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Abstract. Co-training is a well known semi-supervised learning algorithm, in
which two classifiers are trained on two different views (feature sets): the ini-
tially small training set is iteratively updated with unlabelled samples classified
with high confidence by one of the two classifiers. In this paper we address an
issue that has been overlooked so far in the literature, namely, how co-training
performance is affected by the size of the initial training set, as it decreases to the
minimum value below which a given learning algorithm can not be applied any-
more. In this paper we address this issue empirically, testing the algorithm on 24
real datasets artificially splitted in two views, using two different base classifiers.
Our results show that a very small training set, even made up of one only labelled
sample per class, does not adversely affect co-training performance.
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1 Introduction

Semi-supervised learning (SSL) methods are useful in many practical applications in
which a small set of labelled samplesL is available, but a large set of unlabelled samples
U can be exploited to improve the performance of learning algorithms. Typical exam-
ples are text (e.g., Web page) classification, and biometric authentication. Co-training is
a well known SSL algorithm originally proposed in [1], for binary classification prob-
lems in which two different views (feature spaces) X1 and X2 are available. Start-
ing from a small training set L = {(x1

i , x
2
i , yi)}nL

i=1, where x1
i ∈ X1, x2

i ∈ X2 and
y ∈ {−1,+1}, it consists of iteratively re-training a pair of classifiers f1 : X1 → Y
and f2 : X2 → Y , adding to L at each step the unlabelled samples from a given set
U = {(x1

i , x
2
i )}nU

i=1 that are classified with high confidence by one of the classifiers.
Under the assumption of conditional independence between the views, given the class
Y (i.e., P (X1, X2|Y ) = P (X1|Y )P (X2|Y ), and of sufficiency of each view (i.e., the
classes can be perfectly discriminated in each view, if there were a sufficient number
of samples), it was shown that co-training allows both classifiers to attain the same
performance as they were trained on a large set of labelled samples.

Several authors have theoretically or empirically investigated several aspects of co-
training; for instance, how it works when the original assumptions do not hold (which
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can often happen in practice), or how it works under different and less restrictive as-
sumptions. Balcan et al. [2] provide a PAC-style analysis, and showed that it is possible
to relax the condition of independence between the views, if the classifiers are never
“confident but wrong”. Christoudias el al. [3] examined settings in which classifiers are
not compatible due to noise in one view (i.e., even in a ideal situation with a very large
training set, their decisions disagree). Didaci and Roli [4] investigated, form a Bayesian
point of view, the consequence of the non-sufficiency of the views. Du et al. [5] inves-
tigated the possibility of predicting whether co-training will work or not for a given
problem, and whether single-view problems can be artificially decomposed into two
views to exploit co-training. Zhou et al. [6] considered the limit case when only one la-
belled sample (x, y) is available, and thus co-training can not be applied, and proposed
a method for adding to (x, y) artificially labelled samples to enable the application of
co-training.

In this work we address a different aspect of co-training behaviour that has been
overlooked in the literature so far, namely, how it performs as the size of L decreases
toward the minimum possible value, below which a given learning algorithm can not
be applied anymore. As an example, to estimate the covariance matrix of a linear or
quadratic Gaussian classifier, at least two samples are needed for each class. In this
paper we address this issue empirically, using 24 single-view data sets from the UCI
Repository [7], and two different base classifiers. Our goal is to provide a first answer
to the questions of whether, and to what extent the performance of co-training is affected
by the size of the initial training set L.

After a summary of the co-training algorithm and of previous works in Sect. 2, in
Sect. 3 and 4 we present the results of our experiments. Conclusions are drawn in
Sect. 5.

2 Background

2.1 The Co-training Algorithm

In this paper we consider the standard version of the co-training algorithm given in [1],
which is reported as Algorithm 1. First, a subset U ′ of unlabelled samples is randomly
selected from the available data set U . Then, the following steps are repeated for a
predefined number of iterations. Two separate classifiers, f1 and f2, one for each view,
are trained on the initial, small, training set L, and are then used to label the samples in
U ′. For each classifier, the p samples of class +1 and the n samples of class −1 that are
labelled with the highest confidence among the ones of U ′ are added to L. Classifier
confidence can be evaluated, for instance, as the estimated posterior probability, while
p and n are chosen such that they are proportional to the (estimated) class priors. The
selected 2p + 2n samples are then removed from U ′, and other 2p + 2n samples are
randomly selected from U and added to U ′. The reason of using a subset U ′ of the
unlabelled samples U is that this forces f1 and f2 to select samples that are more
representative of the underlying distribution, even if they may be not the ones labelled
with highest confidence among the ones in U [1].

