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Abstract. Recently the kernel discriminant analysis (KDA) has been
successfully applied in many applications. However, kernel functions are
usually defined a priori and it is not known what the optimum kernel
function for nonlinear discriminant analysis is. Otsu derived the optimum
nonlinear discriminant analysis (ONDA) by assuming the underlying
probabilities similar with the Bayesian decision theory. Kurita derived
discriminant kernels function (DKF) as the optimum kernel functions in
terms of the discriminant criterion by investigating the optimum discrim-
inant mapping constructed by the ONDA. The derived kernel function
is defined by using the Bayesian posterior probabilities. We can define
a family of DKFs by changing the estimation method of the Bayesian
posterior probabilities. In this paper, we propose a novel discriminant
kernel function based on Ll-regularized regression, called L1 DKF. L1
DKEF is given by using the Bayesian posterior probabilities estimated by
L1 regression. Since L1 regression yields a sparse representation for given
samples, we can naturally introduce the sparseness into the discriminant
kernel function. To introduce the sparseness into LDA, we use L1 DKF
as the kernel function of LDA. In experiments, we show sparseness and
classification performance of L1 DKF.

1 Introduction

Recently the kernel discriminant analysis (KDA), a non-linear extension of linear
discriminant analyasis (LDA), has been successfully applied in many applications
[1,[8]. KDA constructs a nonlinear discriminant mapping by using kernel func-
tions. Usually the kernel function is defined a priori, and it is not known what
the best kernel function for nonlinear discriminant analysis (NDA) is. Also the
class information is usually not introduced in kernel functions.

On the other hand, Otsu derived the optimum nonlinear discriminant anal-
ysis (ONDA) by assuming the underlying probabilities |9-11] similar with the
Bayesian decision theory |2]. He showed that the optimum nonlinear discrimi-
nant mapping was obtained by using variational calculus and was closely related
to Bayesian decision theory (The posterior probabilities). The optimum nonlin-
ear discriminant mapping can be defined as a linear combination of the Bayesian
posterior probabilities and the coeflicients of the linear combination are obtained
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by solving the eigenvalue problem of the matrices defined by using the Bayesian
posterior probabilities.

Kurita showed that the best kernel function is derived from the optimum
discriminant mapping constructed by ONDA by investigating the dual problem
of the eigenvalue problem of ONDA [7]. The derived kernel function, called the
discriminant kernel function (DKF), is also given by using the posteriori prob-
abilities. This means the class information is naturally introduced in the kernel
function. As like ONDA, the DKF is also optimum in terms of the discriminant
criterion. Kurita also showed that a family of DKFs can be defined by changing
the estimation method of the Bayesian posterior probabilities [7].

Recently, many researchers have actively studied about sparseness of features
or classifiers [3][13]. It is known that the sparse representation often brings several
good properties for classification problems; lower computational load, higher
classification accuracy or a feature representation which is easy to interpret.

One of the approach to give sparse representation to existing methods is to
introduce the L1-regularized penalty into optimization problems. Based on this
approach, Sparse principal component analysis (PCA) by Zou et al. [13] and
sparse LDA by Clemmensen et al. [3] were proposed.

In this paper, we propose a novel discriminant kernel function based on L1-
regularized regression, called L1 DKF. L1 DKF is obtained by using the Bayesian
posterior probabilities estimated by L1 regression. Since L1 regression yields a
sparse representation for given samples, we can naturally introduce the sparse-
ness into DKF.

We use L1 DKF as the kernel function of LDA to introduce the sparseness into
LDA indirectly. Our approach is different from Clemmensen’s approach which
brings the sparseness into LDA directly [3]. In experiments, we show sparseness
and classification performance.

In Sec. 2l we briefly summarize LDA and its nonlinear extensions, KDA and
ONDA. In Sec. Bl we describe about discriminant kernels. In Sec. [, we propose
L1 regression based discriminant kernel function. The experiments are shown in
Sec. Bl The conclusions are described in Sec. 6l

2 Optimal Nonlinear Discriminant Analysis

2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [4] is defined as a method to find the linear
combination of features which best separates two classes of objects. LDA is
regarded as one of the well known methods to extract the best discriminating
features for multi-class classification.

