behaviors.
The control behavior is an application-independent model of the state of the
Web service from a transactional point of view, while the operational behavior
represents the business logic that underpins the functionalities of the service. The
execution of the operational behavior is guided by the control behavior, while
events in the operational behavior influence the actions taken by the control
behavior. Interested readers are referred to [3] for more details of this model.

We model the service behaviors using statecharts [7]. Figure [[(a) and (b)
show the control and operational behavior models of WeatherWS, a weather in-
formation retrieval service. The operational behavior states are given meaningful
names to reflect the underlying operations.

To enable inter-behavior communication, we propose a set of message types.
These message types are classified as initiation messages and outcome messages.
Initiation messages are sent from the control behavior for the purpose of directing
the operational behavior, while outcome messages are replies that indicate the

Well-Formed Conversations between Control and Operational Behaviors 509

Syng
e suspencea]-3) o gié g

v
Zipcode
Compensa(ed|4—| Done Chickcd E---§Y5'-°--) Inactive

N Zipcode |Syncreq
Fail Success
received received Sync

received ¢
Collected

Checked

City |Syncreq

A .
Checked H
'

Weather "
> Collection)|i:t|v_a(eﬂ

Report H

Delivered [Succes:

Not

. Acti
Activated ctivated

Longitude/Latitude Weather Report
Conversion Checked | | Collection | | Delivered

City Access
Checked Failed |—>| Cancelled

(b) exception T (C) C: =

Syncreq or
Ping timeouty

(a)

Fig.1. Control (a) and operational behavior (b) of WeatherWS, with interactions

(c).

current state of the operational behavior. The set of initiation messages include
Sync, Delay, and Ping. Sync is used to trigger the execution of the operational
behavior, Delay forces a response following an unacceptable delay, and Ping tests
the liveness of an operational behavior state, triggering a timeout situation when
no acknowledgement is received. Our outcome messages include Success, Fail,
Syncreq, and Ack. Success and Fail indicate the commitment or abortion of the
service. Syncreq requests another Sync to attempt forward recovery following
an internal failure. Ack is used to respond to Ping and confirm the liveness of a
state. The intra-behavior transition labels in Figure[Il(c) shows the inter-behavior
messages required for WeatherWS, while their effect is shown in (a) and (b).

However, guidance is still needed to produce a set of messages that ensure
reliable and semantically correct conversations. We propose a set of rules to
apply to behavior conversations to serve this purpose, as detailed in the following
sections.

3 Conversation Rules

Our message types form conversations describing the execution of a Web ser-
vice. However, there is a potential for invalid sequences, deadlocking situations,
or incomplete sessions. We propose a list of conversation rules to ensure that
behavior conversations are well-formed. We define well-formed conversations as
sequences of messages that are correct, free of deadlock, and express the behav-
ior of a service from invocation to termination. Our conversation rules specify
correct sequences of message types, and ensure that a service is invoked and
terminated correctly.

3.1 Conversation Sessions

Our proposed conversation rules apply to sequences of inter-behavior messages
called conversation sessions. A conversation session is the ordered sequence of
inter-behavior messages sent from the invocation of a service until both behav-
iors reach a termination state, i.e. the End or Compensated state in the control
behavior.

A conversation session can be defined as a sequence of message types of length
n. Each message is expressed as m(t) where m € [Sync, Success, Fail, Syncreq,
Delay, Ping, Ack] and t denotes the order such that ¢ € [1,...,n]. For example:

510 S. Bourne, C. Szabo, and Q.Z. Sheng
Table 1. Conversation Rules

Name Purpose Conversation Rule

CR1 Initial Message 3m € [Sync],m(1)

CR2 Final Messages Im € [Success, Fail, Ping, Syncreq|, m(n — 1)
Vm; € [Sync, Ack],

