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Abstract. This paper presents a new similarity measure, the sum of
conditional variance of differences (SCVD), designed to be insensitive to
highly non-linear intensity transformations such as the ones occurring
in multi-modal image registration and tracking. It improves on another
recently introduced statistical measure, the sum of conditional variances
(SCV), which has been reported to outperform comparable information
theoretic similarity measures such as mutual information (MI) and cross-
cumulative residual entropy (CCRE). We also propose two additional
extensions that further increase the robustness of SCV(D) by relaxing
the quantisation process and making it symmetric. We demonstrate the
benefits of SCVD and improvements on image matching and registration
through experiments.

1 Introduction

A robust similarity measure between different regions of images plays a funda-
mental role in several image analysis applications such as stereo matching, mo-
tion estimation, registration and tracking. Similarity measures commonly used
in these tasks, SSD or NCC for example, can at most cope with linear variations
of intensity, such as global changes in gain and bias. Matching and registration
techniques in general need to be robust to a wider range of transformations that
can arise from non-linear illumination changes caused by anisotropic radiance
distribution functions, occlusions or different acquisition processes [1] (e.g. visible
light and infrared, those employed in medical imaging). These more challenging
contexts, which represent the main focus of this article, have been extensively
explored in the literature.

Most of the existing methods for computing similarity measures across multi-
modal images are based on information theoretic approaches and make use of the
probability of the intensity co-occurrence. The seminal works on mutual infor-
mation (MI) [2,3] introduced the use of joint intensity distributions, recognising
the statistical dependence between intensities of corresponding pixels. Other sta-
tistical dependencies have also been explored: cross-cumulative residual entropy
(CCRE) [4] for example measures the entropy defined using cumulative distribu-
tions. The increased resilience to non-linear intensity transformations however
comes at the cost of a higher computational complexity than conventional sum-
comparing metrics, whose complexity is linear with respect to the number of
elements.
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A recently proposed method, called the sum of conditional variances (SCV)
[5], also uses the joint distribution of image intensities, but generates it directly
as a histogram. Intuitively, SCV exploits a statistical property assuming that a
group of pixels clustered by neighbouring intensities in the first image should be
similarly clustered in the second, even if their mapped ranges are very different.
SCV was originally developed in the context of medical image registration [6] and
therefore aimed at being robust against non-linear intensity variations such as
those occurring when capturing images through different acquisition modalities.
It has been shown to have a larger convergence basin than MI’s Parzen win-
dow approach in medical alignment tasks [7]. These results have been confirmed
in the context of visual tracking [8], showing SCV to have better performance
than several competing approaches in terms of convergence radius, computa-
tional complexity and stability (quantified by the number of iteration necessary
for convergence). SCV is closely related to the correlation ratio [9], but has
a lower computational complexity and is therefore more amenable to efficient
optimization strategies.

In this paper, we introduce a new similarity measure called the sum of con-
ditional variance of differences (SCVD). In the original SCV formulation, the
reference image is used solely in its quantized form for generating a partition to
be applied to the second image (i.e. the set of conditions). This process discards a
significant amount of information. Assuming the intensity map to be weakly or-
der preserving, whether directly or inversely, we show that the information loss
can be mitigated employing the variance of intensity differences, leading to a
more discriminative measure without increase in the computational complexity.
We also generalise the computation of conditions, improving both our matching
measure SCVD and the original SCV implementation.

The contribution of this paper is thus two-fold:

1. we introduce a novel similarity measure, the sum of conditional vari-
ance of differences (SCVD) and show its superior performance in
comparison to other metrics designed against non-linear intensity
variations,

2. we generalise the definitions of conditions, leading to improvements
for both our formulation and the original SCV approach.

The rest of the paper is organized as follows: the next section will contain a brief
description of the SCV algorithm, followed by the description of our proposal
(SCVD) and its extensions respectively in section 3 and 4. We will evaluate the
performance of the novel matching measure in section 5, focusing on matching
and registration tasks. Finally, section 6 will report our conclusions.

2 The Sum of Conditional Variances

Given a pair of images X and Y , the sum of conditional variances (SCV) match-
ing measure [5] prescribes to partition the pixels of Y into nb disjoint bins Y (j)
with j = 1, ..., nb, corresponding to bracketed intensity regionsX(j) of X (called
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Fig. 1. Joint intensity histograms. A joint histogram HXY can be interpreted as
non-injective relation that maps the ranges of two images. On the left: the resulting
joint histogram after linearly reducing the contrast of the reference image. On the
right: the joint histogram for a non-linear intensity map. Hotter (brighter) colors
correspond to more frequently occurring values.

the reference image). The value of the matching measure is then obtained sum-
ming the variances of the intensities within each bin Y (j).

