
Configuring Private Data Management as Access

Restrictions: From Design to Enforcement

Aurélien Faravelon1, Stéphanie Chollet2, Christine Verdier1, and Agnès Front1

1 Laboratoire d’ Informatique de Grenoble,
220, rue de la chimie, BP 53 F-38041 Grenoble Cedex 9

{aurelien.faravelon,christine.verdier,agnes.front@imag.fr}@imag.fr
2 Laboratoire de Conception et d’Intégration des Systèmes

F-26902, Valence cedex 9, France
stephanie.chollet@lcis.grenoble-inp.fr

Abstract. Service-Oriented Computing (SOC) is a major trend in de-
signing and implementing distributed computer-based applications. Dy-
namic late biding makes SOC a very promising way to realize pervasive
computing, which promotes the integration of computerized artifacts into
the fabric of our daily lives. However, pervasive computing raises new
challenges which SOC has not addressed yet. Pervasive application re-
lies on highly dynamic and heterogeneous entities. They also necessitate
an important data collection to compute the context of users and pro-
cess sensitive data. Such data collection and processing raise well-known
concerns about data disclosure and use. They are a brake to the devel-
opment of widely accepted pervasive applications. SOC already permits
to impose constraints on the bindings of services. We propose to add
a new range of constraints to allow data privatization, i.e. the restric-
tion of their disclosure. We extend the traditional design and binding
phases of a Service-Oriented Architecture with the expression and the
enforcement of privatization constraints. We express and enforce these
constraints according to a two phases model-driven approach. Our work
is validated on real-world services.

Keywords: Access restriction, SOA, workflow, private data.

1 Introduction

Service-Oriented Computing (SOC) is a major trend in designing and imple-
menting distributed computer-based applications. Applications are implemented
by composing already existing functionalities called services which exposed over
networks such as the Internet. Services are loosely coupled and SOC thus pro-
motes the distinction between the design of the composition and its execution.
Indeed, the application is designed without knowing which services will actu-
ally be available. The application is then executed by invoking and binding the
necessary services among the set of available services.

Dynamic late biding makes SOC a very promising way to realize pervasive
computing, a new paradigm which promotes the integration of computerized

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 344–358, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Configuring Private Data Management as Access Restrictions 345

artifacts into the fabric of our daily lives. Pervasive computing relies on dis-
tributed and highly heterogeneous and dynamic entities. Sensors, softwares or
devices are such entities. Their composition is crucial to build efficient and in-
novative applications. Pervasive applications have to be flexible and adaptive.
Exposing functionalities as services, distinguishing the application’s design from
its execution and realizing the application by binding the actual services meet
these requirements.

However, pervasive computing raises new challenges which SOC has not ad-
dressed yet. Pervasive computing necessitates an important data collection. Col-
lecting the location of users who interact with the application, for instance, is
necessary to identify their contexts of use. Using pervasive computing thus means
sharing data which flow in the application - such as medical files or credit ap-
plication - and disclosing data about the users of the composition. As sensitive
data can be derived from seemingly inoffensive pieces of data, these two groups
of people can be modeled in details. Such a possibility raises well-known concerns
about data disclosure and use. They are a brake to the development of widely
accepted pervasive applications. As a result, there must exist a mechanism to
constraint data disclosure.

SOC already permits to impose constraints on the bindings of services. We
propose to add a new range of constraints to allow data privatization, i.e. the
restriction of their disclosure. Privatization constraints bear on what an observer
external to the composition can deduce from the binding of services, on what a
client can ask a service provider about and on what a service provider can ask
a client about.

We extend the traditional design and binding phases by allowing the expres-
sion and the enforcement of privatization constraints. We express and enforce
these constraints according to a two phases model-driven approach:

– At design level, we extend a composition language with a platform indepen-
dent privatization language to express privacy constraints which must be
enforced at binding time. Privacy designers can use this language to express
privatization constraints.

– At binding time, automatic model-to-text transformations inject the appro-
priate code to enforce privatization constraints in a Service-Oriented Archi-
tecture (SOA). We modify the SOA to store the information necessary to
enforce access restriction.

