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Abstract. Fisher’s linear discriminant analysis (FLDA) has been at-
tracting many researchers and practitioners for several decades thanks
to its ease of use and low computational cost. However, FLDA implicitly
assumes that all the classes share the same covariance: which implies
that FLDA might fail when this assumption is not necessarily satisfied.
To overcome this problem, we propose a simple extension of FLDA that
exploits a detailed covariance structure of every class by utilizing re-
vealed by the class-wise auto-correlation matrices. The proposed method
achieves remarkable improvements classification accuracy against FLDA
while preserving two major strengths of FLDA: the ease of use and low
computational costs. Experimental results with MNIST and other several
data sets in UCI machine learning repository demonstrate the effective-
ness of our method.

1 Introduction

This paper proposes a simple extension of Fisher’s linear discriminant analysis
(FLDA) that exploits a detailed covariance structure of every class. The major
advantage of our method lies on its ease of use and low computational cost. This
makes our method more useful for practitioners.

FLDA is widely used as a discriminative feature extractor, especially in the
field of pattern recognition, computer vision and machine learning. Its appli-
cation areas have a wide variety, which include character recognition and face
recognition [3,4]. FLDA has been attracting a lot of researchers and practitioners
for a long time thanks to its simple formulation and low computational costs.
However, FLDA implicitly assumes that a distribution of each class should be
Gaussian and all the classes share the same covariance matrix. When facing a
classification problem with other circumstances, its classification performance
might degrade drastically.

Many extensions of FLDA have been proposed to overcome this problem. They
are roughly classified into two categories. The first category is (1) non-linear or
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piecewise linear extensions of FLDA. Hastie, et al.[8],Zhu, et al.[9],Gkalelis, et
al.[10] employed cluster analysis to fit multi-peak feature distributions. Baudat[6]
and Sierra[7] studied non-linear transformation extension to represent complex
feature distributions. This approach is very popular, however, it requires high
computational cost that may eliminate one of the strengths of FLDA. Further,
this approach may incur model selection difficulties such as the number of peaks
and the type of transformations. Another approach is: (2) incorporating between-
distribution metrics such as Kullback-Leibler divergence or Chernoff distance
into the computation of between-class scatter matrices [13,12], instead of simple
Euclidean norms. One major problem of this approach lies on the asymmet-
ric structure of metrics, which leads to inconsistent formulations of the entire
method. In other words, the second approach is attractive if we can avoid this
problem.

Based on the above observations, this paper proposes yet another extension of
FLDA along with the second approach. The main problem is how to inject covari-
ance information of every class into between-class scatter matrix. Inspired by the
class description of Class Featuring Information Compression (CLAFIC) [14,11],
we describe this covariance information as a subspace spanned by eigenvectors
of a class-specific auto-correlation matrix. Thus, we can acquire rich information
of class-wise feature distributions by simply concatenating the subspace induced
from auto-correlation matrix to the subspace obtained from the original FLDA.
Our proposed formulation consists of simple matrix operations only, and the al-
gorithm is still easy to use and enjoy low-computational cost. Further it is easy
to extend the formulation to multi-class categorization problems.

The rest of the paper is organized as follows. Section 2 reviews the classi-
cal FLDA and clarify its fundamental problems. Section 3 describes our new
criterion function for FLDA based on the description of class-wise feature distri-
bution. Section 4 demonstrates the effectiveness of the proposed method through
some experimental evaluations with standard benchmark datasets. Finally Sec-
tion 5 concludes this paper and poses some future work.

2 Fisher’s Discriminant Analysis and Its Problems

This section reviews the classical FLDA and clarifies its fundamental problems.
Let Xc = {x1, . . . ,xnc} be a set of D-dimensional samples in class c, where nc

is the number of samples assigned to the class c. To find the most discriminative
basis for C-class classification problem, FLDAmaximizes between-class distances
represented as the following between-class scatter matrix:

ΣB =
1

C

C∑

c=1

(μ− μc)(μ− μc)
�, (1)

and minimizes within-class distances represented as the following within-class
scatter matrix:

ΣW =
1

C

C∑

c=1

Σc, (2)
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where μ is the mean vector of all samples, μc is the mean vector of samples
assigned in the class c, and Σc is the scatter matrix of the class c:

Σc =
1

nc

nc∑

i=1

(μc − xci)(μc − xci)
�. (3)

The problem is easily solvable as the following generalized eigenvalue problem:

ΣBa = ΣWaλ, (4)

where a is an eigenvector and λ is an eigenvalue obtained from the above gener-
alized eigenvalue problem. Eigenvectors correspond to the most distinctive axes
(projections) to the given dataset.