CR3 Message Sequence dm; € [Success, Fail, Delay, Syncreq, Ping],

Vvt e [0,....,n—1],m;i(t) = m;({t+1)

vt € [0,...,n — 1],

Im € [Sync, Syncreq, Delay, Ping, Ack], m(t)

CR5 Message Sequence Vt € [0, ...,n — 2], Syncreq(t) = Sync(t + 1)

Im; € [Success, Fail, Syncreq|,

vVt €[0,...,n — 1], Delay(t) = m;(t+1)

CR7 Message Sequence 3m; € [Sync, Ack],Vt € [0, ...,n — 1], Ping(t) = m;(t + 1)
Vm; € [Sync, Success, Fail, Ack, Delay, Syncreq],

CR8 Message Sequence Im; € [Sync, Success, Fail, Syncreq, Delay, Ping|,
vt € [0,...,n —1],m;(t) = m;(t + 1)

CR4 Message Sequence

CR6 Message Sequence

— Sync (1) .Syncreq(2) .Sync(3) .Fail(4) is a well-formed conversation ses-
sion. It expresses a complete and deadlock-free execution of the service where
each message logically follows the previous.

However, a lack of rules to ensure well-formed conversation sessions can lead to
deadlocking states or incomplete sessions.

— Sync (1) .Syncreq(2) .Delay(3) is a deadlocking conversation session. The
operational behavior is waiting for a Sync message before if can continue,
while the control behavior is suspended until it receives a reply to Delay.

— Sync(1) .Ping(2) .Ack(3) .Ping(4) .Ack(5) is an incomplete conversation
session, as the execution of the service has not fully terminated.

3.2 Conversation Rule Formalisms

We propose a set of conversation rules to enforce completeness of conversation
sessions and logical message sequences, as shown in Table [Il The message se-
quence rules can be expressed as a series of if-then conditions as follows:

Vm; € Z,3m; € J,Vt € T,m;(t) = m;(t+1)

where Z,J C [Sync, Success, Fail, Syncreq, Delay, Ping, Ack] and T C [1,...,
n — 1]. The set Z identifies a set of message types, and J defines those that can
immediately follow. This revises the formula presented in [3] by allowing rules
to apply to several message types.

Rule CR1 specifies that all conversation sessions must begin with Sync, and
CR2 defines the valid final messages for conversation sessions, ensuring that
the control behavior does not enter a termination state before the operational
behavior has completed. Ping can be the final message of a conversation session

Well-Formed Conversations between Control and Operational Behaviors 511

following an unrecoverable time-out, while Syncreq can be the final message
when another Sync message cannot be sent (such as once a retrial limit has been
exceeded).

Rule CR3 defines the set of valid messages to follow a Sync or Ack message.
Once either of these message types are received, the operational behavior begins
or resumes execution until completion or encountering a problem. This rule
ensures that the control behavior does not send additional Sync messages while
the operational behavior is executing.

Rule CR4 prevents the incorrect use of Success and Fail by specifying they
cannot be used before the final message of the conversation session.

Rules CR5 and CR6 refer to messages that follow Syncreq and Delay mes-
sages respectively. A Syncreq message must only be replied with a Sync message
(therefore it is impossible for Syncreq to be sent at n — 1, as a session cannot
end with Sync). Similarly, a Delay message must be immediately followed by a
Success, Fail or Syncreq message.

Rule CR7 indicates that only a Sync or Ack message may follow a Ping
message. We recall that when a Ping message is sent, either an Ack message is
returned to confirm the liveness of an operational state, or a time-out situation
occurs. In the case of a time-out, a Sync message can be sent to retry the
process. This rule prevents sequences such as Ping(t) .Success(t+1), where
the operational behavior has completed successfully, but the control behavior
is still waiting for an acknowledgement and cannot proceed. Rule CRS8 is also
needed to ensure that Ack can only follow Ping.

