Detecting Duplicate Records
in Scientific Workflow Results

Khalid Belhajjame!, Paolo Missier?, and Carole A. Goble!

1 School of Computer Science
University of Manchester
Oxford Road, Manchester, UK
{Khalid.Belhajjame,Carole.Goble}@cs.man.ac.uk
2 School of Computer Science
Newecastle University,
Newcastle upon Tyne, UK
Paolo.Missier@ncl.ac.uk

Abstract. Scientific workflows are often data intensive. The data sets
obtained by enacting scientific workflows have several applications, e.g.,
they can be used to identify data correlations or to understand phe-
nomena, and therefore are worth storing in repositories for future ana-
lyzes. Our experience suggests that such datasets often contain duplicate
records. Indeed, scientists tend to enact the same workflow multiple times
using the same or overlapping datasets, which gives rise to duplicates in
workflow results. The presence of duplicates may increase the complexity
of workflow results interpretation and analyzes. Moreover, it unnecessar-
ily increases the size of datasets within workflow results repositories.
In this paper, we present an approach whereby duplicates detection is
guided by workflow provenance trace. The hypothesis that we explore
and exploit is that the operations that compose a workflow are likely to
produce the same (or overlapping) dataset given the same (or overlap-
ping) dataset. A preliminary analytic and empirical validation shows the
effectiveness and applicability of the method proposed.

1 Introduction

Scientific workflows are increasingly used by scientists as a means for specifying
and enacting their experiments. Such workflows are often data intensive [6]. The
data sets obtained by their enactment have several applications, e.g., they can
be used to understand new phenomena or confirm known facts, and therefore
are worth storing (preserving) for future analyzes. For example, such datasets
can be stored in public repositories, and made available from within the linked
data cloud [I8], to be browsed, queried, analyzed and used to feed the execution
of other workflows.

Because of the exploratory nature of research investigations, the datasets ob-
tained by workflow executions often contain duplicate data records. (By record,
we mean an instance that is used to feed an input parameter or is generated by
an output parameter.) Indeed, scientists tend to enact the same workflow sev-
eral times using the same or overlapping datasets, which gives rise to duplicates

P. Groth and J. Frew (Eds.): IPAW 2012, LNCS 7525, pp. 126-[[38] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Detecting Duplicate Records in Scientific Workflow Results 127

in workflow results. Typically, the duplicate records generated as a result are
assigned different identifiers by the workflow engine. This yields the following
undesirable outcomes: i)- The analysis and interpretation of workflow results
may become cumbersome and tedious, as it is up to the scientist to identify the
data records that are semantically identical, to eventually draw scientific con-
clusions. ii)- Moreover, the presence of duplicate records unnecessarily increases
the size of datasets within workflow results repositories.

Existing record linkage techniques [9] can be used to detect duplicates in work-
flow results. Consider a workflow w f that has been enacted for many times over
a given period of time, and that the results of the workflow and its constituent
operations were stored. To identify duplicates that were used or generated by
the operations that compose the workflow wf, record linkage techniques can be
applied to those records. Specifically, given the set of records R; (resp. R,) that
were used (resp. generated) by a constituent operation op of wf, the records in
R; (resp. R,) are compared to detect duplicate records. Comparing all possible
pairs to identify duplicate records in a set R can be expensive when R is large:
the number of record pair comparisons grows quadratically with the number of
records to be matched.

To overcome the above problem, a number of researchers have investigated the
use of blocking methods [I] to reduce the number of record pair comparisons.
The underlying idea of blocking methods is to split the set of records to be
compared into subsets, known as blocks. Two records are compared only if they
belong to the same block. While their effectiveness have been proven, blocking
methods are highly domain dependent. They require some detective work from
the part of a domain expert who identifies the subset of attributes that can
be used for forming blocks or provides training data that can be used to learn
blocking criteria [14/3].