The paper is structured as it follows. In Section 2, we introduce a global overview
of our approach. We detail our design level in Section 3 and the execution level
in Section 4. Eventually, we validate our approach in Section 5 before discussing
the works related to ours in Section 6 and concluding in Section 7.

2 Global Approach

Our goal is to ease the design and implementation of privacy-aware pervasive
applications realized as compositions of heterogeneous and dynamic services.

346 A. Faravelon et al.

We propose a model-based approach where security properties related to private
data management as access restriction are specified at design time. These prop-
erties are realized through code generation at binding time depending on the
available services.

Because of the inherent heterogeneity and dynamism of services, access restric-
tion is a problem throughout the entire application’s life-cycle. Services that are
actually used at runtime are generally not known at design time. Their access
restrictions capabilities cannot be predicted or relied on. Furthermore, design
time involves non-technical stackeholders who cannot make sense of technical
minutes.

We have designed and connected two platform-independent views, a service
composition one and an access restriction one. From these views and their rela-
tionships, we automatically generate an executable privacy-aware service com-
position as shown on Figure 1.

Fig. 1. Background of our proposition

Composition and access restriction are specified at design time. We are driven
by two principles: abstraction and separation of concerns. Modeling allows us
to abstract away technical details and separation of concerns permits to accom-
modate different viewpoints of the same application. Privacy experts can design
the privacy policy.

At binding time, the application is realized as a service orchestration. Access
restriction features are injected through the generation of a proxy for each service
instance. We have also developed an identity manager which deals with users
privileges and a context manager which handles contextual information retrieval
and processing.

Configuring Private Data Management as Access Restrictions 347

3 Design Level

Figure 2 displays the service composition and the access restriction metamodels
and their relationships.

Fig. 2. Relations between Service Composition and Access Control Metamodels

3.1 Service Composition Metamodel

Our approach regarding service composition builds on the Abstract Process En-
gine Language (APEL) [5]. As visible at the top of Figure 2, APEL is a high
level process definition language. We chose APEL because it natively supports
any type of service when other process languages, such as WS-BPEL, are dedi-
cated to a specific technology. It contains a minimal set of concepts sufficient to
specify a process:

– An Activity is a step in the process that results in an action, realized by
a human or a computer. Activities can be made of sub-activities; they are
then said to be composite. An activity has Ports representing communication
interfaces. An Activity must be realized by a User.

348 A. Faravelon et al.

– A Product is an abstract object that flows between activities. Dataflows
connect output ports to input ports, specifying which product variables are
being transferred between activities.

– An Abstract Service can be attached to an activity. It represents a type of
service to be called in order to achieve the activity.

Specifically, an Abstract Service is a service specification retaining high level
information and ignoring as many implementation details as possible. Our model
defines an abstract service in the following terms:

– A signature defining the identifying name of the service, its inputs and out-
puts in terms of products.

– Possibly, technology-specific information. This part corresponds, for instance,
to WSDL extracts for Web Services or SCPD extracts for UPnP services. Ex-
tracts only contain implementation-independent information. For instance,
no address is provided, contrarily to complete WSDL descriptions.

Providing technology-specific information means that the service technology is
chosen before hand by designers, which is actually frequently the case. This
information is useful since it permits to generate a better and leaner code.

3.2 Privacy Metamodel

We hold that private data management can be efficiently modeled as access
restriction. As visible on the bottom of Figure 2, users design access restriction
rules.

Specifically, a rule gathers:

– A Subject i.e. a user or a software agent that acts in the application. Subject
are categorized in SubjectRoles according to their position in an organization.

– An Object i.e. any entity a Subject can affect. Objects can be categorized
according to their functionalities for instance according to ObjectRoles. Each
Object has an owner and a type. The owner is responsible for managing the
access to their data.

– An Action i.e. an access mode to an Object.

– A Right i.e. the modality of a Subject ’s relation to an Action. Rights are
divided into permissions, obligations and prohibitions, they apply to Subjec-
tRoles and ObjectRoles.

Several Access Control Rules may apply to the same set of Actions, ObjectRoles
and SubjectRoles. Access Control Rules are conditioned by:

– Context i.e. a situation defined by a constraint over the values of a set
of Objects. The Context entity captures the specificity of pervasive access
restriction. A Context indicates for which purpose the access restriction rule
is satisfied. A purpose is the reason why an Action is performed.