Previous works on co-training mainly considered Naive Bayes and decision trees as
base classifiers. Nevertheless, to the purpose of this work, we point out that each base
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Algorithm 1. Co-training algorithm
Input: L and U : sets of nL labelled and nU unlabelled samples, respectively, represented in two
views X1 and X2; k: number of iterations; nU′ < nU : number of samples to be drawn from nU;
n, p: number of pattern selected by each classifier at each step. n, p are proportional to priors.
Output: two trained classifiers f1 : X1 → Y and f2 : X2 → Y .

U ′ ← a set of nU′ samples randomly drawn from U
for k iterations do

Train a classifier f1 on the X1 view of L, and a classifier f2 on the X2 view of L
for i = 1, 2 do

Let f i labels all samples in U ′

U ′
i ← the p samples labelled as +1 and the n ones labelled as−1 with higher confidence

by f i

L← L ∪ U ′
i , U ′ ← U ′ − U ′

i

end for
Randomly choose 2p+ 2n samples from U , and move them to U ′

end for

classifier has an intrinsic limit to the minimum number of labelled samples of each class
in the training set, that allows the corresponding learning algorithm to be applied. We
denote these values as |L+|min and |L−|min, respectively for y = +1 and y = −1.
Usually |L+|min = |L−|min. In some cases |L+|min = |L−|min = 1 (e.g., a support
vector machine), while in other cases both values can be greater than 1 (e.g., Gaussian
classifiers).

2.2 Previous Works

Among previous works on co-training, we mention here the ones that are most related
to this paper.

In [2] it was shown that the assumption of conditional independence given the class
label can be relaxed, provided that the learning algorithm is never “confident but wrong”,
i.e., it never misclassifies samples with high confidence. This result could in principle be
exploited to make co-training work even when the initial L is very small, as discussed
in Sect. 4.

In [6], the limit case when only one labelled sample is available was considered,
namely |L| = 1. This can happen in applications like content-based image retrieval,
and online web-page recommendation. In this case the standard co-training algorithm
can not be applied, since it requires a binary base classifier. The proposed solution is
first to label and add to L some samples of U , using a different SSL method, such
that both classes are represented, and then run co-training, starting from the updated L.
The resulting performance of co-training was evaluated for some different sizes of L.
However, sizes very close, or equal, to the minimum one required to run the considered
base classifiers were not considered.

Finally, in [5] the possibility of predicting whether co-training will work for a given
problem was investigated. To this aim, methods for estimating whether the original
assumptions of [1] hold or not were devised, using the samples of L. The conclusion
was that no reliable estimate can be obtained from a small L. The related problem of
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artificially decomposing single-view problems (with a small set of labelled samples)
into two views, to exploit co-training, was addressed in the same work. No effective
method was found to this aim. The reason is that this requires to find the “best” split of
the original feature set, according to the co-training underlying assumptions. However,
the validity of such assumptions can not be determined from a small L.

In our experiments we will exploit the methods of [5] to artificially split the con-
sidered data sets into two views, since for our purposes the best split can be estimated
using the whole labelled data sets.

3 Experimental Setup

Co-training was implemented as in Algorithm 1, with |U ′| = 0.3|U |, similarly to [1,5].
We chose the values of p and n, such that p/n is (approximately) equal to the estimated
class priors. According to [2], to this end we chose the smallest possible p and n. We set
the number k of co-training iterations in order to allow co-training to collect all samples
in U . The exact value of k depends thus on the size of the data set, and on the values of
n and p.

Two different base classifiers were used: Naive Bayes (NB), and K-nearest neigh-
bors (K-NN), with K = 1. In the case of real-valued features, NB was implemented
by subdividing their range into 10 bins of equal width. The experiments have been car-
ried out on 24 single-view two-class data sets, previously used in [5]. They have been
artificially subdivided into two views using the method proposed in [5], which aims at
minimising the correlation between the corresponding feature subsets, given the class,
and maximising the separability of classes in each view, to meet as much as possible
the assumptions of [1].