In this paper, we explore and exploit an additional and different source of
information, namely provenance traces collected when enacting workflows, to
guide the detection of duplicates in workflow results. Specifically, we make the
following contributions:

— A method for guiding duplicates detection in workflow results.
Rather than comparing pairwise the data records bound to every opera-
tion parameter within a workflow, we show how the results of record pair
comparisons can be reduced to a subset of operation parameters based on
provenance trace.

— Extension of the method proposed to support collection-based
workflows. We show how the method proposed can be extended to support
duplicate detection in the context of collection-based workflows in which op-
eration parameters can use and/or generate a set of records within a single
operation invocation.

— Validation of the method proposed. We report on the results of an ana-
lytical and empirical validation that shows the effectiveness and applicability
of the method proposed.

128 K. Belhajjame, P. Missier, and C.A. Goble

The paper is structured as follows. We begin by analyzing and comparing related
work to ours (in Section 2]). We present the model that we use, for the purposes
of this paper, to define scientific workflows and the provenance trace obtained by
their enactment (in Section B]). We then present the algorithm that we propose
for detecting duplicate records in workflow results (in Section H). We report
on the results of a preliminary evaluation (in Section []), and close the paper
discussing our ongoing and future work (in Section []).

2 Related Work

Research in duplicate record detection has been active for more than three
decades. Elmagarmid et al. [9] conducted a thorough analysis of the literature
in this field. They covered the similarity metrics used for matching individual
record fields, the techniques for comparing records, as well as the systems pro-
viding such capabilities.

As mentioned earlier, the number of record pair comparisons grows quadrati-
cally with the number of records to be matched O(n?). To improve the efficiency
of duplicate detection, several blocking techniques [I] have been devised. Using
such techniques, the set of records to be compared is subdivided into a set of
mutually exclusive blocks. Two records are compared only if they belong to the
same block. Typically, blocking techniques reduces the number of record pair
comparisons to O("bz), where b is to the number of blocks [7]. As well as block-
ing, other techniques have been proposed to improve the efficiency of duplicate
detection. Using the Sorted Neighbourhood, for example, the records are sorted
based on a sorting key. Two records are then compared only if they are within
a window of a fixed size w. As a result, the total number of record comparisons
using the Sorted Neighbourhood is O(wn) [I].

The above techniques require user inputs. For example, to use blocking tech-
niques, the user, or domain expert, needs to identify the attributes that can be
used to split the set of records into blocks. Often, this is a trail-and-error task
[17], in which the user examines records attributes, and select the ones that will
(or are expected to) yield good partitioning of the set of records.

To reduce the complexity of this task, some researchers investigated the use
of machine learning techniques [T6JT0/T2]. Generally speaking, using such tech-
niques, the attributes to be used in blocking are selected based on training data,
which take the form of records that are known to be duplicates and other that
are known not to be duplicates, and which are provided by the domain expert.

As well as supervised machine learning techniques, some researchers have in-
vestigated the use of unsupervised machine learning techniques for record link-
age. For example, Michalowski et al. [I1] showed how duplicates can be identified
by using secondary sources such as location, phone number, etc. Elfeky et al. [§]
proposed an algorithm that combines both supervised and unsupervised machine
learning techniques to detect duplicate records. Specifically, they use a two-step
process whereby record classes are first identified using clustering, then super-
vised machine learning techniques are applied to classify the records within the
classes identified.

Detecting Duplicate Records in Scientific Workflow Results 129

The method that we present in this paper is not an alternative to the above
techniques. Rather it is complementary: it is meant to further improve the ef-
ficiency of the above duplicate detection methods in the context of workflow
results by exploiting provenance traces to propagate the results of record pair
comparison along the operations parameters that are connected within the work-
flow.