SSCV (X,Y ) =

nb∑

j=1

E[(Yi − E(Yi))
2 | Xi ∈ X(j)] (1)

where Xi and Yi with i = 1, ..., Np indicate the pixel intensities of X and Y
respectively, Np being the total number of pixels. The conditions that appear in
the sum are obtained uniformly partitioning the intensity range of X .

The behaviour of SCV can be characterised by the joint histogram HXY

of X and Y . As shown in figure 1, the joint histogram can be interpreted as
non-injective relation that maps the range of the first image to the second one.
The set of pixels that contributed to the non zero entry of each column (row)
corresponds to one of the regions selected by the j-th condition.

The number of discretisation levels nb is problem specific; for images quan-
tised at byte precision, a typical choice is usually nb = 32 or 64 [8]. Larger
intervals can help in achieving a wider convergence radius and offer more re-
silience to noise (the matching measure will not change as long as the pixels do
not cross the current bin boundaries). On the other hand, narrow ranges will
boost the matching accuracy and reduce the information that is lost during the
quantisation step.

3 Sum of Conditional Variance of Differences

According to the SCV algorithm, the reference image is used solely to determine
the subregions in which the variances of equation 1 should be computed. In this
section, we present a new similarity measure based on the conditional variance
of differences, which uses all the information present in both images leading to
a more discriminative matching measure. We also propose two generalisations
of the conditionals computation, which further increase the robustness of our
approach.



660 A. Maki and R. Gherardi

3.1 Variance of Differences

We first define the variance of differences (VD) as the second moment of the
intensity differences between two templates:

VD(X,Y ) = V ar[{Yi −Xi}i=1...Np ] (2)

The variance of differences is minimal when the distribution of differences is
uniform. It is bias invariant, scale sensitive and proportional to the zero-mean
sum of squared differences (sometimes called ZSSD or ASSSD in the literature).
This last fact can be trivially verified from eq. 2:

VD(X,Y ) = E[(Y −X − E(Y −X))2] (3)

∝
∑

i

[(Yi − E(Yi))− (Xi − E(Xi))]
2, (4)

where the mean of an image is understood to indicate its element-wise mean.

3.2 Sum of Conditional Variance of Differences

Given two images X and Y , we define the sum of the conditional variance of
differences (SCVD) as the sum of the variances over a partition of their difference.
As before, the subsets are selected bracketing the range of the reference image
to produce a set of bins X(j). In order for the difference to be meaningful,
the two signals should be in direct relation; since the matching measure need be
insensitive to changes in scale and bias, we maximise direct relation by adjusting
the sign of one of them in accordance with eq. 6. In symbols:

SSCVD(X,Y ) =

nb∑

j=1

VD(Xi, ΦYi | Xi ∈ X(j)), (5)

Φ = Γ

⎛

⎝
nb∑

j=2

Γ (E(Yi | Xi ∈ X(j))− E(Yi | Xi ∈ X(j − 1)))

⎞

⎠ , (6)

where Γ indicates the step function mapping R to {−1, 1}. Φ encodes a cumu-
lative result of comparisons between a pair of E(Yi) in the adjacent histogram
bins, so that the sign is properly adjusted. Hence, the requirement for the map-
ping from X and Y is to be weakly order preserving (the function should be
monotonic but is not required to be injective). This restriction, not present in
the original SCV formulation, makes it possible to make better use of the avail-
able information and largely valid, e.g. between signals captured for the same
target with different modes.

4 Generalising the Conditions

Uniformly partitioning the intensity range of X into equally sized bins X(j) can
lead subpar performances when the intensity distribution is uneven: poorly sam-
pled intensity ranges are noisy and their variance unreliable. Overly sampled re-
gions of the spectrum conversely lead to compressing many pixels into a single bin,
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Fig. 2. Effects of quantisation and displacement. On the top row: HXY for a
pair of aligned images. Bottom row: HXY for the same pair plus displacement. Left
column: HXY using uniform quantisation of intensity range. Right column: HXY by
using histogram equalised intensities for the reference image.

discarding a large amount of useful information in the process. The procedure is
also inherently asymmetric, producing in general different results when swapping
the images involved. In this section we discuss two non-mutually exclusive modifi-
cations of our proposal in order to deal with these issues. Each one of themprovides
an independent performance boost to the baseline approach described.

4.1 Uniform Quantizations

In fig. 2 (top-left) is shown the joint histogram between an image and its gray
scale inverse. As it can be seen, the bins corresponding to the low and high end
of the intensity spectrum are not receiving any vote, thus compressing the image
information into a smaller number of regions.

To achieve a uniform bin utilisation, we perform histogram equalisation on
the reference image X . Figure 2 (right) shows an HXY generated by replacing
the input reference image X with its histogram equalized version, achieving full
utilisation of the entire dynamic range.