The number of valid eigenvectors of the above generalized eigenvalue problem
should be less than C, since the number of class means is C and therefore
the maximum rank of the between-class scatter matrix is C − 1 if D > C − 1.
When dealing with 2-class classification problems, only one dimensional subspace
is available. If common covariance assumption is violated in high dimensional
feature space, since most of samples are distributed out of discriminant axis
true discriminant plane may be close to discriminant axis. This dimensionality
limitation is the fundamental problem of FLDA.

3 DFDA: Describing Covariance Structure of Classes in
FLDA

In this section we propose a new FLDA criterion that reflects unique covariance
structures of each class. Our observation is that one reason of the dimensionality
limitation of FLDA is that FLDA only focuses on separating class mean vectors.
In other words, FLDA does not consider the difference of covariance matrices of
classes, or information about sample distributions of classes, which might have
certain discriminative power to the classification problem. From this point of
view, a straightforward extension of FLDA has been proposed in [12] that is
based on Kullback-Leibler divergence. However, its optimization procedure is
much complex than the original FLDA and it weakens the usefulness of FLDA.
A more simpler extension, which is based on the Chernoff criterion, has been
proposed in [13]. However, this method does not scale to large class problems
such as Chinese character classification because this model requires pairwise
classification procedure for multiclass problems.

Our proposed method is inspired CLAFIC[14]: representing sample distribu-
tion information of classes as subspaces. ψck denotes the k-th eigenvector of the
c-th class auto-correlation matrix Γc:

Γc =
1

nc

∑

x∈ωc

xx�. (5)
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ψck is not an eigenvector of the covariance matrix, but obviously has information
about the distribution of samples of the class c (because this is an eigenvector
of auto-correlation). Our key idea is to use ψck to compute dispersions between
classes: intuitively, a classifier that separates ψcks from ψs of other classes is a
good classifier because it segregates “shapes” of class distributions. Our criterion
is described as maximization of

ΣB2 =
∑

c

∑

d �=c

du∑

k=1

du∑

l=1

(ψck − ψdl)(ψck − ψdl)
�. (6)

du denotes a number of eigenvectors of auto correlation matrix used for compu-
tation, which must be predefined by users. Based on this criterion, we define a
new between scatter matrix as

ΣBnew = ΣB +ΣB2. (7)

If the rank of ΣBnew , r = rank(ΣBnew ) is greater than C − 1, then we can
expect improvement of classification accuracy. We call this extension of FLDA
as Detailed FLDA (DFDA), which maximizes ΣBnew . A concept sketch of DFDA
illustrate in Fig.11.

Figure 1(a) illustrates when classes share the same covariance as assumed
implicitly in FLDA. In such a case, the FLDA provides optimal projections.
However, FLDA is not optimal in the case (b) because classes have different
covariances (distributions, or “shapes” of shaded regions). On the other hand,
DFDA projection also tries to separate eigenvectors of class auto-correlation
matrices ψ and there is no assumption of shared covariances among classes.
Thus we can expect improvement of classification accuracy when covariances
among classes are different.

(a) (b)

Fig. 1. Conceptual sketch of the proposed method. (a)conventional FLDA (b)proposed
DFDA. The vectors ψ implicitly reveal the distributions (shapes) of the classes. The
proposed DFDA tries to take the class distribution away from the others by incorpo-
rating ψ into the original FLDA.

1 Though this figure is not truly correct, we expect the figure helps readers to under-
stand the concept of the proposed method.
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4 Experiments

In this section, we present the experimental evaluations. As the first experiment,
we employ MNIST handwritten digit database 2. The MNIST dataset is known
as a standard benchmark data for statistical pattern recognition and machine
learning researches. We would like to understand and present behaviors of pro-
posed DFDA by this experiment. Second experiment employs a few datasets
taken from UCI machine learning repository. A goal of the second experiment is
to confirm effectiveness of the proposed DFDA over various datasets3.

4.1 Experiments with MNIST Dataset

MNIST database consists of 10 digits (=classes, C = 10) handwritten character
images. Images are 28× 28 real valued matrices. We used vectorized matrices as
feature vectors, thus feature space dimensionality is D = 784.

One of the characteristics of MNIST dataset is “FLDA hard.”[15] So far many
researchers have evaluated various classifiers and feature extractors with MNIST
dataset. However the accuracy score is relatively low if we employ FLDA: for
example classification accuracy of 1-NN classifier in original pixel value space
is 97.3% that in FLDA space is 90.5%. We guess this difficulty is caused by
dimension limitation of FLDA.

Since we would like to understand behaviors of FLDA and DFDA as feature
extractors, we employ a 1-NN classifier in reduced spaces induced by FLDA
or DFDA. We used PRTools 4.34 and a Matlab implementation of proposed
method. We used 60000 samples as training data and 10000 samples as test
data. We tested several values of du, the number of used eigenvectors ψ of auto-
correlation matrices.

