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Abstract. In this paper we use the spectra of a Hermitian matrix and the coef-
ficient of the symmetric polynomials to cluster different human poses taken by
an inexpensive 3D camera, the Microsoft ’Kinect’ for XBox 360. We construct a
Hermitian matrix from the joints and the angles subtended by each pair of limbs
using the three-dimensional ’skeleton’ data delivered by Kinect. To compute the
angles between a pair of limbs we construct the line graph from the given skele-
ton. We construct pattern vectors from the eigenvectors of the Hermitian matrix.
The pattern vectors are embedded into a pattern-space using Principal Component
Analysis (PCA). We compere the results obtained with the Laplacian spectra pat-
tern vectors. The empirical results show that using the angular information can
be efficiently used to clusters different human poses.

1 Introduction

Graph partitioning/clustering and classification is one of the most extensively studied
topics in computer vision and machine learning community. Clustering is closely related
to unsupervised learning in pattern recognition systems. Graphs are structures formed
by a set of vertices called nodes and a set of edges that are connections between pairs of
nodes. Graph clustering is grouping similar graphs based on structural similarity within
clusters. Bunke et al. [1] proposed a structural method referred to as the Weighted Min-
imum Common Supergraph (WMCS), for representing a cluster of patterns. There has
been significant amount of work aimed at using spectral graph theory [2] to cluster
graphs. This work shows the common feature of using graph representations of the data
for the graph partitioning. Luo et al. [3] have used the discriminatory qualities of a num-
ber of features constructed from the graph spectra. Using the leading eigenvalues and
eigenvectors of the adjacency matrix they found that the leading eigenvalues have the
best capabilities for structural comparison. There are a number of examples of applying
pairwise clustering methods to graph edit distances [4]. Recently, the properties of the
eigenvectors and eigenvalues of the Laplacian matrix of graph have been exploited in
many areas of computer vision. For instance, Shi and Malik [5] used the eigenvector
corresponding to second smallest (none zero) eigenvalue (also called Fielder vector) of
the Laplacian matrix to iteratively bi-partition the graph for image segmentation. The
information encoded in the eigenvectors of the Laplacian has been used for shape regis-
tration [6] and clustering. Veltkamp et al. [7] developed a shape retrieval method using
a complex Fielder vector of a Hermitian property matrix. Recent spectral approaches
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use the eigenvectors corresponding to the k smallest eigenvalues of the Laplacian matrix
to embed the graph onto a k dimensional Euclidian space [8], [9].

In this paper we propose a clustering method using the angular information and the
distance between each pair of joints, from the skeleton extracted from the Microsoft
Kinect 3D sensor [10]. We construct a Hermitian matrix using the distance as real part
and the angles between each pair of limb as imaginary part. We use the spectra of the
Hermitian matrix to cluster similar human poses. We construct a feature vector from the
eigenvalues and eigenvectors of the Hermitian matrix of the graph. Once the feature-
vectors for all the poses are to hand, we subject these vectors to Principal Component
Analysis (PCA).

The remainder of the paper is organized as follows. In Section 2 the Hermitian
matrix is defined. The symmetric polynomials are briefly reviewed in Section 3. Section
4 details the construction of the feature vectors. Experimental results are provided in
Section 5 and finally Section 6 concludes the paper.

2 Complex Laplacian (Hermitian) Matrix

A Hermitian matrix H (or self-adjoint matrix) is a square matrix with complex ele-
ments that remains unchanged under the joint operation of transposition and complex
conjugation of the elements. That is, the element in the ith row and jth column is equal
to the complex conjugate of the element in the jth row and ith column, for all indices
i and j, i.e. ai,j = aj,i. Complex conjugation is denoted by the dagger operator † i.e.
H† = H . Hermitian matrices can be viewed as the complex number extension of the
symmetric matrix for real numbers. The on-diagonal elements of a Hermitian matrix
are necessarily real quantities. Each off-diagonal element is a complex number which
has two components, and can therefore represent a 2-component measurement.

