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Abstract. In this paper a novel feature selection scheme is proposed,
which exploits the potentialities of a recent probabilistic generative
model, the Counting Grid. This model is able to cluster together similar
observations, highlighting the compactness of a class and its underlying
structure. The proposed feature selection scheme is applied to the expres-
sion microarray scenario, a peculiar context with very few patterns and a
huge number of features. Experiments on benchmark datasets show that
the proposed approach is effective and stable, assessing state-of-the-art
classification accuracies.
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1 Introduction

Feature selection techniques definitely represent an important class of prepro-
cessing tools in many Pattern Recognition applications: such methods, by elim-
inating uninformative features, can reduce the dimension of the problem space,
thus alleviating the curse of dimensionality issue [1]. Further, there are appli-
cation fields – like biology, where everyday lab procedures generate enormous
amount of data to be processed – where it is inconceivable to devise an analysis
procedure which does not comprise a feature selection step. A clear example can
be found in the analysis of expression microarray data, where the expression level
of thousands of genes is simultaneously measured. A typical classification task
implies few dozens of samples, each one characterized by the expression level of
thousands of genes (i.e. few points in a huge dimensional space). In this con-
text, feature selection techniques are even more important, since they can help
the medical/biological researchers in identifying a stable and informative set of
biomarkers for cancer diagnosis, prognosis, and therapeutic targeting [2, 3].

A large amount of approaches have been introduced in the past in the feature
selection field. Broadly, they can be divided in three major classes, depending
on how they interact with the classification technique. Filter approaches do not
interact with the classifier system, and perform selection just by looking at the
intrinsic properties of data. Usual examples are ranking of the features according
to criteria which spans from simple variance up to complicates statistics [2, 4].
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Wrapper methods interact with a specific model trained on the subset of fea-
tures, using metrics such as the classifier performance / error estimate to assess
the quality of the selected features. Finally, in embedded techniques, the search
for an optimal subset of features is built into the classifier construction. In the
popular SVM-RFE algorithm [5], the weight given to each feature by the SVM
classifier is used as a score to rank features, from the most important to the
less important. In the specific field of expression microarray – where the feature
selection is called gene selection – a common problem of most methods proposed
in the past is the stability of the extracted features/genes: actually, datasets
which differ by a few samples can lead to complete different sets of genes selected
by the feature selection algorithm, still guaranteeing good classification perfor-
mances [6]. This issue has been often disregarded and has been addressed only
recently [7, 8].

This paper presents a novel feature selection scheme, which is based on the
Counting Grid (CG) model [9] – a probabilistic model which clusters together
similar observations, highlighting the compactness of a class and its underly-
ing structure. The proposed approach is specifically thought for the microarray
scenario, which is characterized by the presence of few points in a very high
dimensional space. In fact, in [9] it has been show that CGs provide a rich and
powerful description of a microarray dataset: samples and gene expressions can
be placed on an N-dimensional grid; samples coming from the same class are
placed close together in this grid, allowing easy and interpretable visualization
of the transition from one class to the other, which turns out to be smooth in
most of the cases. In this paper we make one step ahead along this direction,
proposing a method which starts from the embedding of the data into the grid
and permits to gain insights into which genes characterize a particular class. In
fact, starting from the dense embedding of the data provided by the CG, i) we
embed the class label on the grid, ii) we highlight the directions of maximum
variation between classes by means of directional derivatives, and finally iii) we
rank the genes based on how much they vary along these directions. Eventually
the ranking is used to extract a stable set of genes for classification or biomarker
identification. A further important note concerns the assumption made by most
of the gene selection techniques about the independence between genes (actually
the typical approach is to rank individually the genes): actually this assumption
oversimplifies the complex relationship between genes – which are well known to
interact with each other through gene regulative networks. Therefore, models like
Counting Grid which can measure and consider the relation and the influence
between genes should be preferred.

The experimental evaluation, performed on well-known datasets and com-
pared with state-of-the-art methodologies, shows the suitability of the proposed
approach in terms of classification accuracy. Furthermore, to assess the stability
of the selected genes, we show that slight alterations in the composition of the
training set do not change the selected features, giving confidence that the genes
may be somehow involved in the pathology of interest.
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Fig. 1. a) An example of a counting grid geometry. b) Label Embedding γi.

2 Background: Counting Grid Model

In Pattern Recognition, data samples are often represented as bags of features
without particular order; each t-th observation is characterized by a vector –
often called count vector {ctz} – containing the number of occurrences of each
feature z [10, 11]. For example, a text document may be described by the num-
ber of occurrences of the different words it contains (or an image with the num-
ber of occurrences of different visual features it contains). This choice is often
motivated by the difficulty or computational efficiency of modeling the known
structure of the data. Concerning microarray, it has been shown in [12–14] that
the bag-of-features representation is well-suited also for microarray data, pro-
viding interpretable and descriptive signatures. Each sample can be seen as an
independent observation; the gene expression value is then interpreted as the
“count” of that gene in the sample: the higher the expression level, the “more
present” the gene is in such experiment.