The conversation rules also imply other desirable properties, such as prevent-
ing the same message type to be sent consecutively, and ensuring every Sync
message eventually receives an outcome message (Success, Fail or Syncreq),
excepting a time-out. By defining initial messages, final messages, and valid
message sequences, our proposed rules set can ensure complete and correct con-
versation sessions.

4 From Conversation Rules to Temporal Logic

To formally verify a service design against our conversation rules, we explore the
use of model checking [§] to ensure conformance to pre-defined temporal prop-
erties describing our proposed rules. We use Linear Temporal Logic (LTL) [9]
for this purpose. LTL expresses properties of a system model over a linear and
discrete timeline by using temporal operators over model variables.

While our conversation rules can be applied to a simple sequence of message
types, the LTL properties must apply to a complete service model. This poses
two challenges when producing LTL transformations. Firstly, the complexity of
the service model can cause state delays between certain inter-behavior mes-
sages. Secondly, there is a need to extract the state of the conversation session
from the service model. To address these issues, the LTL properties consider po-
tential message delays where appropriate and use a set of proposed conversation
variables.

512 S. Bourne, C. Szabo, and Q.Z. Sheng

Table 2. Conditions for Message Processing

Message Processed Condition

Sync The operational behavior begins or resumes execution.

Success, Fail The control state transitions from the Activated state.

Syncreq A Sync message is sent in reply or a termination state is entered.
Delay A Success, Fail or Delay message is sent in reply.

Ping An Ack message is sent in reply.

Ack Automatically processed in the following state.

Table 3. LTL Transformations of Conversation Rules

CR1 (IM = nil AOM = nil) U (IM = Sync A I[P = FALSE A OM = nil)
O((((IM = Sync vV IM = Delay) A IP = FALSE) V (OM = Ack A OP = FALSE))

CR2
— O((OM # Ack AOP = FALSE) Vv (IM # Sync A IM # Delay A IP = FALSE)))

O(((IM = Sync A IP = FALSE)V (OM = Ack A OP = FALSE))
— O (IP=TRUE AOP = TRUE) vV

CR3 X

((IP=FALSE N (IM = Ping V IM = Delay)) V

(OP = FALSE N (OM = Success V OM = Fail V OM = Syncreq)))))
CRA O((OM = Success) - O (OM = Success N\OP =TRUE NIP =TRUE))

O0((OM = Fail) - O (OM = Fail AOP = TRUE A IP = TRUE))
O((OM = Syncreq - O(OM = Syncreq AOP = TRUE ANIP = TRUE)) V
CR5 ((OM = Syncreq AN OP = FALSE) - O((OM = Syncreq A OP = FALSE) V
(OP = TRUE A IM = Sync A IP = FALSE))))
O((IM = Delay A IP = FALSE) — O((IP = Delay A IP = FALSE A OP = TRUE) V

CR6
(IP=TRUEANOP = FALSE A (OM = Fail V OM = Success V OM = Syncreq))))

O((IM = Ping A IP = FALSE)
CR7 — O (IP=FALSEAOP =TRUE A (IM = SyncV IM = Ping)) V
(OM = Ack AOP = FALSE A IP = TRUE)))
O(OM = Ack AOP = FALSE) — (IM = Ping A I[P = TRUE))
O(OP = FALSE) - O—~(OM = Ack A OP = FALSE))

CR8

The LTL transformations of our conversation rules utilize temporal operators
over four proposed variables to express the conversational state. Initiation and
outcome message are denoted by the variables IM and OM respectively. Both
variables are initialized at nil. We also propose two boolean variables, IP and
0P to indicate when their corresponding message is active or processed. Their
values are set to FALSE upon sending and TRUE after processing. The processing
conditions for each message type is shown in Table 2l We employ the following
operators over these conversation variables: () for the next state, & for at least
one future state, O for all states, and U for one property to hold until another
is met.

Table [B] shows the LTL transformations of the conversation rules. The trans-
formations of some rules, CR1 and CR4, are straightforward. We enforce CR2
by ensuring at least one valid final message always follows a non-final message.

