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Abstract. In thispaperweproposeaprototype size selectionmethod for a
set of sample graphs. Our first contribution is to show how approximate set
coding can be extended from the vector to graph domain.With this frame-
work to hand we show how prototype selection can be posed as optimizing
themutual information between two partitioned sets of sample graphs.We
show how the resulting method can be used for prototype graph size selec-
tion. In our experiments, we apply our method to a real-world dataset and
investigate its performance on prototype size selection tasks.
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1 Introduction

Relational graphs provide a convenient means of representing structural pat-
terns. Examples include the arrangement of shape primitives or feature points
in images, molecules and social networks. Recently, there has been considerable
interest in learning prototype graphs which can capture the structural variations
given a set of sample graphs [1,12]. These approaches are frequently sample-
based, having several candidate prototype graphs in hand, we are confronted
with the problem of selecting the best one. This problem falls into the category
of model selection, which is one of the fundamental tasks in pattern analysis. A
good model should be able to summarize the observed data well. Moreover, it
should have good predictive capabilities. There are a wealth of principles in the
literature for selecting the best model [9,11,10]. Generally speaking, although
the principles are motivated from different viewpoints, most of them employ pe-
nalizing the parameters (or complexity) of the model in order to generalize well
on a new dataset. For example, the Akaike information criterion(AIC) penalizes
the model using the value of twice the number of free parameters of the model
[13], while the minimum description length criterion uses a universal coding [14].

The main drawback of these approaches is that they cannot be easily extended
from the vector domain to the graph domain. On the other hand, other frame-
works such as the approximate set coding [3] can be transformed to the graph
domain with the help of sampling techniques such as Importance Sampling.
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In this paper we present an approach to selecting the optimal prototype size
for a set of sample graphs. Our method is an extension of the theory of the
approximate set coding to graph data. The prototype of optimal size is that
which maximizes the mutual information between the two partitioned sets of
the sample graphs. To measure the mutual information, we need to compute
the partition functions of the two partitioned sets and their joint partition func-
tion. The computation of the partition function involves exploring the complete
hypothesis space and this is a NP hard problem for graphs. We locate an ap-
proximate solution to this problem by using the importance sampling approach.

The remainder of the paper is organized as follows. We first briefly introduce
the theory of the approximate set coding [3]. Then we describe how we extend the
theory on model selection in vector domain to the graph domain. This includes
how to characterize the sample sets using the partition function and how to
approximate the value of the partition function using the importance sampling
approach. In the last part we provide some preliminary experimental results.

2 Approximation Set Coding

In this section we briefly review the theory of the approximate set coding pro-
posed in [3,4]. In this context, a hypothesis is a solution to our pattern recognition
problem. In this specific case, a hypothesis c is a mapping (matching) of all of
our sample graphs to a prototype graph. We also have a cost function R(c) which
evaluates the quality of a particular matching. Naturally R(c) depends on the
prototype graph proposed for the data samples.

Given a prototype graph drawn from set of possible prototypes (usually of dif-
ferent sizes or complexity), we can find the best matching and prototype configura-
tion by optimizingR(c). We denote the best hypothesis as c⊥. As usual, we cannot
useR(c) to select the best prototype from the set, as the more complex prototypes
have lower costs (they fit the samples better) but do not generalize well.

Approximation set coding uses the observation that there are a set of transfor-
mations which alter the sample data without essentially changing the prototype
in any way. For example, if we consider the sample graphs in a different order,
or their nodes are permuted in some way, then the structure of the recovered
prototype should be the same (although the prototype graph nodes may also be
in a different order). We can use this fact to measure how good our prototype
is at recovering these transformations when they are coded using the prototype
graph and sent through a noisy channel. To do this, we split the sample data into
two partitions. The first partition is used to code the transformation, and the
second partition provides a prototype graph to decode the transformation. We
then attempt to maximize the amount of information transmitted. The analysis
in [3] shows that the mutual information between sender and receiver is

Iγ =
1

n
log

(
|T ||ΔCγ,12|
|Cγ,1|Cγ,2

)
(1)

where |Cγ,1| is the number of hypotheses which are within a cost γ of the best
cost in set 1 (and likewise for |Cγ,2|). The quantity |ΔCγ,12| is the number of
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hypotheses on set 2 which are within a cost γ of the best cost in set 1. To
calculate this, we need a way of transferring hypotheses from set 2 to set 1. For
more details of these techniques, the reader is referred to [3,4].