The counting grid model, recently introduced in [9], is a generative model for
such representations. Formally, the basic counting grid πi,z is a set of normalized
counts of features indexed by z on the 2-dimensional1 discrete grid indexed by
i = (i, j) where i ∈ [1 . . . E1], j ∈ [1 . . . E2] and E = [E1, E2] describes the extent
of the counting grid. Since π is a grid of distributions,

∑
z πi,z = 1 everywhere

on the grid (see Fig.1a for an illustration).
A given bag of features, represented by counts {cz} is assumed to follow a

count distribution found in a patch of the counting grid. In particular, using
a window of dimensions W = [W1,W2], each bag can be generated by first
selecting a position k on the grid and then by placing the window in the grid
such that k is its upper left corner. Then, all counts in this patch are averaged

1 N-dimensional in general, here we focus on 2 dimensions.
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to form the histogram hk,z = 1
W1·W2

∑
i∈Wk

πi,z , and finally a set of features in
the bag is generated. In other words, the position of the window k in the grid is
a latent variable given which the probability of the bag of features {cz} is

p({cz}|k) =
∏

z

(hk,z)
cz =

1

W1 ·W2

∏

z

(
∑

i∈Wk

πi,z)
cz

where with Wk we indicate the particular window placed at location k (see Fig.
1a). We will also often refer to the ratio of the CG area and the window area
κ = E1·E2

W1·W2
, as the capacity of the model.

Computing and maximizing the log likelihood of the data turns to be an
intractable problem; therefore it is necessary to employ an iterative EM algo-
rithm. The E step aligns all bags of features to grid windows, to match the bags’
histograms, inferring qtk ∝ exp

∑
z c

t
z · log hi,z, i.e., where each bag maps on the

grid. In the M-step the model parameter, i.e. the counting grid π, is re-estimated.
To avoid severe local minima it is important to consider the Counting Grid as
a torus, and perform all windowing operation accordingly. For details on the
learning algorithm and on its efficiency see [9].

3 The Proposed Approach

Once a Counting Grid is learned, each sample can be mapped on it through qtk,
which represents a map telling which part of the CG has more likely generated
the pattern t. As a first step of our procedure, we can map all samples belonging
to the same class to the CG, trying to obtain a class-related averaged map. This
step in [9] has been called class labels embedding, where the goal was to embed
the samples’ class labels yt = l, l = [1, . . . , L] to obtain a posterior probability of
each class p(l|i) = γl(i) in each position i: this indicates which positions of the
CG better “explain” that class. This is achieved using the posterior probabilities
qtk already inferred like illustrated in Fig.1b and described by Eq.1

γl(i) =

∑
t

∑
k|i∈Wk

qtk · [yt = l]
∑

t

∑
k|i∈Wk

qtk
(1)

where [·] is the indicator function, which returns 1 if sample t belongs to class l
and 0 otherwise. Roughly speaking, the main idea is to “average” all the map-
pings qtk of the training samples belonging to a given class. If the CG is able to
capture the underlying behaviour of a specific class, then all the mappings will
be more or less coherent, and only a part of this averaged map will be differ-
ent than zero, possibly in a spatially coherent small region – the region which
more likely “explains” the training patterns of that class. In order to clarify this
concept, in Fig. 2a we show the label embedding for the prostate cancer dataset
[15], which comprises two classes. In the figure the tumoral class is embedded.
Please observe that the active (non zero) locations are all grouped in spatially
coherent zones of the averaged map. Therefore, even if the labels are not used
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Fig. 2. a) Label embedding γi. b) Gradient of the embedding. c) Counting grid for a
particular gene (πz) and its gradient. d) Fz,i.

during the learning of the CG, tumoral and non-tumoral samples are naturally
separated (since we are in a two class problem, the embedding of non tumoral
clas is simply obtained by reversing this image); this suggests that indeed CGs
are suitable to describe the latent structure which generates the data.

As a second step, we compute the gradient of the embedding,∇γi, which returns
information about where and how the classes separates (see Fig.2b). In this case
the idea is to find which are the regions in the CGwhere the first class “translates”
to the second class or vice versa. Please note that, in the two class case, we only
need to compute the gradient on one map, since the map of the second class is just
the complementary of the first. Even if the generalization to the multiclass case
is somehow straightforward (for example 1 versus all embeddings, or others), for
simplicity here we present the two class case.