Well-Formed Conversations between Control and Operational Behaviors 513

Delays of several states can potentially occur following Sync, Ping, Syncreq,
and Ack. Therefore, the transformations of rules CR3, CR5, CR6 and CR7 allow
unchanged conversational states as one valid next state. Rule CR8 requires two
LTL properties to express; one to ensure that Ping is the initiation message to
precede Ack, and another to prevent outcome messages between Ping and Ack.

These LTL properties can be used to verify a complex service designed as
control and operational behaviors, by ensuring it only produces well-formed con-
versation sessions. A service design can be checked against the rules by creating
a model that contains our message variables and using a model checking tool to
verify that none of the rules are violated.

5 System Implementation and Validation

We implemented the approach proposed in this paper by extending our existing
prototype system for the design and verification of Web services. Our system
is implemented in Java and uses state-of the art technologies such as XML,
SOAP, WSDL, and model checking. Users can access the system via the user
interface shown in Figure[2l to compose, verify and execute complex services as
interacting control and operational behaviors. The NuSMV model checker [@]
is used to verify service designs within this system. The prototype enables a
service design to be transformed into the input language of NuSMV, and then
verified for conformance to the LTL transformations of our conversation rules.
The prototype is an extension of the system in B]

To evaluate our proposed approach, we conducted experiments using the
implemented prototype and the WeatherWS example shown in Figure [l The
control behavior, operational behavior, and inter-behavior conversations were
modeled in SMV, the input language of NuSMV. We applied the NuSMV model

Fle Edt View Create Amange Generation Critique Tools Help

|Bjs|B/B8 B EE A BREBDHB BB

il ri1[elel~olel (@@ oo+ +0e ¢-lu-- 26 » N~

Access I
¢ B untitedmtodel [4] |

Class Diagrd NotActvated s
& commitment]
& Compeletion| Received
& Compensati{

e i

o 7items {(*4ToDoltem | 4 Properties | 4 Documentation | & Presentation | Source | 4 Storeotype | & Tagged Values | 4 Checkist

EIHigh = Transiton [16> - (161 0 - [o [@ Source: |© Received (unitiediodel nul-top!
¢ E3 Medium Target © ttineranReceived [untiledhodel null-top]

DaRevise pa) [Name: Trigger | Sicluntitegtiosei

D2 Name Cor (Statemachine &2 (unnamed StateMachine) untitiedodel] Guard

3 Reduce st (State Etect

DiRemoveT| (Ouiput [Nexi(Receved fineranReceived, Arinelnvoked, AifineResSuccess, 0, Hotelinvoke] | 1

D Remove T I q irineinvoked, Inito, Vehiclelnvol
DiRemove € [checking s started detecting error

Sow (Checking conversation message control > operational

(Correct correctnter-transitons from control behavior to operalofal behaviors: Recel

i1

o
Authorized-Actvit-Time: [0 Seconds
Authorized-Passivit-Time{50 Seconds
Required-Participants: (D3
Eflecive-Actvity-Time:

onversation messages operational — confrol Eflectve-Passiy-Time:
eralional benaviorlo control behavior nerand
rror insufficient esponse message fom operslional behaviorto contol benavior.Ca

|| status:

TR T
T3 [ctons: [Received [~| spec [Recomed [_Mext Ping Ciear Mody

Fig. 2. Specifying Service Behaviors

514 S. Bourne, C. Szabo, and Q.Z. Sheng

checker to verify that the conversational behavior of this model does not vio-
late any of the LTL properties produced in Section 4. We verified ten testcases
with artificially introduced errors. If any of the properties are violated by the
model, NuSMV produces a state sequence that leads to the contradiction. Our
SMV transformation of WeatherWS as it appears in Figure [l satisfied the set of
conversation rules.

