
The Xeros Data Model: Tracking Interpretations

of Archaeological Finds

Michael O. Jewell1, Enrico Costanza1, Tom Frankland2, Graeme Earl2,
and Luc Moreau1

1 School of Electronics & Computer Science, University of Southampton,
Southampton, United Kingdom, SO17 1BJ

2 Faculty of Humanities, University of Southampton, Southampton, United
Kingdom, SO17 1BF

Abstract. At an archaeological dig, interpretations are built around dis-
covered artifacts based on measurements and informed intuition. These
interpretations are semi-structured and organic, yet existing tools do not
capture their creation or evolution. Patina of Notes (PoN) is an applica-
tion designed to tackle this, and is underpinned by the Xeros data model.
Xeros is a graph structure and a set of operations that can deal with the
addition, edition, and removal of interpretations. This data model is a
specialisation of the W3C PROV provenance data model, tracking the
evolution of interpretations. The model is presented, with operations
defined formally, and characteristics of the representation that are ben-
eficial to implementations are discussed.

1 Introduction

Archaeological practice is focused on the aggregation and interpretation of knowl-
edge. The process begins with the excavation of multiple regions within a trench,
known as ‘contexts’. The finds discovered during excavation are tagged with an
ID and placed into find bags, thus grouping them according to the context in
which they were found. These ‘Find IDs’ are usually unique to sites, with larger
sites sometimes prefixing a non-unique ID with an area code to ensure unique-
ness. Archaeologists also use symbols for different purposes: contexts are circled,
smaller finds are in triangles, soil samples are in diamonds, etc.

The find bags and their contents then become the subject of interpretation
by specialists of different areas of archaeology. For example, skeletal material
may be examined by an osteoarchaeologist, while an environmental archaeolo-
gist may glean information from charcoal and plant remains found at the site.
Measurements by each specialist are recorded and associated with the individual
finds by use of a recording sheet, which is associated with the unique ID on the
find bag. Finally, an expert will examine the aggregated data for the site, and
produce a report based on an interpretation of the data.

During the whole process, individual archaeologists also produce personal in-
terpretations of their work. These may be in the form of handwritten notes,

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 139–151, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



140 M.O. Jewell et al.

diary entries, photographs, or multimedia recordings. At present, there is a di-
vide between this ‘unstructured data’ and the ‘structured data’ recorded by the
specialists on recording sheets. While both types of data may inform the excava-
tion process, the unstructured data is not usually included in the dissemination
of the findings from the site, whereas the structured data is recorded directly
and preserved for analysis. At commercial sites, structured data is of a higher
priority, but the interpretation is still dependent on the prior experience of the
archaeologist.

Structured and unstructured data may influence the recording of structured
data: if, for example, an excavator posits or determines via measurement that a
shard may be part of a larger item, they are likely to take this into considera-
tion when analysing further shards found in the same context. The excavation
approach is also strongly influenced by preliminary examination techniques, in-
cluding geophysics, survey methods, field walking, and the digging of trial pits.

Given the amount of recording that takes place at a dig, it is valuable to
preserve both the structured and unstructured data as interpretations of finds.
This is of use both to students, who could explore how conclusions were reached,
and to other archaeologists, who may reach hypotheses that were not previously
considered. By opening this data up to all of the archaeologists at a dig site,
multiple viewpoints can be created and knowledge accumulated.

Some technologies already exist with the ability to capture finds and notes,
but these have shortcomings. Existing ‘find databases’ (such as ARK[5] and
IADB[9]) let archaeologists record the structured data mentioned earlier, but do
not allow for the creation of interpretations of this data and do not visualise
how knowledge has been built up or altered over time. Wikis provide for the
creation of the unstructured data, and preserve edits, but do not model the fact
that a note may be expanding on knowledge from another note. Users would
have to write the structure into the wiki pages using wiki markup, but this is
not readily exploitable as it is not explicitly designed into the software. There
are also parallels to version control systems, such as SVN and CVS, but these
operate on a per-directory level: several files in a folder that is then committed
to a repository would be seen as having been created at the same time as the
directory.