As a final step, to get the feature score Fz , upon which we will base our feature
selection strategy, we rank the genes depending on how much their expression
vary along the borders between the classes. The idea is straightforward: to dis-
criminate between the two classes the most useful features are the ones which
vary most where we have the class transition. For example in Fig.2c we show
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for a particular gene ẑ the map πẑ,i, which represents where that gene is more
expressed in the grid. We also show its gradient in each position (yellow arrows).
After a quick glance at Fig.2b one can convince himself that the expression of
ẑ is mostly expressed in tumoral samples and often varies where a transition
between tumoral and non-tumoral samples is present; that suggets that the gene
is important for classification and related to the disease.

To capture this idea mathematically we compute the directional derivatives
of the πz,i in the direction v of the gradient of the class embedding v = ∇γi
and we sum over all the locations i in the grid. To reward more the variation in
expression where we have a high variation between classes, we also multiply by
the module of v.

In formulae we have that the feature score is equal to:

Fz =
∑

i

∣
∣
∣
∣
∣
|v| · v

|v| · ∇πz,i

∣
∣
∣
∣
∣
=

∑

i

∣
∣
∣v · ∇πz,i

∣
∣
∣ (2)

In Fig.2d we show that Fẑ,i �= 0 only along the borders between the 2 classes.
Fz represents the rank score of every feature, which permits to order the genes
from the most prominent (i.e. the one which varies the most in the direction of
“transition” of the classes) to the least.

Summarizing, the proposed approach consists in the following steps:

1. Training of the Counting Grid on the whole dataset (generative step, labels
are not used)

2. Label embedding of the training samples of one of the two classes
3. Computation of the gradient of the map, which estimates the regions of the

maps where there is the transition from one class to the other
4. Computation in such zones of the gradient of the genes
5. As a final score, each gene is ranked by its averaged variation in the direction

where the two classes vary most.

4 Experimental Evaluation

We tested the proposed approach on two well-known microarray benchmark
datasets for two-class problems; a brief description can be found on table 1.

Table 1. Summary of the datasets used

Name N. Features (genes) N. Samples Reference

Colon 2000 62 (40-22) [16]
Prostate 6033 102 (50-22) [15]

Since, as a base level, we are mostly interested in the quality of unsupervised
learning of the distributions over the microarray samples, the whole dataset
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Table 2. Classification results (AUC) for the dataset used

Colon dataset

Gene Signature Size
Sel. Method 10 50 100 150 200

SVM-RFE [8] 76.4 77.5 79.2 79.4 80.1
Ens.SVM-RFE [8] 80.3 79.4 78.6 78.6 79.4
SW SVM-RFE [8] 79.5 81.2 78.4 76.2 76.2
ReliefF [8] 78.8 80.1 78.5 77.5 76.1
Ens. ReliefF [8] 78.9 80.2 79.1 77.3 76.1
SW ReliefF [8] 78.3 79.6 78.1 76.4 75.4
[7] 85.0 86.0 87.0 87.5 86.5
Our method 81.38 89.53 89.64 89.25 88.97

Prostate dataset

Gene Signature Size
Sel. Method 10 50 100 150 200

SVM-RFE [8] 89.8 91.3 92.1 92.1 92.2
Ens.SVM-RFE [8] 92.9 92.0 92.0 92.6 92.7
SW SVM-RFE [8] 93.4 91.3 90.0 90.7 91.2
ReliefF [8] 93.3 93.0 91.4 91.4 91.7
Ens. ReliefF [8] 93.4 92.4 91.4 91.0 91.9
SW ReliefF [8] 93.3 92.7 91.4 91.3 91.4
[7] 95.5 96.0 95.0 94.0 94.0
Our method 78.21 88.30 92.45 94.99 95.73

has been used to train a CG (of course labels are ignored in this phase), in
a transductive way [14, 17]. Then, in order to have a fair comparison with the
state-of-the-art, we adopted the testing protocol of [8]: the data set was randomly
split 2:3/1:3 (training/testing). Labels have been embedded in the Counting
Grid, the score Fz has been calculated for each gene z and the top-ranked genes
have been extracted, ranging in the values [10 50 100 200]. In order to have a fair
evaluation, the gene ranking has been calculated using only the training samples,
and applied to the testing samples. The classification is performed using a linear
SVM with the parameter C = 1, using the area under the ROC curve (AUC)
as an estimate for the classification performance. The test has been repeated
100 times, and the mean of the computed AUCs is shown in table 2, along with
comparative state-of-the-art results (see the references between brackets). As for
the Counting Grid size, we varied its dimensions by selecting κ between 5 and
40, reporting in the table the mean of the obtained AUCs.