Configuring Private Data Management as Access Restrictions 349

– The satisfaction of a workflow security patterns. We accomodate two of them,
separation and binding of duties. Both of them restrict the number of Sub-
jects that can intervene in a group of Action and the number of Action each
Subject can perform. We gather these constraints under the name Workflow
Constraints. They are defined by the maximum amount of Actions a set of
Subjects can perform in a group of Actions.

Managing rules conflict is important to ensure the consistency of the privacy
policy. Each rule is associated with a priority level. The rules with the highest
priority win over the ones with lowest levels. When several Access Control Rules
apply to the same set of Actions, ObjectRoles and SubjectRoles, these rules can-
not share the same conditions. Eventually, when a permission or an obligation
and a prohibitions are conflicting, the prohibition always takes the precedence.

3.3 Logical Semantics

Having described the basis of our access restriction model, we now integrate
them in order to allow the computation of privatization policies.

We have focused on Compositionsas a temporally ordered flow of Activities,
i.e. the activation of Roles by Subjects. This can be seen as a model of Compu-
tational Tree Logic CTL, [6]. CTL relies on a tree-like structure suitable for work-
flows where a moment can lead to several others. For example, from an Activity,
another Activity, or an error can follow, leading to two different ends of the pro-
cess.

Quantifiers to express that an access restriction rule bears on a single moment
or on all of them are thus needed. We note A if all the moments are involved
and E if only one of them is. CTL relies on temporal operators to indicate that
a clause must be always (noted �), or sometime (noted ♦) true or that it must
be true until the next moment (noted ©) or until a moment in general (noted
u). Past CTL, PCTL [9], adds S, since, X−1, previous and N , from now on.

We have previously emphasised three modalities of Rights. We note the
Permission of doing something P and the Obligation O.

The syntax of our logical language in BNF, with φ and ψ, two access restriction
policies is as follows:

φ, ψ := ¬φ|p|φ ∧ ψ|(A|E)�φ|(A|E)♦φ|(A|E)© φ|(A|E)φuψ|Sφ|X−1φ|Nφ|
Pφ|Oφ

Computability. At binding time, evaluating the access restriction policy to
determine a user’s right, can be seen as a model-checking problem. We specify
access restriction rules and Flow Constraintswith logical propositions that are
built as Kripke structures [11]. We define a satisfaction relation |= between the
policies φ and ψ and a Composition C. A Composition can be run, i.e. a set
of Activities can be performed by a set of Subjects on a set of Resources
under a certain Context, if and only if C |= φ, ψ.

350 A. Faravelon et al.

Let C = (a0, a1, ..., an) where each ai is an action, i.e. a tuple of the form
<context, right, subject, object>. Then, C |= φ if and only if (C, |C|) |= φ, ψ. C
is defined by structural induction on φ and ψ as:

(C, i) |= p iff p ∈ ai
(C, i) |= ¬φ iff (C, i) �|= φ
(C, i) |= φ ∧ ψ iff (C, i) |= φ and (C, i) |= ψ
(C, i) |= E© φ iff (C, i + 1) |= φ
(C, i) |= Eφuψ iff there exists k ≥ 0 s.t. (C, i + k) |= φ

and (C, i + j) |= ψ for all k>i ≥ 0
(C, i) |= Aφuψ iff for all an there exists k ≥ 0 s.t. (C, i + k) |= φ

and (C, i + j) |= ψ for all k>i ≥ 0
(C, i) |= X−1φ iff n>0 and (C, i − 1) |= φ
(C, i) |= φSψ iff there exists k ≥ n s.t. (C, k) |= φ

and (C, i) |= ψ for all k<i ≤ 0 (C, i) |= Nφ iff an |= φ

3.4 Linking Service Composition and Access Control Views

When designing an application from multiple points of view, three problems
must be addressed [16]. First, the metamodels must be related in order to build
complete specifications. Then, views must be synchronized i.e. a mechanism
must be provided to preserve coherency between views at execution. Relation-
ships between the service composition and the access restriction metamodels are
displayed on Figure 2.

