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Abstract. We show that the attack of deWeger on RSA using continued
fractions extends to Multi-Prime RSA. Let (n, e) be a Multi-Prime RSA
public-key with private key d, where n = p1p2 · · · pr is a product of
r distinct balanced (roughly of the same bit size) primes, and p1 <
p2 < . . . < pr. We show that if pr − p1 = nα, 0 < α ≤ 1/r, r ≥ 3 and

2d2 + 1 < n2/r−α

6r
, then Multi-Prime RSA is insecure.
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1 Introduction

The RSA cryptosystem, invented by Rivest, Shamir and Adleman [18] in 1977,
is one of the most important public key cryptosystems. For example, it is used
by Web servers and browsers to secure Web traffic. In RSA, an integer n = pq
(the RSA modulus) is a product of two large distinct primes of the same bit
size. The public exponent e < φ(n) and the private exponent d < φ(n) satisfy
the equation ed ≡ 1 mod φ(n), where φ(n) = (p − 1)(q − 1) is Euler’s totient
function. The public key is the pair (n, e) and the private key is d.

Multi-prime RSA (MPRSA) is a simple extension of RSA in which the modu-
lus has three or more distinct primes. It was patented by Compaq in 1997 [7,1]. In
MPRSA with r primes, the modulus is n = p1 · · · pr, where p1 < p2 < . . . < pr.
As with RSA, we only consider 1

2n
1/r < pi < 2n1/r for 1 ≤ i ≤ r. In this case n

is said to be a product of distinct r-balanced primes. Clearly, we have

1

2
n1/r < p1 < n1/r < pr < 2n1/r.

The key generation of MPRSA is similar to RSA. It is as follows.

– Let n be the product of r randomly chosen distinct balanced primes p1, . . . , pr,
where p1 < p2 < . . . < pr.

– Compute Euler’s totient function of n : Φ(n) =
∏r

i=1(pi − 1).
– Choose an integer e, 1 < e < Φ(n), such that gcd(e, Φ(n)) = 1.
– Compute the multiplicative inverse d = e−1 mod Φ(n).
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n is called the MPRSA modulus. The public-key is (n, e) and the private key is d.
In general, the running time of generating (n/r)-bits primes for MPRSA will

decrease with increasing number of primes [11].
The encryption of MPRSA is identical to that of RSA. For any message m ∈

Zn, the ciphertext is
c = me mod n.

The standard decryption of MPRSA is the same as standard decryption of RSA.
For any ciphertext c ∈ Zn, the plaintext is

m = cd mod n.

When Chinese Remainder Theorem (CRT) is used in decryption, the MPRSA
takes time less than in RSA. A speed-up of a factor at least r/2 (and at most
r2/4) is estimated [11]. A speed-up of 1.73 has been achieved in practice for
3-prime RSA compared to RSA using CRT with a 1024-bit modulus [5,11].

In other words, there are two practical reasons to use more than two primes.

1. The primes are smaller and key generation takes less time despite there being
more of them.

2. Decryption takes less time if one uses CRT.

Many attacks on RSA are extended to MPRSA. For examples, small private
exponent attacks on RSA by Wiener [24] (when the private key d < n1/4) is
extended to MPRSA by Ciet et al. [6] and Hinek et al. [12]. Boneh and Dur-
fee attack [4] on RSA using lattice reduction technique [13] and Coppersmiths
method [8] for d < n0.292 is also extended to MPRSA by Hinek et al. [12]. The
generalization of Blömer and May’s lattice based attack for arbitrary public ex-
ponents RSA [2,16] is extended to MPRSA by Ciet et al. [6]. Some of the partial
key exposure attacks on RSA are extended to MPRSA, see [11, Ch.9] for some
details.

De Weger [23] showed that if n = pq has a small difference between its prime
factors p − q = nβ, 1

4 ≤ β ≤ 1
2 , then the private key d = nδ of RSA can be

recovered when δ < 3
4 − β. In this paper,we show a similar result on MPRSA.

