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Abstract. We propose a method to perform active graph matching in which the 
active learner queries one of the nodes of the first graph and the oracle feedback 
is the corresponding node of the other graph. The method uses any graph 
matching algorithm that iteratively updates a probability matrix between nodes 
(Graduated Assignment, Expectation Maximisation or Probabilistic 
Relaxation). The oracle’s feedback is used to update the costs between nodes 
and arcs of both graphs. We present and validate four different active strategies 
based on the probability matrix between nodes. It is not needed to modify the 
code of the graph-matching algorithms, since our method simply needs to read 
the probability matrix and to update the costs between nodes and arcs. Practical 
validation shows that with few oracle’s feedbacks, the algorithm finds the 
labelling that the user considers optimal because imposing few labellings the 
other ones are corrected automatically. 

Keywords: Machine Learning, Active Graph Matching, Interactive Graph 
Matching, Least Confident, Maximum Entropy, Expected Model Change. 

1 Introduction 

Generally speaking, machine learning is a discipline concerned with the design and 
development of algorithms that allow computers to evolve behaviours based on 
examples [1]. In this discipline, a learner can take advantage of examples to capture 
characteristics of interest from the data respect of their class and to be able to deduct the 
class that new examples could belong to. Error-tolerant graph matching [2] is another 
discipline that aims to find the best labelling between nodes of both graphs such that the 
cost of this optimal labelling is the minimum among all possible labellings. If we put 
together machine learning and error-tolerant graph matching disciplines, we can define 
a model in which examples are composed by the set of nodes of one of the graphs and 
classes are the nodes of the other graphs. Therefore, what we want to learn is which is 
the matching between two graphs that is considered to be the best. 

The key idea behind active learning [3, 7, 20] is that a machine learning algorithm can 
achieve a greater accuracy with fewer classified training examples if it is allowed to 
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choose the data from which it learns. Active learning is well motivated in many modern 
machine-learning problems, where unclassified examples may be abundant but finding the 
class is difficult, time-consuming or expensive to obtain [1, 21]. Active learning has been 
applied in several fields such as speech recognition [6, 21], information extraction [10, 13, 
15, 17], robotics [12], transcription of text images [22, 28] or object classification in 
general [4, 5, 6, 9, 14, 18]. And in general, for parameter selection [8]. 

We present a model in which we have put together the active learning and graph 
matching concepts. In this case, the learner queries the node that it is supposed to 
produce a greater impact on the labelling between both graphs. In our case, the active 
learner may ask queries in the form of graph nodes and asks which are the nodes of 
the other graph that they have to be matched. The answerer of the query might be 
another automatic system or a human annotator (in general, it is called an oracle). 

Active learning scenarios are usually classified in three classes. The active learner 
generates a query de novo [18], the active learner receives a stream of objects and 
decides whether query them or not [19] and the pool-based active learning, in which the 
active learner decides to query an element from a sub-set of unlabelled objects [4, 11], 
or with sub-sampling [5]. In our case, we always have nodes of both graphs, for this 
reason, our scenario can be classified as the third scenario: pool-based active learning. 

All active learning scenarios are involved in evaluating the informativeness of 
unclassified examples, which can either be generated de novo or sampled from a 
given distribution. It has been proposed many ways of formulating such query 
strategies in the literature [3]. We have considered two main strategies: Uncertainly 
Sampling and Expected Model Change. We have modelled the first one in three 
different strategies and the second one in one strategy. 

The rest of the paper is organised as follows. In the next section, we present the 
graph-matching problem. In section 3, we present four different active strategies 
applied to the problem of finding the best labelling. In section 4, we show the 
algorithm to compute the active graph matching. Finally, in section 5 we show the 
practical evaluation and we conclude the paper in section 6. 