Let an m—D feature vector be = (21, ...,7m,)T. Consider K classes denoted
by {C1,...,Ck}. Assume that we have N feature vectors {x;|i = 1,...,N}
as training samples and they are labeled as one of the K classes. Then LDA
constructs a dimension reducing linear mapping from the input feature vector
to a new feature vector y = ATx where A = [a;;] is the coefficient matrix.
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The objective of LDA is to maximize the discriminant criterion,
J=tr(25 2p) (1)

where Y7 and Y5 are respectively the total covariance matrix and the between-
class covariance matrix of the new feature vectors y.

The optimal coefficient matrix A is then obtained by solving the following
generalized eigenvalue problem

YpA=XrAA (ATXrA=1) (2)

where A = diag (A1,..., A1) is a diagonal matrix of eigen values and I shows
the unit matrix. The matrices XJr and Y'p are respectively the total covariance
matrix and the between-class covariance matrix of the input feature vectors .

2.2 Kernel Discriminant Analysis

The kernel discriminant analysis (KDA) is one of the nonlinear extensions of
LDA. Consider a nonlinear mapping ¢ from a input feature vector  to the new
feature vector @(x). For the case of 1-D feature extraction, the discriminant
mapping can be given as y = a’®(x). Since the coefficient vector a can be
expressed as a linear combinations of the training samples as a = ZZ]\LI a;P(x;),
the discriminant mapping can be rewritten as

N N
y= Zai@(wi)TQ(w) = ZaiK(wi, z) = a’k(x), (3)

where K(x;,z) = ¢(x;)T®(x) and k(x) = (K(x1,x),...,K(zN,x)) are the
kernel function defined by the nonlinear mapping @(x) and the vector of the
kernel functions, respectively.
Then the discriminant criterion is given as
g o aTZ‘l(gK)a

= (4)

S op OLTZ‘(TK)Oz7

where 02, and 0% are respectively the total variance and the between-class vari-
ance of the discriminant feature y, and Z(TK) and E%K) are respectively the total
covariance matrix and the between-class covariance matrix of the kernel feature
vector k(x) (details are denoted in [7]).

The optimum coefficient vector & can be obtained by solving the generalized
eigenvalue problem Zg()a = E‘(A},{ Ja.

For the multi-dimension case, the kernel discriminant mapping is given by
y = ATk(x), where the coefficinet matrix A is defined by AT = (ay, ..., an).
The optimum coefficient matrix A is obtained by solving the eigenvalue problem

S04 = 594, (5)

Usually the kernel function is defined a priori in KDA. However it is not noticed
what the best kernel function for nonlinear discriminant analysis is. Also the
class information is usually not introduced in these kernel functions.
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2.3 Optimal Nonlinear Discriminant Analysis

Otsu derived the optimal nonlinear discriminant analysis (ONDA) by assuming
the underlying probabilities [9-11]. This assumption is similar with the Bayesian
decision theory. Similar with LDA, ONDA constructs the dimension reduc-
ing optimum nonlinear mapping which maximizes the discriminant criterion J.
Namely ONDA finds the optimum nonlinear mapping in terms of the discrimi-
nant criterion J.

By using Variational Calculus, Otsu showed that the optimal nonlinear dis-
criminant mapping is obtained as

K
Yy = ZP(C’Hw)uk (6)

=1

where P(Cy|x) is the Bayesian posterior probability of the class Cj given the
input @. The vectors ug(k = 1,..., K) are class representative vectors which are
determined by the following generalized eigenvalue problem

I'U =PUA (7)

where I' = [v;;] is a K x K matrix whose elements are defined by
Vi = /(P(Ci\w) — P(C))(P(Cjlz) — P(C)))p(x)dz (®)

and the other matrices are defined as U = [ug, ... ,uK]T, A =diag(A1,..., L),
P =diag (P(Ch1),...,P(Ck)). It is important to notice that the optimal nonlin-
ear mapping is closely related to Bayesian decision theory, namely the posterior
probabilities P(Ck|x).

By using the eigen vectors obtained by solving the generalized eigenvalue
problem (@), we can construct the optimum nonlinear discriminant mapping
from a given input feature & to the new discriminant feature y as shown in
the equation () if we can know or estimate all the posterior probabilities. This
means that we have to estimate the posterior probabilities for real applications.
It also implies a family of nonlinear discriminant mapping can be defined by
changing the estimation method of the posterior probabilities.