The method we present in this paper can also be useful when the number
of records to be compared is small, as it reduces the need for data preparation
[9] to few operation parameters within the workflow. Indeed, the (raw) records
instances of a given operation parameter are often long complex strings. Con-
sider for example the SearchSimple service operation provided by the DNA
Data Bank of Japa. The records used as input to such operation are biologi-
cal entries, which takes the form of long strings containing complex information
specifying the accession of the biological entry, its accession number, organism,
motif, cross-references to biological data sources, etc. Moreover, such entries may
be formatted using different representations, e.g., Uniprot, Fasta, IPR. There-
fore, comparing such records based on their textual content may lead to detecting
false duplicates and missing true ones. For example, two records that represent
the same biological entry may be found to be different because they are for-
matted using different representations. On the other hand, two different records
may be found to be identical because they have similar content. To avoid the
above issues, duplicate detection is often preceded by a data preparation phase
stage [9] during which the raw records are parsed to identify individual data
elements and then transformed into structured, uniformly formatted, and there-
fore comparable, records. Since the parameters of the operations that compose
a workflow can be (and are typically) semantically and syntactically different,
data preparation may turn out to be expensive as it potentially requires build-
ing a parser for every operation parameter. The method that we describe in this
paper eases this problem, since data preparation is required only for a subset of
operation parameters within the workflow.

3 Data-Driven Workflows and Provenance Trace

We focus in this paper on the problem of identifying duplicate records that are
used or generated by data-driven workflows. A data driven workflow is a directed
acyclic graph wf = (N, E). A node {op, Iop,Oopy € N represents an analysis
operation op, which can be implemented as a Java program, a Perl script or
provided by a third party web service, has a set of ordered input parameters
Iop, and has a set of ordered output parameters O,,. The edges are data flow
dependencies specifying how the data records generated by a given operation
are used by the succeeding operation(s) within the workflow. Therefore, an edge
op,0),{op’,iyy € E is a pair that connects the output o of the op operation to
the input 7’ of another operation op’.

! 4ww.ddbj.nig.ac.jp

130 K. Belhajjame, P. Missier, and C.A. Goble

The execution of workflows gives rise to provenance trace, which we capture
using two relations: transformation and transfer [I3]. Consider an operation op
that has n input parameters I,, = (i1, ..., sy, and m output parameters O,, =
{01,...,0my, We use

<0p7 <01’ TO1>>7 LR <0p’ <0m’ T07n,>> o <0p7 <i1’ Ti1>>’ s 7<0p7 <i7lv rin>> (1)

to denote the transformation relation specifying that the execution of the op op-
eration within a workflow took as input the ordered set of records {r;,,...,r;,
and generated the ordered set of records {ro,,...,r,, », where r,, denotes
a record that is instance of the input or output parameter z;. For exposi-
tion sake, we use in what follows OutB,, «~ InB,, to denote the trans-
formation relation in (dl), where InB,, denotes the set of input bindings
op, (i1, Tig)Yy - - K0P, (i, T4, y, and Out By, denotes the set of output bindings
<0p’ <01’ Toy >>’ RRE <0p7 <0m7 Tor, >>

As well as transformation relations connecting output records to input records
of an operation execution, provenance trace also caters for transfer relations
which specify transfer of records along the edges of the workflow between differ-
ent operations. Specifically, we use:

Cop’ i 1)) = Lop, o, 7)) (2)

to denote the transfer relation specifying that the record r generated by the
output parameter o of the operation op was used to feed the input 7’ of the
operation op’.

Together, the transformation and transfer relations defined above, are used
to encode provenance trace 7 obtained by the execution of workflows.

4 Provenance-Guided Detection of Duplicates

In this section, we present a method for identifying duplicate records in workflow
results.

To guide the detection of duplicates, we exploit the following observation.
Consider op an operation that is used within a workflow, and consider that 4
and o are respectively an input parameter and output parameter of op. If the
operation op is known to be deterministic, then two records r and r’ instances
of the output o are identical if they are generated using the same set of input
bindings, i.e.:

deterministic(op) A (3 (OutBop ¢ InBoy € T) A (OutB,, <~ InBop € T)

s.t. ((op,{o, 7)) € OutBop) A ({op,{o,7")y € OutBy,))
=id(r,7") (3)

id(r, ') denotes that two records r and r’ are identical.