2 Graph Matching and Isomorphism between Graphs 

Let ݃ଵ and ݃ଶ be two attributed graphs. We suppose that ݃ଵ and ݃ଶ have the same 
number of nodes ݊ since they have been enlarged enough to incorporate null nodes. 
We define nodes in ݃ଵ and ݃ଶ as ݒ௜ଵ א ௔ଶݒ ௩ଵ andߑ א ௩ଶ and we define arcs as ݁௜௝ଵߑ א  ௘ଵߑ
and ݁௔௕ଶ א ,݅׊ ,௘ଶߑ ݆, ܽ, ܾ א ሼ1, … , ݊ሽ. Moreover, let ݂ be a bijective labelling between 
nodes of both graphs. The cost of matching graphs ݃ଵ and ݃ଶ, given this isomorphism ݂, is represented by ܥ௙ሺ݃ଵ, ݃ଶሻ ൌ ෍ ܿ௩ሺݒ௜ଵ, ೡభఀא௔ଶሻ௩೔భݒ ൅ ෍ ܿ௘൫݁௜௝ଵ , ݁௔௕ଶ ൯௘೔ೕభ ೐భఀא  (1)

where ݂ሺݒ௜ଵሻ ൌ ௝ଵ൯ݒ௔ଶ and ݂൫ݒ ൌ  ௕ଶ. That is, the cost is defined as the addition of theݒ
pairwise costs of matching nodes and arcs [10]. These local costs can be represented 
through two matrices ܥ௩ א Թାమ

,௩ሾ݅ܥ , ܽሿ ൌ ܿ௩ሺݒ௜ଵ, ௘ܥ ௔ଶሻ andݒ א Թାర
,௘ሾ݅ܥ , ݆, ܽ, ܾሿ ൌܿ௘൫݁௜௝ଵ , ݁௔௕ଶ ൯ and their definition depends on the application. Usual examples are  
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the Euclidean distance, when attributes have the position of the node in the image or the 
distance between local features such as SIFTs or HOGs. 

There are several error-tolerant graph-matching algorithms that, using a 
minimization criteria, such as eq. (1), return the best isomorphism f  between two 
graphs. For instance: probabilistic relaxation [23], Graduated-Assignment [24] or 
Expectation-Maximisation [25]. In fact, the input of these algorithms can be matrices ܥ௩ and ܥ௘ instead of graphs ݃ଵ and ݃ଶ since matrices capture all the differences 
between graphs and the minimisation cost is defined through these matrices (eq. 1). 
Considering that the involved graphs have a degree of disturbance and also the 
exponential complexity of the problem, these algorithms do not return exactly the 
isomorphism f  but a probability matrix related to it. We represent this matrix by P 
where each cell contains ܲሾݒ௜ଵ, ௔ଶሿݒ ൌ ௜ଵሻݒሺ݂ሺܾ݋ݎܲ ൌ  ௔ଶሻ. Thus, given the probabilityݒ
matrix P it is necessary to derive the final labelling f  by a discretization process. 
There are several techniques to perform this discretization, e.g. [30]. Figure 1 
represents the probabilistic graph-matching paradigm. 

 

Fig. 1. Probabilistic graph matching framework 

In the next section, we present four different strategies that, with the information of 
the probability matrix P, derive the node that has to be queried. Besides in section 4, 
we show how to use the interactive algorithm presented in [31] that modifies matrices ܥ௩ and ܥ௘ to consider the oracle feedback. 

3 Active Learning Strategies 

In this section, we present four strategies to select a node ݒଵכ
 of ݃ଵ that have to be 

queried to an oracle since the model assumes the exact knowledge of its mapping will 
increase the accuracy of the system. Therefore, given the selected node ݒଵכ

 we ask for ݂൫ݒଵכ൯ and the oracle feedback is ݒଶכ
. In all strategies, the pool of nodes to be queried 

is composed by the nodes that have never been queried before. The logical function ܳሺ݅ሻ shows if node ݒ௜ଵ has been queried. When the active algorithm is initialised, ܳሺ݅ሻ 
takes the ݁ݏ݈ܽܨ value for all nodes of ݃ଵ and this value is changed to ܶ݁ݑݎ in each 
query. This logical function is used to assure a node is not queried several times. Note 
that in the case that ܳሺ݅ሻ ൌ  for all nodes of ݃ଵ then the following strategies ݁ݑݎܶ
return a null value. Nevertheless, in this case, the active algorithm (section 4) has to 
stop since the whole nodes have been queried. Besides, the computation of the 
following strategies is performed at function ܱܾ݇ܿܽ݀݁݁ܨ_݈݁ܿܽݎ in the algorithm. 

The four strategies we present are classified on Uncertainly Sampling and Expected 
Model Change [3]. 
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Uncertainly Sampling. The active learner queries the instances about which it is least 
certain how to classify. We define three different strategies. 