On the bottom row of fig. 2 are shown the original and histogram equalised
version after applying a 5 pixel displacement to one of the images. As a result,
the entries are more scattered and less sharp. As in the previous case, the non
equalised version does not make full use of the available bins; the equalized one,
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shown at the bottom right spreads the vote over a larger area, affecting the
variance computation and resulting in a more discriminative measure.

4.2 Bi-directional Quantisations

Both SCV and SCVD are structurally asymmetrical since only one of the im-
ages is used to define the partitions in which to compute the variance. Generally,
S{SCV,SCVD}(X,Y ) �= S{SCV,SCVD}(Y,X) because the two quantities are com-
puted over different subregions which depends on the reference image. As far as
the task of image matching is concerned, no particular reason exists in choosing
one image over the other as the reference; the process of quantization can thus
be symmetrised computing S{SCV,SCVD} bi-directionally:

SB
{SCV,SCVD} = (S{SCV,SCVD}(X,Y ) + S{SCV,SCVD}(Y,X)) / 2 . (7)

Given the characteristics of SCVD (SCV), in presence of uneven quantizations
one direction is usually much more discriminative than the other. The above
formula is capable of successfully disambiguating such situations.

5 Experimental Evaluation

Experiment I. In order to compare our proposal, its variations and the orig-
inal SCV approach, in this first experiment we study the discriminativeness of
each one of them for increasing, isotropic displacements. We selected an image
location, a direction and a displacement all at random, computing the mea-
sure between the selected reference window and the template after applying the
translation. Notice that the template is negated in order to simulate multi-modal
inputs. The size of the region was fixed to 50×50 pixels while the maximum dis-
tance was set to be half of its edge length, i.e. 25 pixels. The results are shown
for a single image (the peppers image included in Matlab) but the plot of figure 3
is similar for any non-periodic, non-uniform picture.

Figure 3 was produced averaging 20,000 iterations of this procedure, to remove
the effects of noise (each single trial is roughly monotonic). As it can be seen, all
SSCVD versions are better at discriminating the minimum. Histogram equalized
and symmetric variants obtain steeper gradients for both SCV and SCVD. When
utilising both improvements, SCVD shows a nearly constant slope, a crucial prop-
erty in order to use optimization algorithms based on implicit derivatives.

Experiment II. We now compare the performance of different similarity mea-
sures on a synthetic registration task using a gradient descent search; given a
random location and displacement as before, we optimize the cost function fol-
lowing the direction of the steepest gradient. The procedure terminates when
reaching a local minima or the maximum number of allowed iterations (set to
50 in our experiments). Figure 4 was obtained averaging 4000 different trials; as
it can be seen, each SCVD version beats the equivalent SCV measure using the
same set of variants, which provide a non negligible performance boost.
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Fig. 3. Matching measure vs. displacement. We compare our proposal, its vari-
ations and the original SCV approach over random displacements within an image.
SCVD plus both extensions results in the most discriminative measure, with a nearly
constant slope across the entire search domain.
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Fig. 4. Convergence vs. displacement. The plots show the convergence rate as
a function of the distance between the reference and displaced window. We compare
our proposal, its variations and the original SCV approach over random displacements
within an image.
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(a) (b) (c) (d) (e)

Fig. 5. Registration experiment. (a) Input frame with reference region marked
green. (b-e) Registrations by MI, CCRE, SCV and SCVD. On the second row are
shown the registered regions backwarped to the template (sequence part of the ESM
project, http://esm.gforge.inria.fr).

Experiment III. In our final experiment we compare the performance of sev-
eral similarity measures on a tracking task over a real image sequence. Figure 5
(a) shows one of the frames of the sequence, and its reference template. The
subsequent frame has both photometric and geometric deformations; in figure
5 (b-e) we display the registration results respectively for MI, CCRE, SCV and
SCVD, showing both the best matching quadrilateral on the frame and the re-
gions backwarped to the reference. The results with SCVD and SCV are by our
implementation while those with MI and CCRE are by an implementation by
[8] on the basis of the software presented in [10].

6 Conclusions

We presented a new statistical similarity measure, the sum of the conditional
variance of difference (SCVD), tailored for robustly matching two image regions
in presence of non-linear intensity transformations. Under the assumption of the
transfer function being weakly order preserving, we have shown our proposal to
outperform the sum of the conditional variance (SCV), a recent algorithm that
was already shown to be competitive with the current state of the art. We also
developed two non mutually exclusive improvements that can make both SCV
and SCVD more discriminative at a negligible computational cost. Although
we have demonstrated the benefit of SCVD in the context of image matching
and registration, its principle is applicable to measure the similarity of two 3D
volumes.
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