If the operation op is known to be injective, then two records r and 7’ that
are instances of the input i are identical if they yield the same set of output
bindings, i.e.:

Detecting Duplicate Records in Scientific Workflow Results 131

injective(op) A (3 (OutBop ¢ InBop € T) A (OutBop ¢~ InB,,, € T)

s.t. (Cop, (i, 7Yy € InBop) A (lop,{i, 7)) € InB’op))
= id(r,r") (4)

The above rules can be used to substantially reduce the number of records that
need to be compared for detecting duplicates in workflow results. In particular, if
the operations that compose the workflows are known to be deterministic, then
the records used as input to the workflow as a whole, i.e., those used to feed the
starting operation(s) within the workflow, can be compared. Rule Bl can then be
applied transitively to identify duplicates generated by other operations in the
workflow. On the other hand, if the operations that compose the workflow are
known to be injective, then the records generated by the workflow as a whole, i.e.,
those generated by the last operation(s) w.r.t. to the dataflow, can be compared.
Rule @ can then be applied transitively to records that are used as input to the
operations within the workflow.

The method that we present in this paper for detecting duplicates assumes
that operations are deterministic. In other words, workflow containing non deter-
ministic operations are outside the scope of this paper. Generally, the operations
that constitute a workflow may not be deterministic. It is nevertheless impor-
tant to study the special case where operation determinism holds, especially that
the empirical evaluation that we will report on in Section [suggests that most
analysis operations are deterministic. Note, also, that we will present, later on in
Section 1] a technique that can be used to check if a given analysis operation
is deterministic, and therefore can be used to identify the workflows on which
the method we present in this section can be safely applied.

Given the above discussion, we present in what follow an algorithm in which
operations are assumed to be deterministic. The algorithm for detecting dupli-
cates operates as illustrated in Figure [[l In what follow, we present in details
the phases outlines in Figure [l

Phase 1. Given a workflow w f and the provenance trace 7 obtained by executing
the workflow w f multiple times, in the first phase the records that are bound to
the input parameters of each of the starting operations are compared to identify
duplicate records. To illustrate this, consider that ops is a starting operation
of the workflow wf, i.e., the input parameters of ops are not associated with
any data links within the workflow wf, consider that i is an input of ops, and
consider that R;"* is the set of records that are bound with the input ¢ in the
provenance trace 7. In the first phase, we compare the records in R;”* to identify
duplicate records. The techniques used for matching the records are outside the
scope of this paper. Matching techniques such as those provided by the Tailor
[7] and Febrl [4] systems can be used for this purpose. The result of this phase
is a partition of disjoint sets R;”* = Ry v U R, where R;, 1 <i < n is a set
of duplicate records.

Phase 2. The sets of input bindings that are used to feed each starting operation
of the workflow wf in the provenance trace 7 are compared and clustered into
groups of identical sets of input bindings. To illustrate this, consider that the

132 K. Belhajjame, P. Missier, and C.A. Goble

?

Phase 1: | Identify duplicate records that are bound to the inputs of the starting operations |
Phase 2: | Cluster the sets of input bindings of each starting operation |

Phase 3: Cluster the sets of output bindings of each starting operation

Phase 4: | Identify duplicate records that are bound to the outputs of the starting operations I
<}
Phase 5: | Cluster the sets of input bindings of each succeeding operation |

Phase 6: Cluster the sets of output bindings of each succeeding operation

Phase 7: | Identify duplicate records that are bound to the outputs of the succeeding operations |

'

There are succeeding operations

There is no succeeding operation

Fig. 1. Process for provenance-guided duplicates detection

starting operation ops has the following input parameters I,,, = {i1,...,in},
and consider that ZB,,, is the sets of input bindings that are associated
with the operation ops in the provenance trace 7. Two sets of input bindings