Using Wiener’s interval proposed by [17], we show that d can be recovered when

2d2 + 1 < n2/r−α

6r < φ(n), for r ≥ 3; and when 2d2 + 1 < 2n3/2−2α + 1, for r = 2
and φ(n) > 3

4n.
The paper is organized as follows. In section 2, we review some basic facts

about continued fractions, and Wiener’s interval. In Section 3, we cryptanalysis
MPRSA with small prime difference. In Section 4, we compare between our at-
tacks and other small private exponent attacks. An example of the cryptanalysis
is given in Section 5. Finally, Section 6 includes the conclusion.

2 Preliminaries

In this section, we briefly recall some basic definitions and facts that will be used
in the paper.
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A (finite) continued fraction expansion (CF ) [19] is an m-tuple of integers

[q1, q2, ..., qm]

with q2, ..., qm > 0, which is an abbreviation of the following rational number:

q1 +
1

q2 +
1

q3+...+ 1
qm

.

Let a, b be two positive integers satisfying gcd(a, b) = 1 and a < b. The rational
number c = a

b has a unique CF [q1, q2, ..., qm] with qm > 1, which can be
computed in time O(log2b) using the following algorithm [21]:

– c0 = c.
– compute ci =

1
ci−1−�ci−1� for i = 1, · · · ,m, where m ≤ 2 log b is the smallest

value of i such that �ci� = ci.
– return [q1, q2, . . . , qm], where qi = �ci� for i = 1, · · · ,m.

If c is an irrational number, then the computation can be continued for m → ∞.
In this case, we have infinite CF :

q1 +
1

q2 +
1

q3+...+ 1
...

.

It will be shortened to [q1, q2, . . .].

Theorem 1. (Legendre) [19] Let α be a real number. If c and d are positive
integers such that gcd(c, d) = 1 and

∣
∣
∣α− c

d

∣
∣
∣ <

1

2d2
,

then c
d is a convergent of the CF expansion of α.

Definition 1. [17] Let m be a real number and (n, e) be an RSA public key with
private key d, where ed − 1 = tφ(n). We define a Wiener’s attack on (n, e,m),
denoted by WA(n, e,m), as follows:

WA(n, e,m) =

⎧
⎨

⎩

t
d , if t

d is one of the convergents of the CF expansion of e
m ;

failure, otherwise.

WA(n, e,m) is said to be succeeds if it returns t/d.
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Definition 2. [17] Let (n, e) be an RSA public key. An interval I ⊂ � (set of
real numbers) is said to be a Wiener’s interval for (n, e) if for every m ∈ I,
WA(n, e,m) succeeds.

The following theorem determines a Wiener’s interval for an RSA public-key
(n, e).

Theorem 2. [17] Let (n, e) be an RSA public key with private exponent d. Then

I =]φ(n)− φ(n)
cd2+1 , φ(n) +

φ(n)
2d2−1 [ is a Wiener’s interval for (n, e), where

c =

⎧
⎪⎪⎨

⎪⎪⎩

2, if d <
√

φ(n)−1
2 ;

4, if
√

φ(n)−1
2 ≤ d < φ(n)−1

4 .

Theorem 2 is also true for MPRSA [17].

3 The Attack

In this section, we show that the result of de Weger [23] on RSA can be extended
to MPRSA using Wiener’s interval . By choosing m = n− Γ, where

Γ =

r∑

i

n

n1/r
−

r∑

i,j
i<j

n

n2/r
+

r∑

i,j,k=1
i<j<k

n

n3/r
+ ...− (−1)r,

we show that m lies in Wiener’s interval (Theorem 2).
Now, let

Λ = n− φ(n) =

r∑

i

n

pi
−

r∑

i,j=1
i<j

n

pipj
+

r∑

i,j,k=1
i<j<k

n

pipjpk
+ ...− (−1)r;

Then we can rewrite Λ and Γ as follows.

Λ = Λ1 − Λ2 + ...− (−1)rΛr,

where

Λk =

r∑

i1,..,ik
i1<..<ik

n

pi1pi2 ...pik
, 1 ≤ k ≤ r.

And
Γ = Γ1 − Γ2 + ...− (−1)rΓr,

where
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Γk =

r∑

i1,..,ik
i1<..<ik

n

nk/r
= Cr

kn
1−k/r , 1 ≤ k ≤ r

and

Cr
k =

r!

k!(r − k)!
(k ≤ r).