From table 2 it is evident that the proposed approach produces results compa-
rable, and in many cases superior, with state-of-the-art techniques. Furthermore,
we assessed the stability of the selected features using the Kuncheva index [18].
The idea is to compare the subsets of genes extracted while varying the train-
ing/testing splitting. Given two sets of features f1 and f2, the stability index is
defined as follows:
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Table 3. Stability of the proposed approach

Colon dataset

Gene Signature Size
Feat. Sel. 10 50 100 150 200

Best [8] 0.78 0.75 0.70 0.69 0.67
[7] 0.65 0.59 0.58 0.61 0.62
Our method 0.94 0.92 0.92 0.91 0.91

Prostate dataset

Gene Signature Size
Feat. Sel. 10 50 100 150 200

Best [8] 0.68 0.65 0.68 0.68 0.69
[7] 0.72 0.72 0.73 0.72 0.71
Our method 0.90 0.94 0.96 0.96 0.96

KI(f1, f2) =
r − (s2/N)

s− (s2/N)
(3)

where s denotes the signature size, r = |f1 ∩ f2| and N is the total number of
genes in the dataset. The Kuncheva index takes values in [-1, 1], and the higher
its value, the larger the number of commonly selected genes in both signatures.
The index is shown in Table 3, for our approach and other methods. Since the
proposed approach is aimed at explaining the data through a generative model,
and labels are used later on, the stability index is very high: for both datasets
and all different signature sizes, it is always above 0.9, while the best result found
in the references we used for comparison is 0.78.

5 Conclusions

In this paper we presented a filter algorithm to perform feature selection, which
is based on the recently proposed Counting Grid generative model. The repre-
sentation given by this model in terms of patterns placed on a 2-dimensional
grid has been tailored to derive a new feature selection algorithm. We applied
the proposed approach to expression microarray data validating through a se-
ries of experiments on benchmark microarray datasets found in the literature.
Obtained results were satisfactory.

References

1. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley & Sons
(2001)

2. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3, 1157–1182 (2003)



Feature Selection Using Counting Grids: Application to Microarray Data 637

3. Saeys, Y., Inza, I., Larraaga, P.: A review of feature selection techniques in bioin-
formatics. Bioinformatics 23(19), 2507–2517 (2007)

4. Thomas, J., Olson, J., Tapscott, S., Zhao, L.: An efficient and robust statistical
modeling approach to discover differentially expressed genes using genomic expres-
sion profiles. Genome Research 11, 1227–1236 (2001)

5. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Machine Learning 46, 389–422 (2002)

6. Li, T., Zhang, C., Ogihara, M.: A comprehensive study on feature selection and
multiclass classification methods for tissue classifcation based on gene expression.
Bioinformatics 20, 2429–2437 (2004)

7. Abeel, T., Helleputte, T., de Peer, Y.V., Dupont, P., Saeys, Y.: Robust biomarker
identification for cancer diagnosis with ensemble feature selection methods. Bioin-
formatics 26, 392–398 (2010)

8. Yu, L., Han, Y., Berens, M.: Stable gene selection from microarray data via sample
weighting. IEEE Transaction on Computational Biology and Bionformatics 9, 262–
272 (2012)

9. Jojic, N., Perina, A.: Multidimensional counting grids: Inferring word order from
disordered bags of words. In: Uncertainty in Artificial Intelligence (2011)

10. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-
Hill, New York (1983)

11. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

12. Rogers, S., Girolami, M., Campbell, C., Breitling, R.: The latent process decom-
position of cdna microarray datasets. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (2005)

13. Bicego, M., Lovato, P., Oliboni, B., Perina, A.: Expression microarray classification
using topic models. In: SAC, pp. 1516–1520 (2010)

14. Perina, A., Lovato, P., Cristani, M., Bicego, M.: A Comparison on Score Spaces
for Expression Microarray Data Classification. In: Loog, M., Wessels, L., Reinders,
M.J.T., de Ridder, D. (eds.) PRIB 2011. LNCS, vol. 7036, pp. 202–213. Springer,
Heidelberg (2011)

15. Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., Ladd, C., Tamayo, P.,
Renshaw, A., D’Amico, A., et al.: Gene expression correlates of clinical prostate
cancer behavior. Cancer Cell 98, 203–209 (2002)

16. Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D., Levine, A.:
Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96,
6745–6750 (1999)

17. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
18. Kuncheva, L.: A stability index for feature selection. In: IASTED International

Multi-Conference Artificial Intelligence and Applications, pp. 390–395 (2007)


	Feature Selection Using Counting Grids: Application to Microarray Data
	Introduction
	Background: Counting Grid Model
	The Proposed Approach
	Experimental Evaluation
	Conclusions
	References