Least Confident (LC): This strategy queries the element that its highest probability 
of belonging to a class is the lower one between all the elements. In our model, the 
learner queries the node ݒ௅஼ଵכ

 of ݃ଵ that has not been previously queried and whose 
maximum probability given the nodes of ݃ଶ is the lower. Node ݒ௅஼ଵכ

 is obtained in two 

steps. Firstly, we obtain the set of nodes in ݃ଶ: ቄݒଶሺଵሻ, … , ,ଶሺ௜ሻݒ … , ଶሺ௜ሻݒ ,ଶሺ௡ሻቅ such thatݒ ൌ argmax׊௝ୀሼଵ,..,௡ሽ ,௜ଵݒൣܲ ௝ଶ൧ݒ ; ݅׊ ൌ ሼ1, . . , ݊ሽ (2)

note that some of the nodes in this set can appear several times, ݒଶሺ௜ሻ ൌ ଶሺ௝ሻݒ
; ݅ ് ݆. 

And secondly, we select the node in ݃ଵ such that its respective node in the set 
obtains the minimum probability, ݒ௅஼ଵכ ൌ argmin׊௜ୀሼଵ,..,௡ሽ|ொሺ௜ሻୀ ி௔௟௦௘ ܲ ቂݒ௜ଵ, ଶሺ௜ሻቃ (3)ݒ

Least Confident given the Current Labelling (LCCL): The aim of this strategy is to 
query the nodes that are matched through the current labelling but they have not been 
queried. Therefore, it could be seen as the method tries to minimise the hamming 
distance between the current labelling and the ideal labelling (the labelling that would 
have been predicted by the oracle if all the nodes were queried). The learner queries 
node ݒ௅஼஼௅ଵכ

 of ݃ଵ that has not been previously queried and it has the minimum 
probability given the current labelling ݂. Formally, ݒ௅஼஼௅ଵכ ൌ argmin׊௜ୀሼଵ,..,௡ሽ|ொሺ௜ሻୀ ி௔௟௦௘ ܲሾݒ௜ଵ, ݂ሺݒ௜ଵሻሿ  (4)

Maximum Entropy (ME): This strategy queries the element with maximum Shanon 
Entropy given the probabilities. The main idea of the method is to query the elements 
that they are more difficult to be classified. In our model, the selected node ݒொଵכ

 is, 

כொଵݒ ൌ argmax׊௜ୀሼଵ,..,௡ሽ|ொሺ௜ሻୀ ி௔௟௦௘ െ ෍ ,௜ଵݒൣܲ ௝ଶ൧௡ݒ
௝ୀଵ ൉ ,௜ଵݒ൫ܲൣ݃݋݈ ௝ଶ൧൯ (5)ݒ

Expected Model Change (EMC): An active learner queries the instances that would 
impart the greatest change to the current model if we knew its class. A possible query 
strategy could be the “expected gradient length”. Since graph-matching probabilistic 
models are usually trained using gradient-based optimisation; the change imparted to 
the model can be measured by the length of the training gradient. In other words, the 
learner should query the instance that if changed its labelling, the gradient between 
the current labelling and the new one would have the largest magnitude. Considering 
this aim, we propose to query the node ݒாெ஼ଵכ

 defined through the following equation, ݒாெ஼ଵכ ൌ argmax׊௜ୀሼଵ,..,௡ሽ ר ொሺ௜ሻୀ ி௔௟௦௘ሼܴ௜ሽ (6)
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The value ܴ௜ shows the maximum magnitude of any possible change of the current 
labelling at node ݒ௜ଵ. ܴ௜ ൌ max׊௝ୀሼଵ,..,௡ሽ ൛ܲൣݒ௜ଵ, ௝ଶ൧ൟݒ െ ܲሾݒ௜ଵ, ݂ሺݒ௜ଵሻሿ (7)

If ܴ௜ ൐ 0, the current labelling of ݒ௜ଵ is not the ideal one, considering only 
probabilities ܲൣݒ௜ଵ, ݆׊ ,௝ଶ൧ݒ ൌ ሼ1, . . , ݊ሽ. On the contrary, if ܴ௜ ൌ 0 then the current 
labelling is the one that obtains the maximum probability, so, it is the ideal case. Note 
that ܴ௜ ൏ 0 is not possible. 