The results are shown in Table 1, Fig. 2, and Fig. 3.

Table 1. Classification accuracy of FLDA and DFDA

Method du r Classification Accuracy (%)

FLDA 0 9 90.5

DFDA 50 51 94.3

DFDA 100 77 95.2

DFDA 200 120 95.3

DFDA 400 229 93.5

From the Table 1, it is obvious that the rank of augmented between-class scat-
ter matrix ΣBnew , r, grows as the number of used ψ, du, increases. This indicates
that the information from auto-correlation matrices actually augments the in-
formation for class separations. Figure 2 illustrates the evolution of classification

2 http://yann.lecun.com/exdb/mnist
3 http://archive.ics.uci.edu/ml
4 http://www.prtools.org

http://yann.lecun.com/exdb/mnist
http://archive.ics.uci.edu/ml
http://www.prtools.org
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Fig. 2. Classification accuracy of pro-
posed method. The horizontal axis de-
notes du, the number of used eigenvectors
ψ of auto-correlation matrices. The verti-
cal axis denotes the classification accuracy.
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Fig. 3. Comparison of classification ac-
curacy between FLDA and DFDA on
MNIST dataset (du = 200). The horizon-
tal axis denotes the dimensionality of the
extracted features.

accuracies against du, the number of used eigenvectors ψ of auto-correlation ma-
trices in DFDA. The classification accuracy score hits the highest at du = 200.
This result indicates that there is an balancing point in adding ψs, possibly be-
cause of the ranks of auto-correlations matrices: these auto-correlations matrices
may not be full-rank, too.

Finally, Fig.3 shows a comparison of classification accuracy of the original
FLDA and the proposed DFDA (du = 200). The horizontal axis denotes the
dimensionality of the extracted features. In other words, the number of eigenvec-
tors (projections) obtained by DFDA. Note that the dimensionality of extracted
features by FLDA is 9 = C − 1. If we employ very few number of eigenvectors
(less than 20), the DFDA performs poor, even worse than FLDA. However, as
the number of eigenvectors increases, the performance of DFDA outperforms the
FLDA, and saturates around 60 dimensions.

4.2 Experiments with Dataset from UCI Machine Learning
Repository

To confirm effectiveness of DFDA, we evaluated the proposed DFDA with several
datasets from UCI machine learning repository. The selection of datasets is based
on the following conditions:

– The number of classes, C, is smaller than dimensionality of the feature vec-
tors, D.

– The number of samples in each class, nc, is larger than the dimensionality
of the feature vectors, D.

Table 2 summarizes the computed classification accuracies. As evident from the
table, DFDA surprisingly performs better than the FLDA in all the datasets.



Extended Fisher Criterion Based on Auto-correlation Matrix Information 415

Table 2. Evaluation of proposed method on UCI MLR data

Data D C # of training samples (nc × C) r FLDA DFDA

Breast cancer 9 2 200 8 78.0% 79.9%

magic 10 2 200 8 55.8% 69.6%

wine 13 3 60 13 40.0% 72.9%

spambase 8 2 200 8 55.8% 62.7%

image segmentation 19 7 210 19 48.9% 86.0%

ionosphere 34 2 100 8 56.6% 75.7%

statlog(Landsat) 36 6 1800 36 26.1% 75.3%

statlog(Shuttle) 9 7 43500 9 91.4% 99.7%

statlog (vehicle) 18 4 400 18 37.2% 69.7%

madelon 500 2 2000 500 54.2% 60.7%

optdigits 64 10 3823 64 45.4% 97.9%

Cardiotocography 21 3 1000 21 73.5% 78.3%

5 Conclusion

This paper proposed an extension of Fisher’s Linear Discriminant Analysis
(FLDA) by injecting inherent differences of distributions among classes. The
proposed method exploited the auto-correlation matrix of each class samples in-
spired by CLAFIC. The proposed Detailed Fisher Discriminant Analysis (DFDA)
integrates the subspace spanned by eigenvectors obtained from the auto-
correlation matrix into the between-class scatter matrix of FLDA. Experimental
evaluations with MNIST dataset and several dataset in UCI machine learning
repository demonstrated the effectiveness of proposed method. Our proposed
method is composed of only simple matrix operations, and therefore it can be
naturally applied to multi-class categorization. The method might provide some
new direction of FLDA.

The major weakness of the proposed method is its theoretical foundations.
Since our idea is intuitively sound, we need more theoretical justification for
this extension. It is also interesting to compare the proposed method with other
extensions of FLDA such as [13,9,10,8]. Finally, some extensions of canonical
correlation analysis can be achieved in a similar way, which might be fruitful for
many applications.
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