3 Prototype Selection for Graphs

In this section, we extend the methodology of the approximate set coding from
the vector domain to the graph domain. Our main contribution here is that we
redefine three important ingredients in the approximate set coding (i.e. hypoth-
esis, cost function and partition function), and generalize them from the vector
domain to the graph domain. In the following, we commence by introducing our
problem and then give formal definitions of the ingredients.

Given a set of sample graphs, our aim is to select the optimal size of the pro-
totype graph for the sample graphs. To ensure that the optimal prototype graph
generalizes well on a new dataset, we adopt a two-sample set scenario and parti-

tion the sample graphs into two sets of the same size G1 = {G(1)
1 , G

(1)
2 , ..., G

(1)
n },

G2 = {G(2)
1 , G

(2)
2 , ..., G

(2)
n }. Here the superscripts indicate different sample-set

and the subscripts indicate the graph indices. The best prototype graph is de-
termined according to its generalization capability on the two sets.

3.1 Hypothesis

The hypotheses originally proposed in the clustering problem (where approxi-
mate set coding was first used) are the assignments of data points to clusters
[4]. Here in our problem the hypotheses consist of a set of mappings of each of
the sample graphs onto its corresponding prototype graph. By direct analogy
with the clustering problem, each mapping is equivalent to an assignment of a
point to a cluster; the prototype graph here is equivalent to the cluster cen-

troid. For each dataset Gq(q ∈ {1, 2}) a hypothesis is cq = {S(q)
1 , S

(q)
2 , ..., S

(q)
n }

where S
(q)
i (i ∈ {1, ..., n}) is the assignment matrix between graph i from set q

and its corresponding prototype graph G
(q)
M . The set of all possible hypotheses

is C , which consists of all the possible mappings between all samples and the
prototype graph.

3.2 Cost Function

To proceed, we require a cost function Rq(cq) to quantify the effectiveness of a
particular hypothesis cq. The cost function measures how consistent the given
mappings are with the prototype graph. Here the cost function of a hypothesis
is the negative logarithm of the matching probability between the sample graph
and the prototype graph under the hypothesis modelled using the technique
described in [15].

Rq(cq) = − logP (Gq|G(q)
M , cq)

=
∑
G

(q)
i

∑
a∈V

(q)
i

− log
∑

a∈V
(q)
M

Ki
aexp

[
μ

∑
b∈V

(q)
i

∑
β∈V

(q)
M

D
(q)
iabM

(q)
αβ S

(q)
ibβ

]
. (2)
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In the above, D
(q)
i is the adjacency matrix for the sample graph Gi from set q

and M (q) is the adjacency matrix for the prototype graph G
(q)
M . The matrix S

(q)
i

is the assignment matrix between the two graphs. If nodes a and b of the sample

graph G
(q)
i are connected, their corresponding element D

(q)
iab in D

(q)
i has a unit

value otherwise it is zero. This is same for the nodes α, β of the prototype graph

G
(q)
M . The elements of the assignment matrix S

(q)
iaα are unit if node a in graph G

(q)
i

is matched to node α in graph GM . The cost function above is a natural choice
in our problem because it is also involved in measuring the similarity between
the sample graphs and the prototype graph during the learning procedure of the
prototype graph.

In order to normalize the minimum cost of the hypotheses to zero, we define
the relative cost of hypothesis. Suppose the optimal hypothesis (i.e., the hypoth-
esis yielding the lowest costs between the sample graphs and their prototype
graph) is c⊥q , the relative cost of hypothesis cq is ΔRq(cq) = Rq(cq)−Rq(c

⊥
q ).

3.3 Partition Function

The measurement of the mutual information of the two sample-sets requires
counting the number of hypotheses which are within a certain cost of the optimal
solution. However, this is hard to do since it involves exploring all the hypotheses.
Fortunately, this value can be estimated using concepts from statistical physics.
Considering the hypotheses as microcanonical ensembles in statistical mechanics,
their number can be estimated by calculating the partition function [4]

Zq =
∑
cq∈Cq

exp[−βΔRq(cq)] (3)

where β is a positive scaling parameter known as the inverse computational
temperature. Essentially, β coarsens the precision of the partition function ap-
proximating the number of hypotheses that fit the sample set [3]. When β is
zero, the partition function is equal to the number of all the possible hypothe-
ses. When β is very large, the partition function only counts the number of
optimal hypotheses. Because β controls the number of hypotheses fitting the
sample set, we will call these β-optimal hypotheses. In our case, the hypothesis
space is the set of all the possible mappings between the sample graphs and their
prototype graph. The hypothesis space is very large and the computation of the
partition function will be expensive. Later we show how we use the importance
sampling approach to sample the mapping between the sample graphs and their
prototype graph and approximate the partition function.