Two points are of foremost interest: the classes to link in each metamodel,
and the cardinalities of their relations. In the access restriction view, we define
an Action as an access mode to an Object. In the process view, we define an
Activity as an operation on a Product. In order to compose the two views, we
thus express that an Action is a specific type of Activity constrained by access
restriction rules. The Action class thus inherits from Activity. The same stands
for Objects in the process view, that are specific Products to which access is
restricted.

Views are designed in conformity with their metamodel. Views are then com-
posed according to the inheritance defined between the metamodels: each activ-
ity in the process specification is refined into several possible actions constrained
with access restriction rules defined in the access restriction view.

4 Execution Level

At runtime, available services cannot be trusted because they may not enforce
access restriction. We secure an heterogeneous and dynamic composition in two
steps:

– Before execution, orchestration code and access restriction insertion code are
generated from each view’s specifications. To synchronize the view, insertion
points of access restriction code in the orchestration are identified.

Configuring Private Data Management as Access Restrictions 351

– At execution time, the access restriction code is inserted between the orches-
trator and the available services.

Figure 3 displays the execution of a pervasive orchestration secured by access
restriction. When a new service is discovered by the execution machine, a se-
cured proxy is generated and registered in the registry. Thus, the registry only
contains secured Web-Services and the orchestrator cannot directly access unse-
cured services. Consequently, the composition cannot be executed without access
restriction enforcement.

Access restriction enforcement relies on three components. The Decision Point
evaluates the access restriction policy for a user and a given context. The Con-
text Manager stores the path to contextual information sources such as users’
smartphones or the composition’s log file. The Identity Manager stores the roles
of users and their identity.

When a secured proxy is invoked, it calls the access restriction Decision Point.
The proxy provides the Decision Point with the current user’s name and the cur-
rent Activity’s name. The Decision Point retrieves the user’s privileges from the
Identity Manager and the necessary contextual information from the Context
Manager. It then checks the access restriction policy according to the retrieved
information and provides the secured proxy with a decision. The access restric-
tion policy is composed of the global access restriction policy defined at the
level of the composition and the restriction imposed by the concerned data own-
ers. If the user is allowed to access the current activity, the secured proxy in-
vokes the available service it protects. Otherwise, it rejects the invocation. Each
communication between the proxy and the other components is secured with
authentication.

Generating an Executable Access Control Policy. The Decision Point
checks an executable access restriction policy derived from a process specifica-
tion and its associated access restriction requirements. We generate the access
restriction rules that apply to each Action and their temporal ordering from the
designer’s specifications. We gather all these information into an executable ac-
cess restriction policy represented as an XML file. The access restriction policy
is expressed according to the following grammar represented in Backus-Normal
form, where S is a Subject, SR a Subject Role defined by a set of Constraints
Cs. OR an Object Role defined by a set of Constraints Co and O an Object.
SRA refers to the activation of a Subject Role by S, and ORA, the activation
of an Object Role by O.

SR := Cs+

OR := Co+

SRA := (SasSR)+ ORA := (OasOR)+

An Action A, performed by a Subject S, playing the Role SR, on the Object O,
playing the Role OR, under the Context Ctx with the Right R is represented in
BNF as:

A := Ctx (R (SRAORA))

352 A. Faravelon et al.

Fig. 3. Execution of a Secured Composition of Services

A Process consists in a temporally ordered flow of Activities. A Process P is
represented in BNF as:

P := A+

One or several Workflow Constraint P , i.e. Separation of Duties and Binding of
Duties can be added to the composition. Such a constraint is represented by the
following boolean constraint where MaxS is the maximal amount of Subjects
allowed to perform MinA, a minimal number of Activities:

P →MaxS and MinA

We see a Process as a temporally ordered flow of Activities, i.e. the activation of
Roles by Principals. This can be seen as a model of Computational Tree Logic
CTL, [6], an executable logic which holds a tree-like structure of time. Each node
of the three is an action and we can specify the lifetime of its associated access
restriction rules according to five temporal operators, until the next activity,
until an activity in general, since an activity, since the previous activity and from
now on.