PoN (Patina of Notes), a web application that allows for the creation and
organisation of structured and unstructured data about archaeological finds,
was designed to address the above issues. Finds are extended with notes in
a manner akin to attaching Post-it notes to an item. This results in a new
‘state of knowledge’: the original find has had extra information added, and
the overall information in the system has grown. Notes can be stacked, thereby
extending prior states of knowledge; alternative stacks can be created; and notes
can be placed bridging multiple entities. By preserving the state of the system
as notes are added, it is possible to see how knowledge has accrued over time,
how structures have grown, and how and why edits have taken place.

This paper describes the Xeros data model that underpins PoN. The model
consists of a graph structure that extends the PROV[8] Provenance Data Model;



The Xeros Data Model: Tracking Interpretations of Archaeological Finds 141

and a set of operations defined to act upon it. This research is detailed in three
contributions:

1. A formal specification of the fundamental operations: extension, edition, and
reduction. Extension allows for the ‘stacking’ of knowledge onto an existing
state of knowledge, or onto a find itself. Edition models a change of content
between two versions of a note or a find. Reduction removes a state from
the data model, but ensures that entities are still preserved when exploring
prior system states.

2. Several properties are required for the PoN system, including the ability to
record asynchronously and the avoidance of locks (to allow a single entity
to be edited by more than one party). These properties are effected in the
data model by commutativity operations (cross-entity completion, post-fact
merging, and pre-fact recall) and idempotence rules.

3. The commutativity operations incur some storage and computation costs.
These are in part unavoidable, to ensure the integrity of the model, but some
may be avoided in order to ease efficiency. An approach to optimisation is
disussed.

2 Related Work

As mentioned previously, some popular archaeological systems already exist.
IADB[9], the Integrated Archaeological Database, manages data throughout the
lifespan of excavation projects, including recording, analysis, and dissemination.
Unique URIs are provided for Finds, Contexts, etc, and these are stored in the
system’s database. ARK[5] provides similar facilities for the collection of archae-
ological data, but allows for more flexible interface control. As the PoN imple-
mentation of Xeros uses URIs, it can augment the IADB software very easily,
while leaving the more specialised data entry to this purpose-built software.

There are also some approaches to add meaning to wikis: Semantic
MediaWiki[6] lets users embed triples into wiki pages, which is especially use-
ful with templated pages (e.g. a Country template may contain a hasCapital
predicate). Alternatively, DBWiki[1] combines the schemas present in existing
databases with wiki functionality, providing versioning on the data entry pro-
cess. It is possible to query for information on a country, and then retrieve the
history and provenance of that data. Neither of these approaches address the
issue of interpretation building, however: to create a new note in these systems
would require the user to explicitly add links to the states of knowledge to which
they were referring.

Some ontologies already address areas of this research: CIDOC CRM[3], an
ontology for concepts and relationships used in cultural heritage documentation,
has been extended to capture the modeling and query requirements regarding the
provenance of digital objects[10]; and the Annotation Ontology[2] is a vocabulary
for annotating electronic documents with various forms of annotations. Xeros
does not intend to replace these approaches: CIDOC artifacts could be treated
as entities, and Annotation Ontology annotations could be used to extend them.



142 M.O. Jewell et al.

Existing provenance models, such as OPM[7] and PROV, offer a very generic
model of provenance. While these are powerful due to their versatility, the models
must be specialised if they are to fit the archaeology representation.

Finally, there are also existing annotation systems for other domains: The
Distributed Annotation System (DAS)[4] allows for the exchange of biological
sequence annotations, and many bioinformatic applications and websites support
the DAS communication protocol.

3 Xeros: Representation and Operations

Xeros allows for the building of interpretations, the edition of entities, and for
the non-destructive removal of states of knowledge using a reduction process.
Users can navigate through the evolution of this knowledge, using completion
operations to suggest interpretations that have not been explicitly created. The
non-destructive nature of the operations means that the processes that have led
to a state of knowledge can always be seen: hence the extension of the PROV
data model.

The data model is defined as a graph structure, consisting of a set of entities
(V) connected by edges (E). All entities have both a positional co-ordinate c̄ with
components (x, e, r) and an index i, allowing them to be uniquely identified
in the model. The positional co-ordinate places the entity in a 3 dimensional
space, with x, e, and r respectively corresponding to the eXtension, Edition,
and Reduction operations that the entity has undergone: hence the name ‘Xeros’.
The displacement vectors for the three operations are shown in Figure 1.

x̄ = (1, 0, 0)

ē = (0, 1, 0)

r̄ = (0, 0, 1)

Fig. 1. Displacement vectors for exten-
sion, edition, and reduction.

new(V, c̄n) = m : ∀p, 0 ≤ p < m,

V (c̄n, p) �= ⊥
V (c̄n,m) = ⊥

Fig. 2. new(V, c̄n). Produces a valid in-
dex i for a co-ordinate that does not con-
flict with an existing co-ordinate.