To measure how well the hypotheses generalize for the two sample sets, we
count the number of β-optimal hypotheses in the first set which also exist in
the second set, when transferred to the first set. We therefore need a way of
transferring hypotheses from the second dataset to the first. We denote the cost

of the hypothesis c2 between the transferred graphs and prototype graph G
(2)
M as

Rt(c2). This is the cost of making hypothesis c2 for the graphs G2 when evaluated
against the data in G1. The following procedure may be used to find the transfer.
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Fig. 1. A diagram illustrates the procedure of computing the three partition functions.
When we compute the partition function Z12, we need to count how many of our
hypotheses are β-optimal when we use the prototype from set 2 and the data graphs
from set 1. We therefore need a way of transferring hypotheses from the second set to
the first.

For each G
(1)
i graph in G1, we find the most similar graph in G2 and the mapping

between Ti between the two. Ti◦G(i)
i is then the image of this graph in the second

set. From these images, we compute the cost of c2 by comparing the images to

the prototype graph G(2)
M under the mappings in c2. Finally, the joint partition

function is formulated as

Z12 =
∑
c2∈C2

exp[−β(ΔRt(c2) +ΔR2(c2))] . (4)

The quantity ΔRt(c2) is the relative cost of hypothesis c2 between the image

graphs of G1 in the second set and the prototype graphG
(2)
M . It is equivalent to the

cost of hypothesis c2 between the image graphs and G
(2)
M minus their minimum

cost. Figure 1 illustrates the procedure of computing partition functions Z1, Z2

and the joint partition function Z12.
Prototype graphs with different sizes are ranked according to their mutual

information between the two sets

Iβ =
1

n
log

(
kZ12

Z1Z2

)
. (5)

In the above equation, Z1 and Z2 are the respective partition functions of two
sample sets, and Z12 is their joint partition function. The constant k is a normal-
ization factor which keeps the value of the mutual information equal to zero when
β is zero. The value of the mutual information can be interpreted as the max-
imum generalization capacity of prototype graphs. Hence our problem is posed
as that of finding the prototype graph that maximizes this mutual information.
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3.4 Importance Sampling

In order to deal with the super-exponential growth of the set of hypotheses,
we resort to an Importance Sampling [7] approach in a manner similar to that
reported by Torsello [2].

Importance Sampling is a variance reduction sampling technique used to com-
pute Monte Carlo estimations of averages of the type E[h(x)] = 1

||A||
∫
A
h(x)dx,

where h(x) is a real function taking values in A. This requires sampling the
domain from a non necessarily uniform distribution f , thus yielding

Ef [h(x)] ≈ 1

k

k∑
i=1

h(xi)

1
||A||
f(xi)

(6)

where
1

||A||
f(xi)

is the importance factor used to correct the bias introduced when

sampling from the distribution f . Note that in the limit if f = h(x)∫
A

h(x)dx
then

the variance of the estimator is zero. In practice then, we would like choose f as

close as possible to h(x)∫
A
h(x)dx

.

In this paper, we need to approximate the value of the partition functions Z1,
Z2 and Z12. Since the approximation procedure is going to be the same in all
the three cases, we simply review the equations for Z1. In this case, ||A|| = n!
and h(x) = exp[−βΔR1(c1)], and thus

Z1 = Ec1

[
exp[−βΔR1(c1)]

]
n! ≈ 1

|C1|
k∑

c1∈C1

exp[−βΔR1(c1)]

P (c1)
(7)

To implement the importance sampler along the lines suggested in [2], recall

that ΔRq = Rq(cq)−Rq(c
⊥
q ) and Rq(cq) = − logP (Gq |G(q)

M , cq), where Gq is the

observed graph and G
(q)
M is the prototype graph. We aim to sample a mapping

cq ∈ Cq with probability close to
P (Gq|G(q)

M ,cq)
∑

cq∈Cq
P (Gq|G(q)

M ,cq)
. The procedure is as follows.