Identifying Insertion Points and Enforcing Access Control at Execu-
tion. At execution, each Activity is realized by a service. Each available service

Configuring Private Data Management as Access Restrictions 353

is secured as it registers to the service registry by a proxy. This step is compara-
ble to the compilation of the access restriction and the composition model for a
specific platform. The proxy is built at runtime according to the target service
through code generation from a template. Each template is parametrized by a
set of variables such as the endpoint to call or the service’s implementation. Each
variable is set with values from the actual service to protect. We rely on Java
Emitter Templates (JET) to perform code generation. Figure 4 shows a snippet
of a JET for a secured proxy implemented as a Web Service.

Fig. 4. Extract of the proxy.javajet file

The proxy is itself a Web-Service and is thus transparent for the composition.
As a consequence, our approach is independent from a specific platform or spe-
cific service type. The proxy acts as an access restriction enforcement point. To
do so, Figure 4 shows that the proxy intercepts the invocation and asks the De-
cision Point to check if the current user is allowed to access the current activity.
If and if only so, it invokes the service it protects.

We have adopted a centralized approach: the orchestrator is a centralized en-
tity. However, for scalability reasons, the identify manager, the context manager
and the decision point can be replicated.

5 Validation

In order to validate our approach, we have developed an environment to model
and execute a privacy-aware service composition secured by access restriction.
This tool is a significative extension of the FOCAS orchestrator [5]. In this
Section, we present its use and the results of our approach.

354 A. Faravelon et al.

5.1 Design Level: Modeling Environment

The first part of the tool is dedicated to modeling compositions from multi-
ple points of views. Functional experts can outline composition as processes by
drawing activities, the links between them and the products that flow from one
activity to another. The tool can also be used by privacy designers to visualize
the data flow in the composition and the context-sensitivity of each activity in
order to restrict data disclosure.

For each activity, access restriction rules can be defined. Figure 5 shows a
snapshot of our tool for the alert management process.

Fig. 5. Snapshot of our modeling environment

Each activity is associated to a set of property tabs which permit to edit its
functional properties and the access restriction properties. Our tool permits the
synthesis and the abstraction of process and access restriction views. Security
experts and data owners can thus restrict object flows. We represent the exe-
cution of access restriction as a composition of dedicated services. Data owners
can thus restrict the access to contextual data necessary to compute and access
restriction decision.

Our tool allows several stakeholders to work together at various points of
the composition’s lifecycle. Moreover, it has two major advantages. First, as
all models instantiate our domain specific modeling language and their links,
specifications are de facto valid and coherent. Then, the tool provides a global
view on the composition while allowing to define access restriction rules at service
level. Temporal logic is hard to handle, especially when users are not familiar
with such languages. Our tool presents time ordering of activity as a process,
an intuitive representation. Temporal operators are derived from the process
structure.

Configuring Private Data Management as Access Restrictions 355

5.2 Binding Time: Execution Environment

At runtime, we add computation time dedicated to proxy generation and access
restriction enforcement. We analyze this extra cost for four services in our service
composition.We have constrained four activities with privatization constraints
and we have secured a service for each activity. Services 1, 2 and 3 can only be
accessed if the user is in a specific location and possesses a specific role. Service
4 is constrained with the same properties to which we had a constraint on the
hours shifts it can be accessed. The client requesting the access to Service 4 must
be on duty. The client’s work schedule must thus be checked. Figure 6 displays,
for each service, the duration of the service call, of the proxy generation and of
access restriction enforcement.

Fig. 6. Overhead Entailed by our approach

The proxy generation time is stable. It is caused by the parsing of the de-
scription of the unsecured service (such as a WSDL file) and the generation of
the proxy with the JET template. The generation only happens once when the
service registers to the service registry.

This analysis shows that access restriction enforcement takes at least 1% and
at most 8% of the execution time of a service secured by our method. This
time encompasses the retrieval of contextual data and, the processing of an
access restriction decision and its enforcement. In formal terms, verifying a rule
entails a small cost of O(|C| ∗ |φ|) where |C| is the size of the current achieved
composition and |φ| the access restriction rule’s size, i.e. the number of literals

356 A. Faravelon et al.

and operators in a rule. As a result, we can expect access restriction enforcement
time to remain small throughout the execution of a secured composition.

