
Provenance Tracking in R

Andrew Runnalls and Chris Silles

School of Computing, University of Kent, UK

Abstract. This poster describes current progress and issues in intro-
ducing provenance-tracking facilities into the CXXR implementation of
the R statistical computing environment.

1 CXXR

The object of the CXXR project (www.cs.kent.ac.uk/projects/cxxr) is grad-
ually to reengineer the fundamental parts of the R interpreter from C into C++
in such a way that the full functionality of the standard distribution of R (in-
cluding the recommended packages) is preserved. In particular, the behaviour
of R code is unaffected (unless it probes into interpreter internals), and there is
no change to the existing interfaces for calling out from R to other languages
such as C or Fortran, nor to the main APIs for calling into R. CXXR achieves a
high degree of compatibility with R packages from the CRAN repository, as [1]
illustrated.

Work on CXXR started in May 2007, at that time shadowing R-2.5.1. Since
then CXXR has been regularly upgraded to keep pace with the major releases
of R (usually synching on the .1 minor release), so for example over the last year
CXXR has shadowed the increasing deployment of the bytecode compiler within
standard R. The current release of CXXR shadows R-2.14.1.

A key difference between CXXR and standard R is in the implementation
of R data objects. Standard R provides for only a fixed range of object types
(implemented as a C union) to be assigned to R variables, and to participate in
the interpreter’s garbage collection scheme. In contrast, data objects in CXXR
are implemented as a C++ class hierarchy, which can be extended at will. The
provenance-tracking variant of CXXR leverages this feature extensively.

2 Provenance Tracking and CXXR

The AUDIT facilities [2] that once formed part of S and S-plus were an invaluable
feature, as one of the present authors can testify, and one motivation behind
CXXR was to introduce similar but better facilities into the R interpreter. Early
work on a provenance-enabled variant of CXXR was presented in [3].

In the terminology of the OPM, the approach used is to regard bindings of R
symbols (variables) to R data objects as being the OPM artifacts, and to regard
R top-level commands (i.e. expressions entered directly at the interpreter
prompt) as being OPM processes. At present no use is made of the OPM

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 237–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.cs.kent.ac.uk/projects/cxxr

238 A. Runnalls and C. Silles

agent concept. The interpreter instruments the reading and writing of bindings
within the ‘global environment’ (R’s main workspace), and maintains an audit
trail defining the OPM graph leading up to all extant bindings. This provenance
information can then be interrogated within the interpreter itself: this marks a
difference from the S AUDIT facility, which required a separate tool to query
provenance data.

For example, the CXXR command pg <- pedigree("lm1") will retrieve the
‘pedigree’ of the current binding of the symbol lm1 (presumably to a linear
model): pg$commands will then return an R list showing, in time order, the
history of top-level commands that may have influenced that current value of
lm1. Other components of pg record the dates and times when these commands
were issued, and information relating to xenogenesis (Sec. 3).

A recent development in CXXR is to reengineer the way that data are seri-
alized and deserialized between one session and the next, by drawing on the
serialization facilities of the well-regarded open-source Boost C++ libraries
(www.boost.org). This means that not only can developers extend the range
of data types usable within the interpreter, they can also—within the new C++
class definitions themselves—specify how objects of that class are saved to and
restored from the session archive (which now uses an XML format). This applies
not least to the classes implementing the provenance audit trail, so that this is
carried forward from one CXXR session to the next.

3 Xenogenesis

Many R functions are pure: their return value depends only on the values of the
function arguments. Other functions may have a return value which depends
on the values of other variables within the R session, and some functions—for
example pseudorandom number generators—may have side effects, modifying
the bindings of R variables otherwise than via their return values. Fortunately,
none of the preceding presents any inherent problem for CXXR’s provenance-
tracking mechanism, provided the function’s behaviour is entirely mediated by
the bindings of R variables.

However, there are some R functions whose behaviour is not fully defined
by the current state of the interpreter. This may be because the function (e.g.
scan) reads from an external file or database, or because it accepts user input
in some way (e.g. identify) or because it calls external non-R code via one of
the foreign language interfaces. We call such functions xenogenetic, and the
bindings they give rise to xenogenous: “due to an outside cause”.

If a top-level command calls a xenogenetic function (either directly, or indi-
rectly via some other function), this means that the text of the top-level com-
mand no longer completely defines the OPM process that maps its input artifacts
(bindings) to its output artifacts. To work around this problem, the approach
currently being explored is for the provenance record to identify whether a bind-
ing is xenogenous, and if so to record the value of that binding. So if for example
an R function my.function was created using an external editor using R’s edit

www.boost.org

Provenance Tracking in R 239

command, the provenance record will permanently record the value thus given
to my.function—permanently, that is, for as long as any artifact depending on
that function is retained in the R session.

4 Environments

In R (and CXXR), an environment is a container holding a mapping from R
symbols to R data objects. As previously mentioned, at present CXXR tracks
the provenance of bindings within R’s global environment .GlobalEnv. It is
straightforward to extend this tracking to other standard environments set up
at the start of an R session, though this results in a deluge of provenance data
that would rarely be of value.

However, each invocation of a function written in R results in the creation of a
local environment. In the overwhelming majority of cases this local environment
becomes inaccessible after the function returns, and it is soon garbage-collected.
However, there are some exceptions, and it is for example possible to define an
R function which in effect has internal state, stored in a local environment and
carried forward from one invocation to the next. At present this would result in
a ‘backchannel’ of influence that evades the provenance record, but work is in
the pipeline to rectify this.

One remaining concern is that there is currently no method of referring to
local environments in a way that is meaningful between R sessions: this can
hamper reproducibility, especially in the presence of xenogenesis.

5 Conclusion

This poster has described the current state of work to introduce provenance-
tracking facilities into CXXR. The reader will have noted that the tracking is
self-contained within the interpreter, and does not rely on any external
provenance-tracking tool. A less satisfactory converse is that the implementation
does not currently provide for any interoperation with such external tools. The
authors would be interested to hear from researchers interested in collaborating
to rectify this and other gaps.

References

1. Runnalls, A.: CXXR and add-on packages. In: useR! 2010 (2010),
http://user2010.org/slides/Runnalls.pdf

2. Becker, R.A., Chambers, J.M.: Auditing of data analyses. SIAM J. Sci. Stat. Com-
put. 9, 747–760 (1988)

3. Silles, C.A., Runnalls, A.R.: Provenance-Awareness in R. In: McGuinness, D.L.,
Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 64–72. Springer,
Heidelberg (2010)

http://user2010.org/slides/Runnalls.pdf

	Provenance Tracking in R
	CXXR
	Provenance Tracking and CXXR
	Xenogenesis
	Environments
	Conclusion
	References