The index i is required when multiple entities occupy the same positional co-
ordinate. For example, if an entity at position ā is edited twice, the two resultant
entities will have the same position ā+ ē. As a result, the index i is incremented:
the first entity would be at (ā+ ē, 0) and the second at (ā+ ē, 1). A formalization
of this, given a set of vertices V , is provided in Figure 2.

Three Xeros-specific edges may be created by operations on the data model:
isX(ā), isE(ā), and isR(ā). These correspond to the three main operations
that can be performed on entities within the data model: extension, edition,
and reduction (ā being a displacement vector). These edges are subproperties
of wasDerivedFrom in the PROV data model. An s edge is also used, which



The Xeros Data Model: Tracking Interpretations of Archaeological Finds 143

indicates that there is some other relationship between one entity and another
(e.g. ‘hasNote’ between a find entity and a note entity). s must not be one of
the Xeros edges, and it follows that for all s, source(s) �= dest(s). The following
operations focus on the Xeros-specific edges, rather than the s relationship.

3.1 Extension

Extension, denoted by
isX−−→, suggests an addition of information to the system:

the accumulation of knowledge. Figure 3 shows the building up of knowledge via
extension: an entity (in this case, a surface) is extended with a note; this state
of knowledge is then extended with a further note; and later an alternative is
added via an extension to the original entity.

Given an initial entity (e0) and the entity by which it should be extended
(e1), the operation creates an extension entity en that represents the state of
knowledge in which e0 has relationship s with e1. An isX(x̄) edge is added from
en to e0, indicating that en is an extension of e0 with displacement vector x̄, and
the s edge is added from en to e1. The case described above would be achieved
by extending the find entity with a note; extending the resultant en with another
note; then later extending the find entity with a note.

(a) An entity is extended
with Note 1.

(b) The state
of knowledge is
extended with
Note 2.

(c) An alternate inter-
pretation is added.

Fig. 3. The evolution of a state of knowledge via extensions

3.2 Edition

Edition, denoted by
isE−−→, indicates that there has been an alteration of an

entity’s content. In an archaeological context this could be a correction to a
find’s weight, or an alteration to a note’s content. The edit operation (Figure 5)
creates an edition entity en that has an isE(ē) edge to the edited e0.

When a sequence of operations could indicate that the resultant entity is the
same as the original (such as an edit followed by a reversal of that edit), the
fact that the entity has been through two processes is preserved. A link is not
created between the two entities: partly as the more recent entity was created via



144 M.O. Jewell et al.

V (c̄0, i0) = e0

V (c̄1, i1) = e1

Type(e0) = source(s)

Type(e1) = dest(s)

c̄n = c̄0 + x̄

in = new(V, c̄n)

V ′ = V [(c̄n, in) → en]

E′ = E[[((c̄n, in), (c̄0, i0)) → isX(x̄)]]

[((c̄n, in), (c̄1, i1)) → s]

Type′ = Type[en → Type(e0)]

e0

isX(x̄)

sen
e1

Fig. 4. 〈V ′, E′, en〉 = extend(V,E, e0, e1, s, x̄). Extend e0 with e1, creating en. Dashed
edges are created as a consequence of this operation.

V (c̄0, i0) = e0
c̄n = c̄0 + ē

in = new(V, c̄n)

V ′ = V [(c̄n, in) → en]

E′ = E[[((c̄n, in), (c̄0, i0)) → isE(ē)]]

Type′ = Type[en → Type(e0)]

isE(ē)

en

e0

Fig. 5. 〈V ′, E′, en〉 = edit(V,E, e0, ē). Edit e0 to en.

a different process, and partly as detecting the match is not a simple automatic
operation.