<0ps, <7:15 Til >>, ey <0psa <7”na Tin>> and <0psa <7’.15 Tgl >>a R <0psa <7”n, Tgn >> in IBOpS
are identical iff:

V1<k<n,id(rg,m,)

After comparing the sets of input bindings in ZB,,_, they are clustered into
groups of identical sets of bindings. For example, consider that Z5,, contains
the following 5 sets of input bindings: ZB,,, = {InBi,...,InBs}. The follow-
ing clustering {{InBi,InBs,InB4},{InBs,InBs}} specifies that the bindings
InB;,InBs and InB, are identical, and that the bindings InBs; and InBs are
identical.

Detecting Duplicate Records in Scientific Workflow Results 133

Phase 3. Given the clustering of the input bindings of the starting operation op,
of the workflow wf, provenance trace 7 is used to cluster the sets of outputs
bindings of ops into groups of identical sets of output bindings. To do so, we
exploit the clustering of sets of input binding obtained in phase 1. Specifically,
two sets of output bindings OutB,, and OutB,, are identical, and therefore
clustered together if they are obtained using identical input bindings. In other
words, two sets of output binding OutB,, and OutB;ps of the operation opg
are identical, and therefore grouped into the same cluster, if:

3InB,y,,InB,, €T
s.t. OutB,y <~ InBop A OutBy, «~ InBy,, A id(InBop,, InB,,)

where id(InB,,,, InBy,,) denotes that the sets of bindings InB,),, and InB,,
are identical.

Phase 4. In this phase, the records that are bound to the output parame-
ters of each starting operation op, are identified given the clustering obtained
in phase 3. As an example, consider two sets of output bindings of the op-
eration ops: OutB,p, = {0ps,{01,70,)), - -,{0Ds,{Om;T0,,)) and OutB,, =
{ops, 01,75,)5 - 10D, {Om, 1, D). If OutB,,, and OutB,,, are in the same
group according to the clustering obtained in phase 3, then the records r,, and

r!’ are identical for 1 < i < m.

0;
Phase 5. The sets of input bindings that are associated with each op-
eration op that succeeds the starting operations in the workflow wf are
clustered into groups of identical sets of input bindings. To illustrate
this, consider that InB,, = <{op,{i1,7:,)),..,{0p,{in,7i,)) and InB,, =
{op, i1, 77,))s - - - K0P, {in, i,)) are two sets of input bindings of the operation
op. InB,, and 1 nB;p are identical, and therefore grouped into the same cluster,
if the records r;, and r;_, 1 < k < n are identical, i.e., V1 < k < n, id(r;,, 7},)

Phase 6. Just like with the starting operation ops, the sets of output bindings as-
sociated with each of the operations that succeed the operation ops are clustered
into groups of identical sets of bindings (see phase 3).

Phase 7. The set R of records that are bound to each output parameter o of
a succeeding operation op are partitioned into disjoint sets of identical records.
This phase is similar to phase 4.

Phases 5,6 and 7 are repeated until treating, i.e., identifying duplicates, in
records that are bound to the output parameters of each of the termination oper-
ations in the workflow wf. By termination operations, we mean operations with
output parameters that are not associated with any data links in the workflow
wf.

In the above algorithm, we make use of rule B (in phase & and phase 0),
which assumes that operations are deterministic. We can also identify duplicates
by using rule [instead, which can be used when the operations that compose

134 K. Belhajjame, P. Missier, and C.A. Goble

the workflow wf are known to be injective. To do so, the algorithm presented
above needs to be modified. Specifically, the algorithm starts by comparing the
records that are produced by the outputs of the termination operations within
the workflow. Then using transitively rule @ we identify the records that are
bound to the remaining operation parameters in the workflow.