Assume that we know the node-correspondence matrix M̄ = (mαa) giving the
probability that graph node a was generated by prototype node α. Then we
can first sample a correspondence for the prototype node 1 with probability
m1a1 . The next step is to condition the matrix to the current match by taking
into account the structural information between the sampled nodes and all the
remainder. Finally we project the conditioned matrix onto a double-stochastic
matrix by using the Sinkhorn process [16], yielding the matrix M̄a1

1 . We repeat
this procedure for each node of the prototype graph, until we have sampled a
mapping cq with probability P (cq) = (M̄)1,a1 · (M̄a1

1 )2,a2 · . . . · (M̄a1,...,an−1

1,...,n−1 )n,an .

4 Experiments

In this section, we report some experimental results of the application of our
prototype size selection method on real-world dataset. The dataset used is the
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Fig. 2. How the mutual information and logarithm of partition functions change as β
increases from 0 to 50

COIL [5] which consists of images of different objects, with 72 views of each
object obtained from equally spaced viewing directions over 360◦. We extract
corner features from each image and use the detected feature points as nodes to
construct sample graphs by Delaunay triangulation.

We first investigate how the value of the mutual information and the three par-
tition functions vary as the value of β increases. To do this, we randomly parti-
tion the graphs from a given object, e.g. the cat images, into a training set and a
test set which are of the same size. The bijective mapping of the graphs between
the two sets is located by minimizing the sum of the edit distances between the
mapped graphs. We learn two prototype graphs of the same size for the two sets
using the method in [1]. Given this setting, we compute the value of the mutual
information and the logarithms of the three partition functions logZ1, logZ2 and
logZ12. Figure 2 shows how these quantities vary as we increase the value of β from
0 to 50. From the plot in Figure 2(a), we observe that the mutual information ini-
tially increases and achieves the highest value around β = 8, and afterwards it
begins to decrease. To maintain the non negativity of the mutual information, we
set its value to zero when it falls below zero. Figure 2(b) and 2(c) respectively
show the value of the logarithms of partition functions logZ1 and logZ2. From
the plots it is clear that these two quantities converge to a horizontal asymptote.
The reason for this is that while the relative cost of the optimal hypothesis is zero
and thus its contribution to the partition function is a constant positive value, the
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(b) bottle1
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(c) pig
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Fig. 3. Variation of the mutual information of 6 prototype graphs of the four objects

exponential of the relative costs given by the non optimal hypotheses converges
to zero as β increases, thus yielding the observed horizontal asymptote. On the
other hand, the logarithm of the joint partition function logZ12 in Figure 2(d)
continues to decrease as β increases. This indicates that the optimal hypotheses
of the graphs in the test set do not necessarily generalize to the optimal hypothe-
ses of their mapped graphs in the training set. For this reason the relative costs of
all the hypotheses in the joint partition function are positive values. As a result
their exponentials converge to zero as β increases. Consequently, the joint par-
tition function converges to zero and its corresponding logarithm becomes both
large and negative.

Our second experimental goal is to select the optimal size of the prototype
graph for several objects from the COIL dataset. Here the objects we used are
the cat, pig and two bottles. To perform these tasks, for each object we learn 6
prototype graphs of different size using the method in [1] and then compute the
mutual information of these prototype graphs. The optimal size of the prototype
graph is that which gives the highest mutual information as β is varied. Figure
3 shows plots of the mutual information versus β for the four objects. From
the plots it is clear that for each objet there is a prototypes size that gives
optimized performance. Finally, note that unlike what is expected using other
standard model complexity selection methods, which may choose the model with
the smallest size, in our experiments we observe that in 3 out of 4 objects the
proposed method favours some value between the largest and the smallest size.



Information Theoretic Prototype Selection for Unattributed Graphs 41

5 Conclusion

In this paper we have developed a method for selecting the optimal size of a
prototype graph used to represent a set of sample graphs. The optimal size of
the prototype graph is selected so as to maximize the mutual information of the
two partitioned sets of the sample graphs. To compute the mutual information,
we extend the theory of approximate set coding from the vector domain to
the graph domain. Experimental results show that our method works well for
prototype graph selection in object recognition. Future work will concentrate
on validating our prototype graph size selection method. Moreover, while the
prototype selection step is currently a separate post processing step which takes
place after the learning procedure, we intend to investigate how to integrate the
two together, so as to reduce the overall complexity.
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son Research Merit Award.
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