To create a positive semi-definite Hermitian matrix of a graph, there should be some
constraints applied on the measurement representations. Let {x1, x2, ..., xn} be a set of
measurements for the node-set V and {y1,2, y1,2, ..., yn,n} be the set of measurements
associated with the edges of the graph, in addition to the graph weights. Each edge then
has a pair of observations (Wa,b, ya,b) associated with it. There are a number of ways in
which the complex number Ha,b could represent this information, for example with the
real part as W and the imaginary part as y. However, here we follow Wilson, Hancock
and Luo [11] and construct the complex property matrix so as to reflect the Laplacian.
As a result the off-diagonal elements of H are chosen to be Ha,b = −Wa,be

ιya,b .
The edge weights are encoded by the magnitude of the complex number Ha,b and the
additional measurement by its phase. By using this encoding, the magnitude of the
number is the same as the original Laplacian matrix. This encoding is suitable when
measurements are angles, satisfying the conditions −π ≤ ya,b < π and ya,b = −ya,b to
produce a Hermitian matrix. To ensure a positive definite matrix, Haa should be greater
than −Σb�=a|Hab|. This condition is satisfied if Haa = xa + Σb�=aWa,b and xa ≥ 0.
When defined in this way the property matrix is a complex analogue of the weighted
Laplacian matrix for the graph.

For a Hermitian matrix there is an orthogonal complete basis set of eigenvectors
and eigenvalues i.e. Hφ = λφ. The eigenvalues λi of Hermitian matrix are real while
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the eigenvectors φi are complex. There is a potential ambiguity in the eigenvectors,
in that any multiple of an eigenvector is a solution of the the eigenvector equation
Hφ = λφ. i.e. Hαφ = λαφ. Therefore, we need two constraints for them. Firstly,
make each eigenvector of unit length vector i.e. |φi| = 1, and secondly impose the
condition arg

∑
i φij = 0.

3 Symmetric Polynomials

A symmetric polynomial is a polynomial P (x1, x2, . . . , xn) in n variables, such that if
any of the variables are interchanged, the same polynomial is obtained. A symmetric
polynomial is invariant under permutation of the variable indices. There is a special
set of symmetric polynomials referred to as the elementary symmetric polynomial (S)
that form a basis set for symmetric polynomial. Any symmetric polynomial can be
expressed as a polynomial function of the elementary symmetric polynomials. For a set
of variables x1, x2, . . . , xn the elementary symmetric polynomials can be defined as:

S1(v1, v2, . . . , vn) =
n∑

i=1

vi

S2(v1, v2, . . . , vn) =

n∑

i=1

n∑

j=i+1

vivj

...

Sn(v1, v2, . . . , vn) =

n∏

i=1

vi

The power symmetric polynomial functions (P) defined as

P1(v1, v2, . . . , vn) =

n∑

i=1

vi

P2(v1, v2, . . . , vn) =

n∑

i=1

v2i

...

Pn(v1, v2, . . . , vn) =

n∑

i=1

vni

The elementary symmetric polynomials can be efficiently computed using the power
symmetric polynomials using the Newton-Girard formula

Sr =
(−1)r+1

r

r∑

k=1

(−1)k+rPrSr−k (1)

here the shortcutSr is used for Sr(v1, v2, . . . , vn) andPr is used for Pr(v1, v2, . . . , vn).
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Fig. 1. Poses for Experiments

4 Feature Vectors

The skeleton of human body with twenty, 3-dimensional points representing the joints
connected by the lines representing the limbs, is acquired using the Microsoft Kinect
SDK. Kinect provides the skeletal data with the rate of 30 frames per second. Figure
1 shows examples of the skeletons captured with the Kinect sensor. Each point in the
skeleton is represented by a three dimensional vector wi = (xi, yi, zi)

T .
We used the limb joint angles and the limb length assigned by the Microsoft Kinect

SKD. We convert the skeleton to its equivalent line graph. The line graph of undirected
graph G is another graph that represents the adjacency between edges of G. The nodes
in the line graph represents the edges of the original graph G. We construct a Hermitian
matrix from the difference between the lengths of each pair of edges and the angles
subtended by those edges. Given two adjacent edges ei and ej , with the nodes wk−1,
wkand wk+1, where wk is the common node. The angle between the edges ei and ej is
given by