4 Active Algorithm 

Algorithm Interactive Graph Matching presented in [31] obtains a labelling between 
nodes of attributed graphs ݃ଵ and ݃ଶ considering the human feedback. That is, it 
computes several times a sub-optimal graph-matching algorithm (for instance [23, 24, 
25]), but in each step, the cost matrices ܥ௩ and ܥ௘ are modified through the current 
user feedback. In fact, we assume the input of the algorithm is not both graphs but 
matrices ܥ௩ and ܥ௘. The feedback of the user is introduced into the algorithm  
through a vector of simple actions ݓ. One of the actions is ݓ௤ ൌ ,௜ଵݒሺݐ݁ܵ  ௔ଶሻ, inݒ
which the user imposes that the labelling has to be ݒ௔ଶ ൌ ݂ሺݒ௜ଵሻ. The matrix costs  ܥ௩ and ܥ௘ are updated considering the human feedback through functions ݏݐݏ݋ܥ_݁݀݋ܰ _݁ݒ݅ݐܿܽݎ݁ݐ݊ܫ and ݏݐݏ݋ܥ_݁݃݀ܧ_݁ݒ݅ݐܿܽݎ݁ݐ݊ܫ. See [31] for more details. 

The active algorithm we present has a similar structure. We have only added 
function ݕݎ݁ݑܳ_݁ݒ݅ݐܿܣ and the expression ݓଵ ൌ ,כଵݒ൫ݐ݁ܵ  ൯ with the aim ofכଶݒ
functions ݏݐݏ݋ܥ_݁݀݋ܰ_݁ݒ݅ݐܿܽݎ݁ݐ݊ܫ and ݏݐݏ݋ܥ_݁݃݀ܧ_݁ݒ݅ݐܿܽݎ݁ݐ݊ܫ being compatible 
with the interactive algorithm in [31]. The algorithm stops when the oracle returns a 
special node (for instance a negative value) or all the nodes of ݃ଵ have been queried. 
The final labelling cost obtained at the end of the algorithm is computed through the 
original costs, ܥ௩଴ and ܥ௘଴ . 

 
Algorithm Active Graph Matching 
Input: Attributed Graphs ݃ଵ and ݃ଶ 
Output: Labelling ݂ and Cost ܥ௙ ܥ௩଴ , ௘଴ܥ ൌ , ሺ݃ଵݐݏ݋ܥ_݁ݏ݈݅ܽ݅ݐ݅݊ܫ ݃ଶሻ; ܥ௩ ൌ ௘ܥ ;௩଴ܥ ൌ ݂ .௘଴ܥ ൌ ,௩ܥሺ݄݃݊݅ܿݐܽܯ_݄݌ܽݎܩ  .௘ሻܥ
Do  
כଵݒ   ൌ ,ሺܲݕݎ݁ݑܳ_݁ݒ݅ݐܿܣ ݂ሻ. 
כଶݒ   ൌ , ൫݃ଵܾ݇ܿܽ݀݁݁ܨ_݈݁ܿܽݎܱ ݃ଶ , ,כଵݒ ݂൯. 
ଵݓ   ൌ ,כଵݒ൫ݐ݁ܵ  .൯כଶݒ
௩ܥ   ൌ ,ݓሺݏݐݏ݋ܥ_݁݀݋ܰ_݁ݒ݅ݐܿܽݎ݁ݐ݊ܫ  .௩ሻܥ
௘ܥ   ൌ ,ݓሺݏݐݏ݋ܥ_݁݃݀ܧ_݁ݒ݅ݐܿܽݎ݁ݐ݊ܫ  .௘ሻܥ
  ݂ ൌ ,௩ܥሺ݄݃݊݅ܿݐܽܯ_݄݌ܽݎܩ  .௘ሻܥ
Since ܵ݌݋ݐ 
Compute ܥ௙ሺܥ௩଴ ,        ௘଴ሻܥ
End Algorithm 
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Figure 2 shows the probabilistic graph-matching framework with active learning. 
Dashed lines connect the active modules that do not appear in the classical framework 
shown in figure 1. Moreover, we have added the original costs ܥ௩଴ and ܥ௘଴, since the 
labelling cost ܥ௙ is computed through these costs. 