The edit operation only takes place on a non-extension entity: the x position
in its positional co-ordinate must be zero. Edits of extension entities indicate
that the target of either its s or isX edges have been altered, and so the original
must be edited to point this edge to a new version. This results in an ‘internal
edit’: these indicate that an edge has been retargeted. For example, cross-entity
completion uses this to show that the s edge has to be retargeted; post-fact
merging and pre-fact recall use this to show that the isX edge has to be retar-
geted. Internal edits therefore occur as a side-effect of completion operations,
rather than directly via an edit operation.

3.3 Reduction

Reduction, denoted by
isR−−→, indicates the removal of a state of knowledge (see

Figure 6). Thus, if a measurement is found to be unnecessary or incorrect, the
state of knowledge indicating that it extended the find can be removed. The state
of knowledge is not deleted from the model: instead, new entities are created to
omit the reduced entity.



The Xeros Data Model: Tracking Interpretations of Archaeological Finds 145

V (c̄x, ix) = ex

V (c̄y, iy) = ey

V (c̄z, iz) = ez

V (c̄0, i0) = e0

V (c̄1, i1) = e1

E((c̄y, iy), (c̄x, ix)) = isX(δā)

E((c̄z, iz), (c̄y, iy)) = isX(δb̄)

E((c̄y, iy), (c̄0, i0)) = s

E((c̄z, iz), (c̄1, i1)) = t

c̄n = c̄z + r̄

in = new(V, c̄n)

d̄ = δā+ δb̄+ r̄

V ′ = V [(c̄n, in) → en]

E′ = E[[((c̄n, in), (c̄z, iz)) → isR(r̄)]]

[((c̄n, in), (c̄x, ix)) → isX(d̄)]

[((c̄n, in), (c̄1, i1)) → t]

Type′ = Type[en → Type(ez)]

t t

ex

ey

e1

isR(r̄)
ez

s
e0

en

isX(δb̄)

isX(δā)

isX(δā+ δb̄+ r̄)

Fig. 6. 〈V ′, E′, en〉 = reduce(V,E, ey , s, e0, ez, t, e1, ex, x̄, r̄, δā, δb̄). Removes the state
of knowledge ey and its associated entity e0 from the knowledge graph.

To achieve this, the reduction operation requires two consecutive extension
entities: the first of these (ey) is removed by reducing the second (ez). After the
operation has been performed the state of knowledge of ey is skipped, as the
reduction of ez (en) extends the root ex directly. The isX weighting is a sum of
the two original extension edges plus a reduction.

Due to the requirement of a second extension, reduction guarantees that the
state of knowledge ey is removed non-destructively. To remove ez needs a slightly
different approach, discussed as future work in Section 6.

3.4 Idempotence

While other systems make use of locking to prevent simultaneous operations on
an entity, these represent alternatives in the Xeros model. If two archaeologists
re-measure a vase, they may get two different measurements, so the two editions
should be preserved. However, there are instances where an extension or edition
may duplicate knowledge already present. Extension and edition idempotence
rules (shown in Figure 7 and 8 respectively) are used to detect these situations
and resolve them. The former holds when two extensions of an entity refer to
the same entity via the same relation: two users adding the same note to the
same find; the latter when two edits of the same entity have the same value: two
users fixing the same spelling mistake in a note.



146 M.O. Jewell et al.

V (c̄0, i0) = e0

V (c̄1, i1) = e1

V (c̄x, ix) = ex

V (c̄y , iy) = ey

E((c̄x, ix), (c̄0, i0)) = isX(x̄)

E((c̄y, iy), (c̄0, i0)) = isX(x̄)

E((c̄x, ix), (c̄1, i1)) = s

E((c̄y, iy), (c̄1, i1)) = s

s /∈ {isX, isE, isR}
c̄x = c̄y

e0

ex ey

s

e1

isX(x̄)

s

isX(x̄)

Fig. 7. Extension Idempotence: ex and ey are states of knowledge with the same entity
e1.

V (c̄0, i0) = e0

V (c̄x, ix) = ex

V (c̄y, iy) = ey

E((c̄x, ix), (c̄0, i0)) = isE(ē)

E((c̄y , iy), (c̄0, i0)) = isE(ē)

value(ex) = value(ey)
c̄x = c̄y

e0

ex ey

isE(ē)isE(ē)

=

Fig. 8. Edition Idempotence: ex and ey are edits of e0 that have the same value

4 Completion

The operations formalized above can be used as is, especially in a single-user
scenario. However, knowledge structures are not shared: if a find has a note
added and that note is then edited, the find will still refer to the old version of
the note; if a find with a note is edited, the updated entity will no longer have
its extension.