4.1 Verifying the Determinism of Analysis Operations

As mentioned earlier, the algorithm presented assumes that the operations that
compose the workflow are known to be deterministic. If the source code of analy-
sis operations is available, then program analysis techniques [5] can be employed
to verify whether they are deterministic. In practice, analysis operations that are
supplied by third parties often come without source code. For those operations,
we can use the following approach to check whether they are deterministic. Given
an operation op, we select examples values that can be used by the inputs of op,
and invoke op using those values multiple times. We then examine the values
produced by the operation. If the operation produces identical output values
given identical input values, then it is likely to be deterministic, otherwise, it is
not deterministic. Note that we say likely to be deterministic, since an operation
may, in certain corner cases, be deterministic for the examples we selected but
not for the whole space of legal input values. Note that such tests should be per-
formed continuously over time. Indeed, as we shall explain later on in Section
(2] many analysis operations use underlying data sources in their computation,
and, as a result, updates to those sources may break the determinism of those
operations. Therefore, tests performed for checking the determinism of opera-
tions should be performed over time to determine the window of time during
which the operations in a given workflow remain deterministic.

4.2 Collection-Based Workflows

So far we have considered workflows in which operations take as input an ordered
set of records each instance of a given input parameter and produce a set of
ordered records each is an instance of a given output parameter. In practice,
however, an important class of scientific workflows are collection-based workflows
[13]. The analysis operations that constitute such workflows can have inputs
(resp. outputs) that consume (resp. generate) a set of records instead of a single
record within a single operation invocation.

The algorithm presented in Section M needs to be slightly modified to be
able to cater for collection-based workflows. In particular, we need to be able to
identify when two sets are identical (phase 1), and to identify duplicates records
between two sets that are known to be identical (phases 4,7). To illustrate this
consider an operation op with an input i that takes a set of records. Given two
sets of records R; and R; that are bound to the operation op in two different
invocations within the provenance trace 7, we need to determine whether the
two sets R; and R; are identical. To do so, we need to compare the records in
R; to the records in R;. The sets R; and R; are identical if they are of the same

Detecting Duplicate Records in Scientific Workflow Results 135

size, and there is a bijective mapping map : R; — R; that maps each record r;
in R; to a record r; in R; such that r; and r; are identical, i.e., id(r;, map(r;)).

Inversely, in phases 4 and 7, given two sets R; and R; that are known to be
identical, we need to compare the records in R; with the records in R; to find a
bijective mapping map : R; — R; that maps each record r; in R; to an identical
record r; in R;.

5 Validation

To assess the effectiveness of the method presented in this paper, we performed
two kinds of validation: analytical and empirical.

5.1 What Is the Benefit in Terms of Reducing the Number of
Record Pair Comparisons?

We performed an an analytical analysis to understand the benefit that the
method we described in this paper presents in terms of reducing the search
space that needs to be explored to detect duplicate records. Consider a workflow
wf, the operations of which are known to be deterministic. For simplicity sake,
and without loss of generality, consider that the operations of w f have one input
and one output, and that they are connected in sequence using data links. Let
T be the provenance trace obtained by multiple executions of the workflow w f,
and consider that n is the number of records that are bound to the input i of the
starting operation ops in the provenance trace 7. Consider that the workflow
is composed of n,, operations. The number of record pair comparisons needed
without using provenance trace is (nop + 1) x N, where N is the number of of
record pair comparisons needed for a single operation parameter. For example,
if the workflow is composed of two operations op; and ops that are connected
in sequence, then we need 3 x N record pair comparisons: N for comparing the
records bound to the input of op;, N for comparing the records bound to the
output of op; and N for comparing the records bound to the output of ops. Note
that we do not need to compare the records bound to the input of ops, since this
input is connected to the output of opy by a data link, and therefore the set of
records bound to the input of ops is the same set of records bound to the output
of opy.