6 Related Works

In [4] [14], the authors propose to specify security properties such as audit or
encryption at design time and enforce them at runtime. In comparison, we focus
on modeling and enforcing private data management as access restriction.

Privacy-oriented languages, such as the Enterprise Privacy Authorization Lan-
guage (EPAL) and the Platform for Privacy Preferences (P3P) use access control
concepts. Most access control models rely on the notions of Principals, Cate-
gories, Actions and Permissions [1]. Principals gather users, software agents
and resources. They may belong to several Categories, that can be composed to
refine them, and the Permissions are granted to these Categories for the perfor-
mance of a set of Actions. The Role-Based Access Control (RBAC) model [7], for
instance, categorizes Users according to Roles which express jobs or positions
in an organisation. Permissions are attributed to Roles, which are stable i.e.
organizational categories. The Attribute-Based Access Control model (ABAC)
is another promising way of modeling access control. In order to obtain Rights,
a User must exhibit a set of attributes with the correct values. This approach is
suitable for pervasive access control.

However, the ABAC policies are not as readable as the RBAC ones as roles
clearly architecture the policies. Moreover, EPAL is only a proposition and is
not widely supported. P3P has been abandoned due to a lack of support and
accessibility by non-technical users. A usable privacy-oriented language is thus
yet to come.

Languages, such as the eXtensible Access ControlMarkup Language (XACML)
or the WS-Policy permit to express access control. However, they are specific to a
type of service implementation, Web Services for application integration. Several
works use these languages to model access control at process level. [17] annotate
process specifications with access control constraints fromwhich they generate ac-
cess control code. However, [17] proposes to generate XACML access code without
addressing its execution when access control is known to influence the architecture
of an application [13]: XACML, for instance, relies on a dedicated architecture. In
contrast, we implement specific components to maintain the data related to access
restriction enforcement.

Many works which focus on securing an executable application or service com-
position [3] [15] [10] [2] are dedicated to a service implementation or make strong
assumptions on the access control capabilities or the availability of services. Het-
erogeneity is then still a brake to the development of service compositions secured
by access control. The UPnP standard, for instance, defines no access control
mechanism for UPnP aware devices. The dynamism of services is another chal-
lenge. Several works extend the Business Process Execution Language (BPEL)
with access control features [12] [8]. Thus, they suppose they already know the
service to invoke. It is not necessarily the case in a pervasive environment.

Configuring Private Data Management as Access Restrictions 357

In contrast, we promote a platform-independent specification of access control
and service composition. High level concepts can be easily grasped by non tech-
nical people. We automatically transform this specification into an executable
secured process at runtime, according to the available service. We also investi-
gate in depth the impact of access control on the composition’s architecture by
building components dedicated to access control enforcement.

7 Conclusion

In this paper, we have addressed the issue of designing and executing privacy-
aware service compositions for pervasive applications. We have introduced a
model-driven approach to the production of such compositions. We have under-
stood privacy-awareness as private data management throughout the composi-
tion. We have provided a high-level language to privatize data, i.e. to express this
management as access restriction. The validation on real world services shows
that access restriction can be captured at design time in an abstract way. At
runtime, the extra computation time entailed by access restriction enforcement
remains reasonable.

Late code generation addresses the heterogeneity and the dynamism of actual
services. Our experience shows that metamodeling is a demanding task. Iden-
tifying the necessary concepts to specify access restriction, for instance, is long
and cumbersome. The same can be said of the creation of templates for each
target service technology. However, the benefits of our approach overstep these
difficulties. Metamodeling and building up templates allow knowledge capital-
ization. It also permits to obtain generic specifications, what is important in a
highly heterogeneous envrionment. Focusing on non-technical concepts permits
to integrate a wide range of stakeholders to an application’s lifecycle and to build
up early a coherent and extensive access restriction policy.