6 Discussion and Conclusion

The verification of Web service behavior remains an important challenge despite
active research and development over the last decade. Our work facilitates the
flexible verification of Web services at design time by modeling Web service
behavior as a conversation between an operational behavior that defines the
underlying business logic of the system, and an application-independent control
behavior that guides the execution of the operational behavior. We propose a set
of conversation rules that are specified as temporal properties and verify using
a model checker.

Most existing work on Web service conversation modeling has focused on the
interactions between a deployed service and a client. Technical specifications
have been proposed to express the conversational requirements of a complex
service as part of an interface |4, [11]. In contrast, we apply temporal logic and
model checking to ensure that all possible conversations follow a set of rules
for correctness and completeness. In a similar effort, Kova et al. [12] study the
mapping between the control and operational behaviors and also propose to
verify the conversations using LTL properties and the NuSMV model checker.
In their approach, the behaviors are merged into a single model that express
the possible flow of control states. Model checking is used to verify that the
transitions between operational states do not violate transitions defined in the
control behavior model. Our work differs by defining message types and rules
for the communication between the two behavior models. By using messages
that can dictate the transitions between states in both models, we are able to
model a wider range of transactional behavior (such as pinging operations and
responding to delays).

Future work includes expanding the applicability of the control and opera-
tional behaviors by including handling for more sophisticated workflow patterns
such as iteration and parallel execution. We will also consider to include context
information in conversation rules, such as considering the temporal properties
of failed operations when attempting corrective action via the control behavior.

References

1. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and Managing Web Ser-
vices: Issues, Solutions, and Directions. The VLDB Journal 17(3), 537-572 (2008)

2. Vieria, M., Laranjeiro, N., Madeira, H.: Benchmarking the Robustness of Web
Services. In: Proceedings of the 13th International Symposium on Pacific Rim
Dependable Computing (2007)

10.

11.

12.

Well-Formed Conversations between Control and Operational Behaviors 515

Sheng, Q., Maamar, Z., Yahyaoui, H., Bentahar, J., Boukadi, K.: Separating Oper-
ational and Control Behaviors: A New Approach to Web Services Modeling. IEEE
Internet Computing 14(3), 68-76 (2010)

Benatallah, B., Casati, F., Toumani, F.: Web Service Conversation Modeling: A
Cornerstone for E-Business Automation. IEEE Internet Computing 8(1) (2004)
Bhiri, S., Perrin, O., Godart, C.: Ensuring Required Failure Atomicity of Com-
posite Web Services. In: Proceedings of the 14th International World Wide Web
Conference, pp. 138-147. ACM (2005)

Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: A Framework for Fault-tolerant
Composition of Transactional Web Services. IEEE Transactions on Services Com-
puting 3(1), 46-59 (2010)

Harel, D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Trans-
actions on Software Engineering and Methodology 5(4), 293-333 (1996)

Clarke, E.M.: Model Checking. In: Ramesh, S., Sivakumar, G. (eds.) FST TCS
1997. LNCS, vol. 1346, pp. 54-56. Springer, Heidelberg (1997)

Emerson, E.: Temporal and Modal Logic. In: Handbook of Theoretical Computer
Science, vol. 2, pp. 995-1072 (1990)

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359-364. Springer, Heidelberg (2002)

Ardissono, L., Goy, A., Petrone, G.: Enabling Conversations with Web Services. In:
Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 819-826. ACM (2003)

Kova, M., Bentahar, J., Maamar, Z., Yahyaoui, H.: A Formal Verification Approach
of Conversations in Composite Web Services using NuSMV. In: Proceedings of the
Conference on New Trends in Software Methodologies, Tools and Techniques, pp.
245-261. IOS Press (2009)

	Ensuring Well-Formed Conversations between Control and Operational Behaviors of Web Services
	Introduction
	Background
	Conversation Rules
	Conversation Sessions
	Conversation Rule Formalisms

	From Conversation Rules to Temporal Logic
	System Implementation and Validation
	Discussion and Conclusion
	References