Using the method we described in this paper, we need to identify duplicates
only for the starting operations in the workflow. In other words, the number
of record pair comparisons is N. Using blocking techniques N is 722, where b
denotes the number of blocks. Notice that that number does not depend on the
number of operations that compose the workflow. To illustrate the benefit our
method can provide, consider the case in which the workflow is composed of 10
operations that have one input and one output, and are connected in sequence.
And consider that 100 records are bound to each operation parameter, and that
blocking techniques split the records associated with each operation parameter
to 5 blocks. Using blocking techniques, without relying on provenance trace,

136 K. Belhajjame, P. Missier, and C.A. Goble

requires 22000 record pair comparisons. This number is reduced to 2000 using
the method presented in this paper. Notice that, the greater the number of
operations that compose the workflow, the greater the reduction in terms of
number of record pair comparisons.

5.2 Are Real-World Analysis Operations Deterministic?

The method we presented in this paper relies on the assumption that the oper-
ations that compose the workflow are deterministic. To have an insight on the
degree to which this assumption holds in practice, we run an experiment using
real world scientific workflows from the myExperiment repository [I5]. Specifi-
cally, we selected 15 bioinformatics workflows that cover a wide range of analyzes,
namely biological pathway analysis, sequence alignment, molecular interaction
analysis. (Note that the myExperiment repository contains a large number of
workflows, however, most of the workflows cannot be enacted for several reasons,
notably the unavailability of the services that compose the workflows.) Together,
the workflows we selected are composed of 151 operations. To identify which of
these operations are deterministic, we run each of them 3 times using example
values that were found either within myExperiment or Biocatalogue [2]. We then
manually analyzed the output values of each operation. This analysis revealed
that a small number of operations, namely 5 of 151 are not deterministic. After
examining these 5 operations, it transpires they output URLs of files that con-
tain the actual results of the computation. Note that although the URLs of the
files generated by such operations were different between runs, the contents of
the files were the same. The remaining operations, i.e., 146, generated the same
output given the same input in the 3 invocations, and therefore are likely to
be deterministic. We say likely to be deterministic, since an operation may, be
deterministic for the examples we selected but not for the whole space of legal
input values.

The results of the above experiment are encouraging, as it implies a broad
applicability of the method described in this paper for propagating record pair
comparison results. Note, however, that many of the operations that we analyzed
access and use underlying data sources in their computation. For example, oper-
ations that perform sequence alignment use underlying sequences data sources.
Therefore updates to such sources may break the determinism assumption. This
suggests that the determinism holds within a window of time during which the
underlying sources remain the same, and that there is a need for monitoring
techniques to identify such windows.

6 Conclusions and Future Work

The presence of duplicates in workflow results can hinder the analysis of the
results, specially when the number of workflow executions is large. In this paper,
we described a method that can be used to reduce the number of record pair com-
parisons and the need for data preparation to a subset of the parameters within
the workflow. Preliminary validation of the proposed method is encouraging.

Detecting Duplicate Records in Scientific Workflow Results 137

Our ongoing and future work includes further evaluation. As mentioned in
the previous section, operation determinism may break because of updates to
underlying data sources. In this respect, we are investigating new techniques for
monitoring the determinism of analysis operations over time using test suites
designed for this purpose. The monitoring results can be used to identify the
cases in which the method described in this paper can be safely applied. We
are also investigating ways to deal with the issue of false matches propagation.
If two different records are identified as duplicates, then this may lead to de-
tecting false matches using provenance trace. The same observation applies to
false negatives propagation. If two identical records r and ' are not detected,
then using provenance trace, we will fail in detecting identical records generated
using 7 and 7’. Note also that some true matches may not be identified using
the method we described. In particular, a deterministic, yet not injective, op-
eration within the workflow may output identical records given different input
bindings. Using the algorithm described in Section M will not allow detecting
those duplicates. We intend to conduct further evaluation to assess the scale at
which false matches are propagated and true matches are missed. We are also
investigating ways whereby our method can be adapted to alleviate the above
issues, e.g., by running our method multiple times, not only once. Each time dif-
ferent parameters, not only the inputs of the starting operations, are selected as
a starting point, and then cross-validating duplicate detection results obtained
by the different runs. As well as the above, we are investigating ways in which
the method presented can be adapted to identify duplicates across workflows,
and conducting a user study to assess the usefulness of the method in practice.

