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Abstract. The state-of-the-art image classification methods usually re-
quire many training samples to achieve good performance. To tackle this
problem, we present a novel incremental method in this paper, which
learns a part model to classify objects using only a small number of
training samples. Our model captures the inherent connections of the se-
mantic parts of objects and builds structural relationship between them.
In the incremental learning stage, we use high entropy images that have
been accepted by users to update the learned model. The proposed ap-
proach is evaluated on two datasets, which demonstrates its advantages
over several alternative classification methods in the literature.

Keywords: Image classification, semantic parts, structural relationship,
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1 Introduction

Image classification is one of the most important tasks in computer vision and
pattern recognition. A number of methods based on the bag-of-words (BOW)
model [1] have been proposed to fulfill this task and have shown to be effective
for object and scene classification [2,3]. The BOW method represents an image
as a histogram of its local features. It is robust against spatial translations of
features, and has demonstrated decent performance in the whole-image classifi-
cation. However, the BOW method does not sufficiently characterize the spatial
relationship between features. Therefore, it is incapable of capturing structural
shapes or locating objects in an image.

Structure based methods extract invariant structures to characterize objects
in an image [4]. One popular solution is to use graph structure because graph
can be used to represent high level vision information. This property has made
the graph based methods capable of bridging the low-level local invariant feature
with the high-level vision information in images [5,6]. More recently, part based
models have been proposed [7,8], which operate on image structure rather than
solely extracting discrete features.

Learning frameworks have been introduced to further improve the adaptability
of statistical and structural image classification methods. Of particular interest
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is the spatial pyramid matching (SPM) method [9]. It partitions an image into
increasingly finer spatial subregions and computes a histogram of local features
from each subregion. The same rationale has been employed by several methods,
such as sparse coding for linear spatial pyramid matching (ScSPM) [10] and
locality-constrained linear coding (LLC) [11]. Similar work also includes the
coarse-to-fine learning framework presented by Li et al [12]. In this work, a novel
automatic dataset collecting and model learning approach, OPTIMOL, has been
developed to refine online picture selection in an incremental way.

Enlightened by these work, we propose an approach to improve the image
classification performance via learning semantic parts of objects and exploring
their structural relationship. It includes a feature learning method [13] to enrich
the part description, and an incremental framework to iteratively update the
learned model. Figure 1 illustrates the framework of this classification method.
To validate the effectiveness of this method, we have compared it against several
state-of-the-art methods in the literature.

Fig. 1. Framework of the incremental structured part model for image classification.
(a) Extracted relevant semantic parts. (b) Training an SVM classifier for each seman-
tic part and building the structured part model. (c) Initial classification results. (d)
Iterative model updating using selected images. After several iterations, the model is
then updated to a refined model.

The main contribution of this paper is three-fold. Firstly, we propose a part
description method that provides abundant mid-level features for image clas-
sification. Secondly, the structured part model combines both appearance and
structure information of objects in images, which leads to improved classifica-
tion performance. Thirdly, the incremental learning algorithm can adapt to novel
image features and structures introduced from unseen testing objects. This has
greatly reduced the number of training images required.
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2 Incremental Structured Part Model

The proposed approach is a combination of both statistical and structural pat-
tern recognition methods. It is based on the observation that different parts of
objects in the same class normally share similar spatial relationship. For exam-
ple, all birds have beaks, legs, and tails, and they follow similar spatial layout.
Therefore, we only need to recognize these three parts and model their spatial
relationship in order to distinguish birds from other objects (Figure 1(a)).

2.1 Semantic Part Learning

We commence by semantic part learning which allows the treatment of each part
as mid-level semantic attribute. We first define the part classes that are impor-
tant to object classification, then image patches for these parts are manually
selected from the training set. From each of these patches, SIFT, texture, color,
and edge direction features are extracted. The SIFT features [14] are extracted
in a grid-based manner, while the texture descriptors [15] are computed at each
pixel using a set of filter banks. To extract the color feature, we use the LAB
values [16] of densely sampled pixels. Edges are generated via standard Canny
edge detector [17]. Using the bag-of-words model, these four types of features
are quantized into vectors with 1000, 256, 128 and 8 dimensions, respectively,
and are concatenated into a vector of length 1392.

Using the part feature vectors, a multi-class support vector machines (SVMs)
can be learned. LetM be the number of part classes, xn denotes the n-th training
sample and yn denotes its part class label. The multi-class SVM generates an
M -dimensional weight vector {w∗

m}Mm=1, with one weight for each class. Let
W denote a matrix whose columns are wm. To estimate W , we minimize the
following loss function:

W ∗ = argmin
∑

n

M∑

t=1

d(wT
t xn, ynt) + γ

∑

m

‖wm‖22 (1)

where γ ≥ 0 is a tradeoff parameter that regularizes the model complexity, and
is set to 0.8 by threefold cross-validation. d(· , ·) is the loss function.

After solving this optimization problem, we get a semantic part classifier.
When an unlabeled image is given, this classifier can be applied to detect relevant
parts in the image. In the next section, we explore the structural relationship
between these parts.