3 Discriminant Kernel Functions

3.1 Dual Problem of ONDA

In the KDA, usually the kernel function is defined a priori. The polynomial
functions or the Radial Basis functions are often used as the kernel functions
but such kernel functions are general and are not related to the discrimination.
Thus the class information is usually not introduced in these kernel functions.
Also it is not known what the optimum kernel function for nonlinear discriminant
analysis is.
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Kurita showed the optimum kernel function, called discriminant kernel func-
tion (DKF), can be derived by investigating the dual problem of the eigenvalue
problem of ONDA [7]. The DKF is also optimum in terms of the discriminant
criterion.

The eigenvalue problem of ONDA given by the equation (@) is the generalized
eigenvalue problem. By multiplying P~'/2 from the left, this eigen equations can
be rewritten as the usual eigenvalue problem as

p~Y2pp-12pl2y = pYRyA. (9)
By denoting U = PY/2U, we have the following usual eigenvalue problem as
(P~Y2rp~YHU =UA. (10)
Then the optimum nonlinear discriminant mapping of ODNA is rewritten as
y=U"B(x) =UTP V?B(x) = Ul ¢(x) (11)

where ¢(x) = P~'/2B(z) and B(x) = (P(Ci|z) — P(Cy),...,P(Cklz) —
P(Cg)T.

For the case of N training samples, the eigenvalue problem to determine the
class representative vectors (I0) is given by

(T d)U = UA, (12)

where & = (¢(x1),...,d(zy))7.
The dual eigenvalue problem of ([I2) is then given by

(@dT)V =V A (13)

From the relation on the singular value decomposition of the matrix @, these
two eigenvalue problems (I2)) and (I3) have the same eigenvalues and there is
the following relation between the eigenvectors U and V as U = #TVA~1/2,

By inserting this relation into the nonlinear discriminant mapping (]:Ij:[)7 we
have

y=A"V2VT0p(x) ZA V200(x Za K (x;,x) — (14)

where

K(zi,x) = ¢(x:)" d(x) +1

P(Cklzi) — P(Ck)(P(Cklz) — P(Ck))
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This shows that the kernel function of the optimum nonlinear discriminant map-
ping is given by

This is called the discriminant kernel function (DKF).

The derived DKF is defined by using the Bayesian posterior probabilities
P(Cy|x). This means that the class information is explicitly introduced in this
kernel function. Also there is no kernel parameters. This means that we do not
need to estimate the kernel parameters.

4 Sparse LDA Based on L1 DKF

There are many ways to estimate the Bayesian posterior probabilities. Depending
on the estimation method, we can define the corresponding DKF [6][7].

In this paper, we propose L1-regularized discriminant kernel function which is
defined by using the Bayesian posterior probability obtained from L1-regularized
regression. We use L1 DKF as the kernel function for LDA.

4.1 L1-Regularized Regression

Given training samples {x,, tn}i}’:1 where x,, is n-th observation and ¢,, is the
corresponding target value of x,,, the objective of regression is to estimate the
value t for a new data x.

The simplest estimation model is given as the linear model:

y(x,w) =w'ix (17)

where x = (1,21, --,2p), w = (wo, w1, ,wp) and y(x,w) is the predicted
value of t. An appropriate cofficient vector w is obtained by minimizing a certain
error function Ep(w). A sum-of-squares error function is commonly used:

1 N

Ep(w) = 9 Z(tn - WTXn)2~ (18)

n=1

To control over-fitting, we can add a regularization term Ey (w) with a regular-

ization parameter A into the error function. Given general regularizer Eyw (w) =
M . . .