Ten different runs of the experiments have been made. At each run, each data set
was randomly subdivided into a labelled training set L, an unlabelled data set U , and
a testing set. We considered different sizes of L, as explained below. The size of the
testing set was 25% of the entire data set, whilst the remaining data was used as the
set U .

The goal of our experiments was to analyse the behaviour of co-training, as the size
of L decreases to |L|min = |L+|min + |L−|min. Note that, with the chosen base classi-
fiers, |L+|min = |L−|min = 1. To this aim, we considered values of |L| ranging from
2 (i.e., |L+| = |L−| = 1) to 50% of the entire data set. L was obtained by stratified
sampling from the whole data set, i.e., |L+| and |L−| were chosen such that |L+|/|L−|
was (almost) equal to the original proportion between the two classes. When the size of
L was reduced to the extent that the corresponding |L+| or |L−| (chosen as explained
above) attained its lowest possible value (respectively, |L+|min and |L−|min), then the
most populated class was undersampled. Note that, in this case, L was not representa-
tive of the underlying class priors.

At each run, and for each given L, we run co-training and computed its testing set
performance. We then checked whether co-training performance attained for |L| =
|L|min was better than the performance attained by the corresponding base classifier
trained on the same L, without co-training. If not, we checked for which size of L
(if any) co-training outperformed the base classifier trained on the same L, without
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co-training. We considered two performances significantly different, if the difference
between their average values over the ten runs was higher than the sum of the corre-
sponding standard deviations, divided by the square root of the number or runs.

4 Experimental Results

In Table 1 we report the characteristics of the data sets used in the experiments. Table 2
shows the comparison between co-training performance attained for |L| = |L|min, and
the performance attained by the corresponding base classifier trained on the same L,
without co-training, for both classifiers. The meaning of table entries is the following:
0: no statistically significant performance difference in both views; 1: co-training was
outperformed by the base classifier in both views; 1*: co-training was outperformed by
the base classifier in one view, no statistically significant performance difference in the

Table 1. Characteristics of the data sets used in the experiments. An asterisk after the data set
name denotes that its classes have been merged into two artificial classes, as in [5]. The numbers
between brackets in the “n. samples” column denote the number of samples per class. The column
“views size” reports the number of features in each view, obtained with the method of [5].

ID Dataset n.features n. samples views size

1 Audiology∗ 55 200 [48, 152] 31/24
2 Automobile∗ 24 193 [130, 63] 22/2
3 Breast Cancer W. 8 699 [458, 241] 5/3
4 Winsconsin D. 30 569 [212, 357] 11/19
5 Winsconsin Progn. 1 33 194 [46, 148] 12/22
6 Winsconsin Progn. 2 32 198 [47, 151] 13/19
7 Contraceptive Method 9 1473 [629, 844] 2/7
8 Horse colic 5 368 [232, 136] 4/1
9 Credit Approval 15 653 [296, 357] 9/6
10 Dermatology∗ 33 366 [112,254] 17/16
11 Pima Indians Diabetes 8 768 [500, 268] 6/2
12 E.Coli∗ 7 336 [143/193] 3/4
13 Flags∗ 28 194 [134/60] 15/13
14 Heart (Cleveland)∗ 11 303 [164, 139] 5/6
15 Heart (LongBeach)∗ 4 200 [144, 56] 2/2
16 Heart-statlog 13 270 [150, 120] 4/9
17 Hepatitis 1 19 80 [13, 67] 12/7
18 Ionosphere 33 351 [225, 126] 6/27
19 Chess (King Rook vs King Pawn) 36 3196 [1669, 1527] 13/23
20 SolarFlare 2∗ 10 1389 [1321, 68] 8/2
21 Sonar Mines vs. Rocks 60 208 [97, 111] 34/26
22 Spambase 57 4601 [2788, 1813] 21/36
23 Splice2∗ 60 3186 [1532, 1654] 32/28
24 Tic-Tac-Toe 8 958 [626, 332] 3/2
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Table 2. Comparison between the average co-training performance attained for |L| = |L|min,
and the average performance attained by the corresponding base classifier trained on the same L,
without co-training (see the text for the meaning of table entries)