To address this, three ‘completion’ operations are defined: cross-entity com-
pletion ensures that an entity is brought up to date if an attached entity is edited;
post-fact merging ensures that prior operations are performed on a newly-edited
entity; pre-fact recall provides a way to infer states of knowledge that may not
have been explicitly stored. These operations can be applied iteratively to the
graph structure.

4.1 Cross-Entity Completion

It is possible that an edited entity may originally have been associated with
another entity via extension. If a find is extended with a note, and that note is
edited, the find should be updated so that it is extended with the new entity



The Xeros Data Model: Tracking Interpretations of Archaeological Finds 147

V (c̄a, ia) = ea

V (c̄b, ib) = eb

V (c̄d, id) = ed

V (c̄1, i1) = e1

E((c̄b, ib), (c̄a, ia)) = isE

E((c̄d, id), (c̄a, ia)) = s

E((c̄d, id), (c̄1, i1)) = isX

V ′, E′, ec = extend(V,E, e1, eb, s, x̄)

V ′′ = V ′[(c̄c, ic) → ec]

E′′ = E′[[((c̄c, ic), (c̄d, id)) → isE]]

ea

eb

ed

ec

isE(ē) isE(ē)

s

s

isX(x̄)

isX(x̄)

e1

Fig. 9. 〈V ′′, E′′, ec〉 = cross(V,E, ea, eb, ed, e1, s, x̄, ē). Given the edit of ea to eb, where
ea is referred to by extension entity ed, create ec to bring the extension up to date.

rather than the original. Semantic and syntactic edits are treated as equal in
this situation: in both cases, the associated entities must be updated to refer to
the edited entity.

Cross-entity completion (see Figure 9) performs this process: assume that
there is an entity e1 that was extended with ea via relationship s, resulting in
an extension entity ed, and that ea was then edited to eb. A completion entity
ec is created via an extension operation on e1 that refers to the edited entity eb
via the same relationship s. Finally, an internal edit is created between the new
extension entity ec and the old ed. As such it is shown that ec is the state of
knowledge in which e1 is extended with the edited entity eb.

4.2 Post-fact Merging

Post-fact merging ensures that the structures in the system are always represen-
tative of the latest operations to have occurred. A simple case is where a find has
had some notes added, and is then edited: without a post-fact merge, the edited
find would not retain the extensions performed earlier. The merge replicates the
extensions onto the edited entity, thus bringing the graph up to date.

The process is also essential for asynchronous operations: it cannot be assumed
that a user will perform an operation on the latest edition of an entity. A find
may have been edited while a user was adding a note, or conversely a note may
have been added while the user was editing the find. As such, any changes need
to be performed on the updates that have occurred between the retrieval of the
graph and the execution of an operation.

Given an entity ea that is edited to eb: if ea is then extended, it follows that
eb may also be extended with the same extension entity. Alternatively, given
an entity ea that is extended and subsequently also edited, it follows that the
edited version should also be extended with the same extension entity. Figure 10
shows the merging operation performing square completion given that an edit



148 M.O. Jewell et al.

V (c̄a, ia) = ea

V (c̄b, ib) = eb

V (c̄d, id) = ed

V (c̄1, i1) = e1

E((c̄b, ib), (c̄a, ia)) = isE

E((c̄d, id), (c̄a, ia)) = isX

E((c̄d, id), (c̄1, i1)) = s

V ′, E′, ec = extend(V,E, eb, e1, s, x̄)

V ′′ = V ′[(c̄c, ic) → ec]

E′′ = E′[[((c̄c, ic), (c̄d, id)) → isE]]

ea

eb

ed

ec

isE(ē) isE(ē)

isX(x̄)

isX(x̄)

s

s

e1

Fig. 10. 〈V ′′, E′′, ec〉 = merge(V,E, ea, eb, ed, e1, s, x̄, ē). Given the extension of ea,
where ea has previously been edited, apply the extension to the edited entity eb.

and extension have occurred on ea (in any order). ec is created as an extension
of the edit entity eb and an edit of the extension entity ed. The merge performs
an extension operation, ensuring that ec also has the correct relation s to e1.