>_j—1 |wj|?, we obtain a regularized error function,

1Y 1Y
o Dt =T+ 3wy, (19)
n=1 j=1

The case of ¢ = 1 is known as the L1-regularized regression [12]. L1 regression
has the property that if A(> 0) is sufficiently large, some of the coefficients w;
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Table 1. Classification accuracy for the test set (agerage of 10 trials)

dataset bre dna ger hea iri seg sem spl veh win
# of classes 2 3 2 2 3 7 10 2 4 3
# of samples 683 2586 1000 270 4 2310 1593 3175 846 178
# of features 10 180 24 13 150 19 256 60 18 13
LDA 96.3% 93.0% 72.1% 83.9% 86.1% 88.9% 81.9% 83.9% 76.3% 98.5%
sparse LDA 96.4% 93.5% 72.8% 85.2% 89.6% 89.9% 85.7% 84.4% 77.3% 99.3%

are driven to zero. It leads to a sparse model in which the corresponding basis
functions play no role.

for K class classification problems, L1 regression can be used as the Baysian
posterior probability estimator by the one-vs-all manner. Let x,, denote n-th
d-dimensional feature vector (n =1,---,N). Forall k =1, .-, K, the regression
about k-th class vs other classes is performed between independent varible x,,
and following dependent variable t*

o 1 if sample x,, belongs to class k, (20)
" 0 otherwise.

After K times regression, we obtain summarized projection vector of x,,,
P(xn) = (P1,- -, PK) = (W] Xpy -+, WicXn) (21)

where wy, is k-th projection cofficients. Ideally, if x,, belongs to class k, the k-th
component of p should be 1, and the others should be 0. By normalizing p(xy)
to satisfy the condition Vk(py > 0) and p1 + - -+ px = 1, we can consider py, as
the estimation of the Bayesian posterior probabilities P(Cy|x).

4.2 L1 DKF and Sparse LDA

In this paper, we use L1 regression for the estimator of the Baysian posterior
probability in the K class problems. For the input vector x, the regression
outputs probabilistic vector (p1,---,pk) in Eq. [ZI) as the estimation of the
Bayesian posterior probabilities (P(C1|x), - -, P(Ck|x)).

Then the corresponding discriminant kernel function, L1 DKF, is given as

’ = p(Ck)

We use L1 DKF as the kernel function of LDA to introduce the sparseness into
LDA indirectly.

5 Experiments

We confirmed the performance of L1 DKF for the kernel of LDA, by using
several data sets in UCI machine learning repository [5]: Breast-cancer (bre),
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Fig.1. Results for semeion data. The top figure shows the sparseness of the regres-
sion coefficients. The bottom figure shows the classification rate for the test set. The
horizontal line shows LDA’s performance. The curve shows sparse LDA’s performance.
Both graphs show the average of 10 trials’ results.

dna, german (ger), heart (hea), iris (iri), segment (seg), semeion (sem), splice
(spl), vehicle (veh) and wine (win) data. Each data set was divided into a training
set (2/3 of all samples) and a test set (remaining samples), at random. For
classification experiments, we made 10 different divisions of the training and
test sets. For all experiments, we used class prior P(Cy) = Ni/N where Ny, is
the number of samples in C;. We use a nearest mean classifier for usual LDA
and sparse LDA.

We train L1 DKF by using different regularization parameter A = 271°, 2714,
..., 20, Fig. M shows the training result for the semeion data. Note that the
figure shows the average of results of 10 trials.

The top figure shows the sparseness of the L1 DKF. The semeion data has
10 classes and 256 features, therefore the summarized projection matrix
[w1, -+, Wk] has totally 2560 elements. The vertical axis shows the number
of zero elements in 2560 elements. The number of zero elements is increasing in
proportion to the regularization parameter .

The bottom figure shows the classification accuracy for the test set. As the
baseline performance, LDA has 81.9% accuracy. The accuracy of sparse LDA is
better than LDA in some part. The highest averaged accuracy of sparse LDA is
85.7 % (X = 23). In this case, about 1,400 features in 2,560 original features did
not be used in the classification task. It is considered that the features which are
not suitable for the classification task were removed by L1 regression.

Tab[Il shows the classification performances of LDA and sparse LDA for each

data set. In all cases, the highest performance of sparse LDA was better than
the performance of LDA.
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6 Conclusions

In this paper, we propose a novel discriminant kernel function based on L1
regression (called L1 DKF), and we use it for the kernel of LDA to introduce
the sparseness into LDA. In experiments, we show L1 DKF is appropriate as
the kernel for LDA. Our sparse LDA has better classification performance than
usual LDA.
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