2.2 Structured Part Model Matching

In this step, we effectively arrange the semantic parts in a deformable configura-
tion to represent an object. The structure model here is inspired by the pictorial
structure method [7].

Given an image, let pi(li) be a function measuring the degree of part similarity
when part vi is placed at location li. Let pij(li, lj) be a function measuring the
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degree of deformation when part vi is placed at location li and part vj is placed
at location lj. We define the problem of matching a structured part model to an
image as a statistical function to be maximized

L∗ = argmax
L

(

n∑

i=1

pi(li) + λ
∑

(vi,vj)∈E

pij(li, lj)) (2)

This function maximizes the sum of the matching probabilities pi(li) of each
individual part and the deformation similarities pij(li, lj) for connected pairs of
parts. Therefore, it can be decomposed into two equations as follows:

L∗
1 = argmax

L

n∑

i=1

pi(li) (3)

L∗
2 = argmax

L

∑

(vi,vj)∈E

pij(li, lj) (4)

where Eq. 3 is a standard part model and Eq. 4 is a structure model. λ is a
parameter that adjust the contribution from the part model and the structure
model. It leads to the extension of [7] to a more flexible setting and is self-
adaptive through the incremental process to be described later.

We use a sliding windowmethod to detect parts in an unseen image and to com-
pute pi(li).This is achievedby searching the testing images at three different scales,
i.e., 0.7, 1, 1.3 times the reference part scale (50×50 pixels), respectively. Using the
learned multi-class SVM classifier, we can compute the probability of these candi-
date patches by fitting a sigmoid function to the original SVM decision values [18].
To compute pij(li, lj), we use the same method as [7] to calculate the degree of de-
formation, and fit it to (0, 1] via an exponential function.

The proposed structured part model is robust to missing parts in an image. In
Eq. 2, even if one or twopi is incorrect, highprobability still canbeachievedonparts
from object in the same class due to the contribution from the structure model.

2.3 Coarse-To-Fine Updating

Given a very small number of training images of an object class, our algorithm
learns the optimal structured part model L∗ that best describes this class us-
ing the steps introduced above. Now we introduce a coarse-to-fine process to
iteratively update L∗, which further improves the robustness of the proposed
method.

We randomly separate testing images into several batches and feed them se-
quentially into the system. Each batch is treated as an iteration. Our incremental
process is performed when a new batch comes in. It continuously classifies the
images while learning a more robust model. On each image batch, we compute
the probability that the current optimal structured part model matches the im-
ages using Eq. 2. The model update is dependent on the image matching results.
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Images with low matching probability are discarded, while the rest are divided
into two sets based on the entropy value generated from the following equation

H(I) = −
∑

i

pi ln pi − λ
∑

E

pij ln pij (5)

According to Shannon’s entropy theory, Eq. 5 relates to the amount of uncer-
tainty of an image I. High entropy indicates high uncertainty of an image, which,
in turn, suggests possible new structures. Thus, we choose those images with high
probability and high entropy for model updating. Images with high likelihood
and low entropy are classified to be positive images. The model updating follows
the method introduced in the previous two subsections. It allows refinement of
the part classifiers and the corresponding structure model.

At the same time, the weight parameter λ is updated iteratively to make
the learned model more robust. In each iteration, the image probabilities are
calculated using L∗

1 and L∗
2. This can be achieved by setting λ to 0 and 100 (a

large enough number) respectively. Let ϕi= {x|x be an image belongs to the
positive part using L∗

i }; ϕ= {x|x is an image belongs to the positive part using
L∗}; coni represents the contribution of model L∗

i to L∗. Then

coni =
#{ϕi ∩ ϕ}

#{ϕ} , i = 1, 2 (6)

λ =
con2

con1
=

#{ϕ2 ∩ ϕ}
#{ϕ1 ∩ ϕ} (7)

Eq. 7 determines the weights of the part model and the structure model. By
calculating λ in each batch, more refined model can be achieved. The proposed
coarse-to-fine framework is an iterative process that continuously classifies an
image data set with high accuracy while learning a more robust object model.
We summarize the steps of our algorithm in Algorithm 1.

Algorithm 1. Incremental Structured Part Model for Classification

Input: Set of N positive images (N is a small number), set of novel unlabeled images,
part number n, and weight λ=1.

Output: Set of classified positive images, and the final Structured Part Model
Initialize Manually select n parts in each training image
Repeat
Learn Calculate the features of each part in the latest input images and train

SVM models. (Sec. 2.1)
Learn the Structured Part Model. (Sec. 2.2)

Classify Classify images using the current Structured Part Model. (Sec. 2.2)
Incremental Use the images with high probability and high entropy for model

updating. (Sec. 2.3)
until User satisfied or images exhausted
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3 Experimental Results

We evaluate the performance of the proposed incremental structured part model
on two widely used datasets, Caltech-256 [19] and Pascal VOC 2007 [20], and
show that only a small number of training images is required for the proposed
model (Section 3.1). We also compare our method with other classification meth-
ods such as the model by Gritfin et al. [19], ScSPM [10], and LLC [11].