Finally, our approach calls for several future works. First, in term of access
restriction, we have posited that a single designer designed the entire policy. For
legal reasons, we may need data subjects to express their privacy preferences.
As a result, we are currently exploring the distributed administration of the
privacy policy. Second, our work is going to be validated in the frame of the
INNOSERV project by the French research agency. Then, the spirit of our ap-
proach can be applied to other non-functional properties. When the metamodels
of non-functional properties do not overlap with the composition metamodel,
the adequacy of our proposition remains. Our future works will be dedicated to
adding extra non-functional properties to service compositions.

References

1. Barker, S.: The next 700 access control models or a unifying meta-model? In: Pro-
ceedings of the 14th ACM Symposium on Access Control Models and Technologies,
SACMAT 2009, pp. 187–196. ACM, New York (2009)

358 A. Faravelon et al.

2. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: from UML Models
to Access Control Infrastructures. ACM Transactions on Software Engineering and
Methodology 15, 39–91 (2006)

3. Carminati, B., Ferrari, E., Hung, P.: Security Conscious Web Service Composi-
tion. In: International Conference on Web Services (ICWS), pp. 489–496. IEEE
Computer Society, Los Alamitos (2006)

4. Chollet, S., Lalanda, P.: Security specifcation at process level. In: SCC 2008: Pro-
ceedings of the 2008 IEEE International Conference on Services Computing, pp.
165–172. IEEE Computer Society, Washington, DC (2008)

5. Dami, S., Estublier, J., Amiour, M.: APEL: A Graphical Yet Executable Formalism
for Process Modeling. Automated Software Engg. 5(1), 61–96 (1998)

6. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 995–1072. MIT Press (1990)

7. Ferraiolo, D.F., Kuhn, D.R.: Role-based access controls. In: Proceedings of the
15th National Computer Security Conference, pp. 554–563 (1992)

8. Garcia, D.Z.G., de Toledo, M.B.F.: Ontology-based security policies for supporting
the management of web service business processes. In: ICSC, pp. 331–338 (2008)

9. Laroussinie, F., Schnoebelen, P.: Specification in ctl + past for verification in ctl.
Inf. Comput. 156, 236–263 (2000)

10. Orriëns, B., Yang, J., Papazoglou, M.P.: Model Driven Service Composition. In:
Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003.
LNCS, vol. 2910, pp. 75–90. Springer, Heidelberg (2003)

11. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57. IEEE Computer So-
ciety, Washington, DC (1977)

12. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN Extension for the
Modeling of Security Requirements in Business Processes. IEICE - Transactions
on Information and Systems E90-D(4), 745–752 (2007)

13. Samarati, P., de Capitani di Vimercati, S.: Access Control: Policies, Models, and
Mechanisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171,
pp. 137–196. Springer, Heidelberg (2001)

14. Souza, A.R.R., Silva, B.L.B., Lins, F.A.A., Damasceno, J.C., Rosa, N.S., Ma-
ciel, P.R.M., Medeiros, R.W.A., Stephenson, B., Motahari-Nezhad, H.R., Li, J.,
Northfleet, C.: Incorporating Security Requirements into Service Composition:
From Modelling to Execution. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 373–388. Springer, Heidelberg (2009)

15. Srivatsa, M., Iyengar, A., Mikalsen, T.A., Rouvellou, I., Yin, J.: An Access Con-
trol System for Web Service Compositions. In: International Conference on Web
Services (ICWS), pp. 1–8. IEEE Computer Society, Los Alamitos (2007)

16. Vallecillo, A.: On the Combination of Domain Specific Modeling Languages. In:
Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS,
vol. 6138, pp. 305–320. Springer, Heidelberg (2010)

17. Wolter, C., Schaad, A., Meinel, C.: Deriving XACML Policies from Business Pro-
cess Models. In: Weske, M., Hacid, M.-S., Godart, C. (eds.) WISE Workshops 2007.
LNCS, vol. 4832, pp. 142–153. Springer, Heidelberg (2007)

	Configuring Private Data Management as Access Restrictions: From Design to Enforcement
	Introduction
	Global Approach
	Design Level
	Service Composition Metamodel
	Privacy Metamodel
	Logical Semantics
	Linking Service Composition and Access Control Views

	Execution Level
	Validation
	Design Level: Modeling Environment
	Binding Time: Execution Environment

	Related Works
	Conclusion
	References