θij =
cos((wk − wk−1)

T (wk − wk+1))

||(wk − wk−1)|| × ||(wk − wk+1)|| (2)

The Hermitian matrix H has element with row index i and column index j is

H(i, j) = −Wi,je
ιθi,j (3)

where Wi,j is the difference of the lengths of the edges ei and ej and θi,j is the angle
between the edges ei and ej . To obey the antisymmetric condition θi,j = −θj,i we
multiply θi,j with −1 if length of edge ei > ej .

With the complex matrix H to hand, we compute its eigenvalues and eigenvectors.
The eigenvector of a Hermitian matrix are complex and the eigenvalues are real. We
order the eigenvectors according to the decreasing magnitude of the eigenvalues i.e.
|λ1| > |λ2| > . . . > |λn|. From the eigenvectors the symmetric polynomial coef-
ficients are computed by first computing the power symmetric polynomial. From the
power symmetric polynomials elementary symmetric polynomials are computed using
the Newton-Girard formula [11] (equation 1) as described in Section 3. We take only
the first ten coefficients as the rest of the coefficients approach to zero because of the
product terms appearing in the higher order polynomials. Since the components of the
eigenvector are complex numbers, therefore each symmetric polynomial coefficient is
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also complex. The real and imaginary components of symmetric polynomials are inter-
leaved and stacked to form a long feature vector Fi for the graph representing the pose
frame.

5 Experimental Results
In this section, we provide some experimental investigations of the clustering of differ-
ent human poses. We focus on its use in two different settings. In the first setting we
choose five different poses for the experiment which are shown in Figure 1. We take
200 different instances of each pose. We construct the feature vectors using a complex
Laplaican property matrix detailed in Section 2. We embed the graph feature vectors
into a three dimensional pattern-space by performing the PCA for visualization. Figure
3(a) shows the result of the clustering using the first three eigenvectors. We compare
our clustering result with the clustering result of the Laplacian spectral pattern vectors
[12]. Figure 3(c) shows the result of the clustering using the Laplacian spectral pattern
vectors.
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Fig. 2. Rand Indices Comparison

Under the second setting we choose first three poses shown in Figure 1 and take 100
different instances of each pose. We construct the feature vectors according to the steps
mentioned in Section 4. We then embed the feature vectors into a three dimensional
pattern-space by performing the PCA. Figure 3(b) shows the result of the clustering
using the fist three eigenvectors. We compare the result with the result of the Lapla-
cian spectral pattern vectors. Figure 3(d) shows the result of the clustering using the
Laplacian spectral pattern vectors.

The Laplacian spectral pattern vectors are formed by taking the second smallest
through to the nineteenth smallest eigenvalues of graph Laplacian as components.

Table 1 shows the Rand indices obtained when clustering is attempted using differ-
ent number of poses. The first row shows the Rand indices obtained using the Laplacian
spectral pattern vectors (referred to as Laplacian), while the second row shows the Rand
indices obtained using the pattern vectors detailed in Section 4 (referred to as Hermi-
tian). The same statistics have been shown in the Figure 2 visually which shows that the
clustering results using the angular information is better than the that of the Laplacian
spectral pattern vectors.
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(a) 5 poses, Hermitian
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(b) 3 poses, Hermitian
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(c) 5 poses, Laplacian Spectra
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(d) 3 poses, Laplacian Spectra

Fig. 3. Performance of clustering

Table 1. Rand Indices Comparison

Rand Indices

# of poses 2 3 4 5

Laplacian 0.9189 0.8659 0.7212 0.6393
Hermitian 0.9816 0.9395 0.9042 0.8617

6 Conclusion and Future Work

In this paper we construct feature vectors for the Microsoft Kinect skeletal data from the
spectra of a Hermitian property matrix employing the angle between the limbs and the
lengths of the limbs. The empirical results show that the angular information clusters
different poses efficiently. In future, we would like to extend the Hermitian property
matrix to four components complex number representation known as quaternion.
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