Post-fact merging is most appropriate after edits where semantics are not
altered, as the extensions will likely still apply. In cases where the meaning of
an entity is altered, it may be prudent to either skip the post-fact merging step
(i.e. requiring the user to re-extend the find with any notes) or to allow for
the user to select any entities that should be added via the merge operation.
It may, however, be more interesting to apply all existing extensions, so any
interpretations that are no longer valid become apparent and provoke further
annotations.

4.3 Pre-fact Recall

Pre-fact recall is complementary to post-fact merging: Where post-fact merg-
ing operates on the outer edges of the graph, pre-fact recall works on the inner
structure. If a find is edited and then extended with a note, the structure sug-
gests that there could be a state where the find was extended but not edited.
This allows for the navigation of the graph through different permutations of
operations - valuable for gaining new insights. In contrast to post-fact merging,
pre-fact recall is a non-essential process and so can be determined post hoc. Pre-
fact recall and post-fact merging result in the same graph: only the antecedent
and consequent differ.

Given an entity ec that has been produced as a result of an extension of eb,
which is in turn an edit of ea, a completion entity ed is created that is an extension
of ea. An internal edit edge is also created from ec to ed, hence completing the
square. The formalization and visualisation of this is shown in Figure 11.



The Xeros Data Model: Tracking Interpretations of Archaeological Finds 149

V (c̄a, ia) = ea

V (c̄b, ib) = eb

V (c̄c, ic) = ec

V (c̄1, i1) = e1

E((c̄b, ib), (c̄a, ia)) = isE

E((c̄c, ic), (c̄b, ib)) = isX

E((c̄c, ic), (c̄1, i1)) = s

V ′, E′, ed = extend(V,E, ea, e1, s, x̄)

V ′′ = V ′[(c̄d, id) → ed]

E′′ = E′[[((c̄c, ic), (c̄d, id)) → isE]]

isE(ē)

isX(x̄)
ea

eb

ed

s

s

e1

ec

isE(ē)

isX(x̄)

Fig. 11. 〈V ′′, E′′, ed〉 = recall(V,E, ea, eb, ec, e1, s, x̄, ē). Given the extension of eb,
where eb is an edit of ea, the extension can also be applied to ea.

Naturally, extensions might only be applicable to the edited entity. Pre-fact
recall does not guarantee that recalled entities are semantically valid, so it is
suggested that they only be brought into the persisted state of the system if
approved by a user.

5 Scalability

Completion operations can have a significant impact on graph size and, as inter-
pretations build, an edit may result in many vertices and edges being created.
Figure 12 shows a worked example: A find ea is edited and extended with a note
ec, then the find is edited again. Finally, the note is edited. With core operations,
6 vertices and 5 edges are needed. With post-fact merging and cross-entity com-
pletion this grows to 9 vertices and 14 edges. Adding pre-fact recall, 11 vertices
and 20 edges are used. This requires three cross-entity completion operations,
due to the entity en created in the recall operation: optimised completion uses
only two.

The number of references to an entity is significant: for every reference, 3
edges and an entity are created during cross-entity completion. If pre-fact recall
is dynamically performed, there are fewer references and the overhead is thus
reduced. Similarly, given an extension propagated over a chain of edits via pre-
fact recall or post-fact merging, 2n edges and n vertices are created, where n
is the number of entities preceding (for pre-fact) or following (for post-fact).
If the system only operates on the most recent changes, post-fact has minimal
overhead. The most costly post-fact merging operation would occur due to an
extension at the oldest point in an edit chain.

Xeros therefore provides a flexible approach to building a scalable system: ea-
ger post-fact merging and cross-entity completion minimise storage while ensur-
ing asynchronous operations are handled, and dynamic pre-fact recall provides
for the navigation of potential entities in the system.