 

Fig. 2. Probabilistic graph matching framework with active learning 

5 Practical Evaluation 

We have used the CMU “house” and “castle” sequences. There are two datasets 
consisting of 111 frames of a toy house and a castle. Each frame in these sequences 
has been hand-labelled, with the same 30 landmarks identified in each frame [29]. 
From each landmark, we have only considered their bidirectional position in the 
image.  From each frame, we have defined an attributed graph of 30 nodes using the 
3-nearest neighbour technique. Nodes represent these landmarks and arcs represent 
proximity.  Attributes on nodes are the position of the landmarks and arcs do not have 
attributes. The cost between nodes ܥ௩ሾݒ௜ଵ,  ௔ଶሿ is the Euclidean distance of their imageݒ
positions. The cost between arcs ܥ௘ൣ݁௜௝ଵ , ݁௔௕ଶ ൧ is 0 if both arcs exist or do not exist and 
1 if only on of the arcs exists. We have used all pairs of graphs that have been 
extracted from images that the separation between frames is 60. The final result 
values are the average of these experiments. We have used the Graduated Assignment 
algorithm [24] and, in each iteration of the active algorithm, we only permitted a 
maximum of 30 iterations of the external loop and 20 iterations of the internal loop.  

We assess the quality of the current labelling through the Hamming distance 
between the current labelling and the hand-made labelling [29]. Figure 3 shows this 
Hamming distance throughout the number of iterations of the active algorithm and 
using the four previously commented active strategies and also a random strategy. In 
this random strategy, the ݃݊݅݊ݎܽ݁ܮ_݁ݒ݅ݐܿܣ sequentially returns the nodes of ݃ଵ. The 
algorithm stops when all the 30 nodes have been queried. 
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Fig. 3. Hamming distance respect of the number of iterations on the Hotel and House. 
LCCL: ,  LC: ,  ME: , EMC:  and Random: . 

 
Table 1 shows the ratio between the initial hamming distance with respect to the 

maximum number of iterations. For instance, in the case of Hotel and LCCL, initial 
hamming distance = 16, number of iterations = 14, so 16/14 = 1.14. This value 
represents the average decrease of the hamming distance in each iteration. The case 
that the value is higher than 1 appears when, in average and in each iteration, not only 
the labelling of the queried  node is amended but also other ones. It seems as the 
LCCL method obtains the best results. 

Looking at table 1 and figure 1 we realise that the random method, that is, without 
“intelligent” active learning, obtains the worst results. Moreover, the EMC method is 
very sensitive to the number of iterations of the Graduated Assignment. This method 
can deduct few information if most of the probabilities are 0 or 1 (a lot of iterations) or 
if most of the iterations are near to 1/n being n the number of nodes (few iterations). 

Table 1. Ratio between hamming distance and iterations of the Hotel and House 

 LCCL LC ME EMC Random 
Hotel 1.14 0.84 0.88 0.94 0.59 
House 1.10 1.10 1.06 0.87 0.85 
Average 1.12 0.97 0.97 0.90 0.72 
 
Figure 4 shows the evolution of the current labelling cost ܥ௙. As described in the 

algorithm, this cost is computed through the original costs. All methods tend to obtain 
the optimal labelling, for this reason, at the end, the cost is similar for all of them. 
Note that in some steps, the cost increases. This means that forcing some nodes to be 
mapped, the sub-optimal graph-matching algorithm finds a worse labelling. 

 
Fig. 4. Labelling cost respect of the number of iterations on the Hotel and House.  
LCCL: ,  LC: ,  ME: , EMC:  and Random: . 



 Active Graph Matching Based on Pairwise Probabilities between Nodes 105 

6 Conclusions and Future Work 

We have presented four different strategies to be applied on an active graph-matching 
algorithm. These strategies are based on classical active machine learning but they are 
applied to the case of searching for the best labelling between nodes. Moreover they 
are based on the probability matrix between nodes that some sub-optimal algorithms 
use to iteratively find the best labelling. Due to the active algorithm only updates the 
costs between nodes and arcs and reads the probability matrix; it is not needed to 
modify the code of these well-known algorithms. Experimental validation shows that 
the Least Confident method that uses the current labelling (LCCL) tends faster to find 
the optimal labelling. 

We have planned to apply this method to Expectation-Maximisation and 
Probabilistic Relaxation algorithms. Moreover, we have obtained different results 
while using different number of iterations of the two main loops of the Graduated 
Algorithm. These results have not been shown due to space problems and we have 
shown in this paper the ones we considered being the best ones. We wish to publish in 
a journal the whole method presented in this paper together with [31] and the other 
experiments commented before. 
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