Acknowledgment. We would like to thank the anonymous reviewers for their
detailed and constructive comments.

References

1. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods
for record linkage. In: Proceedings of the KDD 2003 Workshop on Data Cleaning,
Record Linkage, and Object Consolidation, Washington, DC, pp. 25-27 (2003)

2. Belhajjame, K., Goble, C., Tanoh, F., Bhagat, J., Wolstencroft, K., Stevens, R.,
Nzuobontane, E., McWilliam, H., Laurent, T., Lopez, R.: BioCatalogue: A Cu-
rated Web Service Registry for the Life Science Community. In: Proceedings of the
Microsoft eScience Conference (2008)

3. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: Learning to scale up
record linkage. In: ICDM, pp. 87-96. IEEE Computer Society (2006)

4. Christen, P.: Febrl -: an open source data cleaning, deduplication and record linkage
system with a graphical user interface. In: KDD, pp. 1065-1068. ACM (2008)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 1979, pp. 269-282. ACM, New York (1979)

6. Deelman, E., Chervenak, A.L.: Data management challenges of data-intensive sci-
entific workflows. In: CCGRID, pp. 687-692. IEEE Computer Society (2008)

138

10.

11.

12.

13.

14.

15.

16.

17.

18.

K. Belhajjame, P. Missier, and C.A. Goble

Elfeky, M.G., Elmagarmid, A.K., Verykios, V.S.: Tailor: A record linkage tool box.
In: ICDE, pp. 17-28. IEEE Computer Society (2002)

Elfeky, M.G., Ghanem, T.M., Verykios, V.S., Huwait, A.R., Elmagarmid, A.K.:
Record linkage: A machine learning approach, a toolbox, and a digital government
web service (2003)

Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Trans. Knowl. Data Eng. 19(1), 1-16 (2007)

Hernandez, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the
merge/purge problem. Data Min. Knowl. Discov. 2(1), 9-37 (1998)

Michalowski, M., Thakkar, S., Knoblock, C.: Exploiting secondary sources for au-
tomatic object consolidation. In: Proceedings of the KDD 2003 Workshop on Data
Cleaning, Record Linkage, and Object Consolidation, Washington, DC, pp. 34-36
(2003)

Michelson, M., Knoblock, C.A.: Learning blocking schemes for record linkage. In:
AAATL AAAI Press (2006)

Missier, P., Paton, N.W., Belhajjame, K.: Fine-grained and efficient lineage query-
ing of collection-based workflow provenance. In: EDBT, pp. 299-310. ACM (2010)
Parag, Domingos, P.: Multi-relational record linkage. In: Proceedings of the KDD
2004 Workshop on Multi-Relational Data Mining, pp. 31-48 (August 2004)

De Roure, D., Goble, C.A., Stevens, R.: The design and realisation of the my-
Experiment virtual research environment for social sharing of workflows. Future
Generation Comp. Syst. 25(5), 561-567 (2009)

Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
KDD, pp. 269-278. ACM (2002)

Winkler, W.E.: Approximate string comparator search strategies for very large ad-
ministrative lists. Technical report, Statistical Research Report Series, US Census
Bureau (2005)

Zhao, J., Sahoo, S.S., Missier, P.; Sheth, A.P., Goble, C.A.: Extending semantic
provenance into the web of data. IEEE Internet Computing 15(1), 40-48 (2011)

	Detecting Duplicate Recordsin Scientific Workflow Results
	Introduction
	Related Work
	Data-Driven Workflows and Provenance Trace
	Provenance-Guided Detection of Duplicates
	Verifying the Determinism of Analysis Operations
	Collection-Based Workflows

	Validation
	What Is the Benefit in Terms of Reducing the Number of Record Pair Comparisons?
	Are Real-World Analysis Operations Deterministic?

	Conclusions and Future Work