ID Dataset Naive Bayes K-NN

1 Audiology∗ 2 2*
2 Automobile∗ 2* 2*
3 Breast Cancer W. 2 2
4 Winsconsin D. 2 2
5 Winsconsin Progn. 1 2* 2
6 Winsconsin Progn. 2 2 2
7 Contraceptive Method 1* 1
8 Horse colic 0 1*
9 Credit Approval 2 0
10 Dermatology∗ 2 2
11 Pima Indians Diabetes 0 2*
12 E.Coli∗ 2 0
13 Flags∗ 2 2
14 Heart (Cleveland)∗ 2 0
15 Heart (LongBeach)∗ 2* 2
16 Heart-statlog 2 -
17 Hepatitis 1 2 2*
18 Ionosphere 2 0
19 Chess (King Rook vs King Pawn) 1 1*
20 SolarFlare 2∗ 2 2
21 Sonar Mines vs. Rocks 0 0
22 Spambase 2 0
23 Splice2∗ 0 1*
24 Tic-Tac-Toe 0 2

other view; 2: co-training outperformed the base classifier in both views; 2*: co-training
outperformed the base classifier in one view, no statistically significant performance
difference in the other view; -: co-training outperformed the base classifier in one view,
and was outperformed by the base classifier in the other view.

When Naive Bayes was used, co-training outperformed in both views the base clas-
sifier trained only on L, in 14 data sets. It was instead outperformed in both views only
once (Chess data set). The performance was similar in the remaining 5 data sets. When
the K-NN classifier was used, results were similar: co-training was better than the base
classifier, on both views, in 9 data sets; it was outperformed by the base classifier in one
data set (Contraceptive Method); their performance was similar in the other 6 data sets.

We then evaluated co-training performance as above, for |L| > |L|min. The results
(not reported here due to lack of space) showed that, when co-training outperformed in
both views the base classifier for |L| = |L|min, the same happened for |L| > |L|min. A
representative example of this behaviour is reported in Fig. 1 for the Hepatitis 1 data set.
Note that co-training performance is almost constant for all the considered |L| values.
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Fig. 1. Co-training performance on the Hepatitis 1 data set, as a function of |L+| = |L−|, using
the NB classifier. “Before co-training”: average performance of the base classifier trained on L.
“After co-training”: average co-training performance, starting from the same L. The minimum
(MIN) and (MAX) co-training accuracy is also reported, over the ten runs. For reference, the
average performance of the base classifier trained on L + U , using the true class labels of the
samples in U , is also shown (“Supervision”).

These results suggest that co-training performance seems not affected by the size of
L, and that co-training can work (i.e., can outperform the base classifier trained only on
L) also for very small |L| values, including |L| = |L|min = 2.

5 Conclusions

We addressed the issue of evaluating co-training performance as a function of the size
of the labelled training set L, as it decreases to the minimum value below which the
considered base classifier can not be applied anymore. Results attained on 24 real data
sets, artificially splitted into two views, using two different base classifiers, showed
that: (i) co-training performance seems not affected when L reduces to the smallest set
of samples that allows the chosen learning algorithm to run; (ii) it can outperform the
base classifier trained on L, for any size of L, and, in particular, also in the limit case
|L| = |L|min. In other words, co-training can work even with one sample per class. This
behaviour could be explained by the results of [2], mentioned in Sect. 2.2. Even if the
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two base classifiers trained on the initial L have a poor accuracy (which is likely to hap-
pen, when L is very small), adding to L only a few unlabelled samples that are classified
with the highest confidence may prevent from introducing mislabelled samples in the
updated training set. This allows the training set to become more representative of the
underlying distribution at each iteration, especially if the two views are independent, or
at least exhibit a low correlation. Accordingly, a very conservative updating policy of L
could be beneficial to co-training, when L is very small.

We point out that these results do not allow one to reliably predict whether co-
training will work, for a given, real data set, i.e., whether it will outperform the base
classifier trained on L. This remains an open issue, as shown in [5]. Our results nev-
ertheless provide evidence that a very small L is not an adverse factor for co-training
performance.
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