150 M.O. Jewell et al.

V1, E1, eb = edit(V0, E0, ea, ē) �

V2, E2, ed = extend(V1, E1, eb, ec, hasNote, x̄) �

V3, E3, en = recall(V2, E2, ea, eb, ed, ec, s, x̄, ē)

V4, E4, ee = edit(V3, E3, eb, ē) �

V5, E5, eo = merge(V4, E4, eb, ee, ed, ec, s, x̄, ē) �

V6, E6, ef = edit(V5, E5, ec, ē) �

V7, E7, eg = cross(V6, E6, ec, ef , ed, eb, s, x̄, ē) �

V8, E8, eh = cross(V6, E6, ec, ef , en, ea, s, x̄, ē)

V9, E9, ei = cross(V6, E6, ec, ef , eo, ee, s, x̄, ē) �

Fig. 12. Operations during a set of edits and extensions. Lines with � are performed
when no completion is used; lines with � are added when post-fact and cross-entity
completion are used; all lines are performed when every completion operation is used.
The diagram shows only the actions on ea for simplicity.

6 Conclusions

This paper has introduced the Xeros Data Model, its operations, and character-
istics. It has been shown that the structure of the model allows for a variety of
efficient storage approaches, and that it is robust against asynchronous opera-
tions.

Future work on Xeros will provide formalisations for the creation of groups
to allow the aggregation of entities, and of the universe: an entity that refers to
the leaves of the graph at a single point in time. Editions of the universe allow
for these ‘snapshots’ to be navigated, and users can roll back to any edition of
the universe. This approach also caters for the deletion of entities that cannot
be removed via reduction: by removing a leaf reference from the universe, the
entity can be omitted from visualisations but still exist in the graph.

An HCI study is also being performed, by way of the PoN web application.
This is underpinned by the Xeros data model, and the system allows archaeolo-
gists to capture their finds and notes in an intuitive manner. Work on PoN will
be further informed by the Xeros model, and requirements in the system will
feed back into the model’s development.

Acknowledgements. This research is funded in part by the EPSRC and AHRC
PATINA project through the RCUK Digital Economy programme
(EP/H042806/1).

References

[1] Buneman, P., Cheney, J., Lindley, S., Müller, H.: DBWiki: a structured wiki for
curated data and collaborative data management. In: SIGMOD Conference 2011,
pp. 1335–1338 (2011)



The Xeros Data Model: Tracking Interpretations of Archaeological Finds 151

[2] Castro, L.J.G., Giraldo, O.X., Castro, A.G.: Using the Annotation Ontology in
semantic digital libraries. In: 9th International Semantic Web Conference, ISWC
2010 (November 2010)

[3] Doerr, M., Ore, C.-E., Stead, S.: The CIDOC conceptual reference model: a new
standard for knowledge sharing. In: Tutorials, Posters, Panels and Industrial Con-
tributions at the 26th International Conference on Conceptual Modeling, ER 2007,
vol. 83, pp. 51–56. Australian Computer Society, Inc., Darlinghurst (2007)

[4] Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R., Stein, L.: The distributed an-
notation system. BMC Bioinformatics 2, 7 (2001)

[5] Eve, S., Hunt, G.: ARK: A development framework for archaeological recording.
In: Layers of Perception. Proceedings of the 35th International Conference on
Computer Applications and Quantitative Methods in Archaeology, CAA, pp. 1–5
(April 2007)

[6] Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic
wikipedia. Journal of Web Semantics 5, 251–261 (2007)

[7] Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., Van
den Bussche, J.: The Open Provenance Model core specification (v1.1). Future
Generation Computer Systems (July 2010)

[8] Moreau, L., Missier, P. (eds.) Belhajjame, K., Cresswell, S., Golden, R., Groth, P.,
Klyne, G., McCusker, J., Miles, S., Myers, J., Sahoo, S.: The PROV Data Model
and Abstract Syntax Notation. W3c first public working draft, World Wide Web
Consortium (October 2011)

[9] Rains, M.: Towards a computerised desktop: the integrated archaeological
database system. In: Computer Applications and Quantitative Methods in Ar-
chaeology, pp. 207–210 (March 1994)

[10] Theodoridou, M., Tzitzikas, Y., Doerr, M., Marketakis, Y., Melessanakis, V.: Mod-
eling and querying provenance by extending CIDOC CRM. Distributed and Par-
allel Databases 27, 169–210 (2010), doi:10.1007/s10619-009-7059-2


	The Xeros Data Model: Tracking Interpretations
of Archaeological Finds
	Introduction
	Related Work
	Xeros: Representation and Operations
	Extension
	Edition
	Reduction
	Idempotence

	Completion
	Cross-Entity Completion
	Post-fact Merging
	Pre-fact Recall

	Scalability
	Conclusions
	References