The Caltech-256 dataset contains 30,607 images in 256 categories, with each
class containing at least 80 images. The Pascal VOC 2007 dataset consists of
9,963 images from 20 classes. Objects in this dataset reside in cluttered scenes
with a high degree of variation in viewing angle, illumination and object appear-
ance. Before the experiments, each image is resized to less than 300×300 pixels
with the aspect ratio unchanged. We used all classes in these two datasets for
the experiments.

3.1 Incremental Structured Part Model Evaluation

In the first experiment, we randomly chose 5, 10, 15, 20, 25 and 30 training im-
ages per class respectively to validate the effectiveness of the proposed method.
We consider three baselines to compare our system with: 1) a standard part
model L∗

1 as in Eq. 3, 2) a structure model L∗
2 of Eq. 4, and 3) our struc-

tured part model without a coarse-to-fine process. The results are shown in
Figure 2. It can be seen that our incremental structured part model outperforms
the the baselines by nearly 10 percent. The proposed model is very stable on
both datasets when different training sizes are used. At the 5% level, our method
achieves classification accuracies that are nearly 10 and 20 percent higher than
the alternatives, respectively.

The reason that our model can achieve good performance under small number
of training images is due to the effect of the coarse-to-fine process. By choosing
those images with high entropy, large amount of novel information can be ac-
quired for model updating. The effect of the incremental process is three-fold.

Fig. 2. The average classification results of all the categories in the Caltech-256 dataset
(left) and Pascal VOC 2007 dataset (right), when different training sizes is used.
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Firstly, it can refine the multi-SVM part model. As illustrated in Figure 1, part 2
of the first model is actually a coarse model, as marked by bars in different colors.
After several incremental iterations, this model is well refined, which is repre-
sented by bars in the same color. Secondly, this process can refine the structural
model both in shape and in edge relationships. Take the last model in Figure 1
for example, the dotted line between part 2 and 3 shows that this relationship
should be week compared with others, because it’s changes in accordance with
different birds’ postures. Thirdly, the iteration refines the parameter λ in Eq. 2,
which leads to a refined global model.

Figure 3 shows some example images with high classification accuracy in the
Caltech-256 dataset. We have also tracked those image data with missing parts.
The results show that most of them can be classified correctly, which proves the
robustness of the proposed method.

Fig. 3. Example images from categories with high classification accuracy in the
Caltech-256 dataset. The percentages in the brackets represent the corresponding clas-
sification accuracy.

3.2 Comparison with other Classification Methods

In this experiment, we first compared the proposed method with several state-
of-the-art classification methods on the Pascal dataset. The classification perfor-
mance is evaluated using the Average Precision (AP) measure. It computes the
area under the Precision/Recall curve, in which higher score means better per-
formance. Table 1 shows the classification accuracy on all 20 classes compared
against several other classification methods [11,21,20]. Our method has achieved
the highest accuracy in most classes, especially those with similar shapes such
as bicycle and motorbike, cat and dog, cow and sheep. The results show that our
semantic part model is capable of extracting features and their structural rela-
tionships in order to distinguish similar objects. We also tested the method on
Caltech-256 dataset, in which we used 5, 15, and 30 training images per class.
Detailed results are shown in Table 2. It suggests that our method leads the
performance with a small number of training images.
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Table 1. Image classification results on Pascal VOC 2007 dataset

Category aero bicyc bird boat bottle bus car cat chair cow

PASCAL 07 Best [20] 77.5 63.6 56.1 71.9 33.1 60.6 78 58.8 53.5 42.6
LLC [11] 74.8 65.2 50.7 70.9 28.7 68.8 78.5 61.7 54.3 48.6
Su [21] 76.2 66.4 59.2 70.3 35.4 63.6 79.4 62.4 59.5 47.9

ours 77.1 73.0 54.8 75.2 37.2 70.3 72.4 65.7 60.6 50.8

Category table dog horse mbike personplant sheep sofa train tv

PASCAL 07 Best [20] 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2
LLC [11] 51.8 44.1 76.6 66.9 83.5 30.8 44.6 53.4 78.2 53.5
Su [21] 58.8 44.9 78.3 67.4 87.9 32.9 46.9 53.8 78.6 58.9

ours 57.5 49.3 75.7 72.9 77.2 42.1 47.9 51.5 80.6 58.6

Table 2. Image classification results on Caltech-256 dataset

Algorithms 5 training 15 training 30 training

Gritfin et al. [19] 18.40 28.30 34.10
ScSPM [10] - 27.73 34.02
LLC [11] - 34.36 41.19

ours 31.15 35.22 36.87

4 Conclusion

In this paper we have proposed a novel incremental structured part model for
image classification. This method first builds image classification models by in-
corporating both advantages from semantic parts and their structural relation
description. Then an incremental framework is employed to refine the model it-
eratively, which makes the proposed method more robust. This method requires
only a small number of training images to achieve good classification perfor-
mance. Future work will explore the use of hierarchical segmentations to find
the semantic parts at the training stage. We will also investigate other features
to train the part classifier.
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