Lemma 1. Let n = p1p2...pr be a product of distinct r-balanced primes and
pr − p1 = nα, 0 < α ≤ 1/r. Then

|Λk − Γk| < 2k(2k − 1)Cr
kn

1+α− k+1
r ,

where k is a positive integer such that k ≤ r.

Proof

|Λk − Γk| ≤
∑r

i1,..,ik
i1<..<ik

∣
∣
∣ n
pi1pi2 ···pik

− n
nk/r

∣
∣
∣

=
∑r

i1,...,ik
i1<..<ik

n|nk/r−pi1pi2 ···pik |
nk/rpi1pi2 ···pik

≤ ∑r
i1,...,ik
i1<...<ik

n|pk
r−pk

1 |
1

2k
n2k/r

=
∑r

i1,...,ik
i1<...<ik

2kn(pr−p1)(p
k−1
r +pk−2

r p1+...+pk−1
1 )

n2k/r

<
∑r

i1,...,ik
i1<...<ik

2kn1+α(2k−1n
k−1
r +2k−2n

k−1
r +...+20n

k−1
r )

n2k/r

=
∑r

i1,...,ik
i1<...<ik

2kn1+αn
k−1
r (2k−1+2k−2+···+1)

n2k/r

= 2k(2k − 1)Cr
kn

1+α− k+1
r . ♦

Proposition 1. Let n = p1p2 · · · pr be a product of distinct r-balanced primes
and pr − p1 = nα, 0 < α ≤ 1/r. Then

|Λ− Γ | <
⎧
⎨

⎩

1
4n

2α−1/2, if r = 2;

3rn1+α−2/r, if r ≥ 3, and 2k(2k − 1)Cr
k ≤ n1/r

r−1 (2 ≤ k ≤ r).
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Proof
If r = 2, then

|Λ− Γ | = |p1 + p2 − 1− (2
√
n− 1)| = p1 + p2 − 2

√
n = (p1−p2)

2

p1+p2+2
√
n

< (p1−p2)
2

4
√
n

= 1
4n

2α−1/2.

If r ≥ 3 and 2k(2k − 1)Cr
k ≤ n1/r

r−1 ,

|Λ− Γ | < |Λ1 − Γ1|+
r∑

k=2

|Λk − Γk|.

Using Lemma 1, for every 2 ≤ k ≤ r, we have

|Λk − Γk| < 2k(2k − 1)Cr
kn

1+α−(k+1)/r

≤ n1/r

r−1 n
1+α−(k+1)/r

= n1+α−k/r

r−1 ≤ n1+α−2/r

r−1 .

It follows that

|Λ− Γ | < 2rn1+α−2/r +
∑r

k=2
n1+α−2/r

r−1

= 2rn1+α−2/r + (r − 1)n
1+α−2/r

r−1

< 3rn1+α−2/r. ♦
Theorem 3. Let n = p1p2 · · · pr be MPRSA modulus, where p1, p2, · · · , pr are
distinct r-balanced primes. If pr − p1 = nα, 0 < α ≤ 1/r and

2d2 + 1 <

⎧
⎨

⎩

2n3/2−2α + 1, if r = 2 and φ(n) > 3
4n;

n2/r−α

6r , if r ≥ 3, and 2k(2k − 1)Cr
k ≤ n1/r

r−1 , 2 ≤ k ≤ r

then the system is insecure.

Proof: Using Theorem 2, we need only to show that

|m− φ(n)| < φ(n)

2d2 + 1
,

where m = n− Γ. We have

|m− φ(n)| = |Λ− Γ |.

Thus, by Proposition 1, we have
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|m− φ(n)| <
⎧
⎨

⎩

1
4n

2α−1/2, if r = 2;

3rn1+α−2/r, if r ≥ 3, 2k(2k − 1)Cr
k ≤ n1/r

r−1 , 2 ≤ k ≤ r.

We have two cases.

Case 1: r = 2. If φ(n) > 3
4n, then

|m− φ(n)| < 1
4n

2α−1/2 = 1
4n

2α−3/2+1 = 1
4

n
n3/2−2α

< 1
4

n
d2 <

4
3φ(n)

4d2 < φ(n)
3d2 < φ(n)

2d2+1 .

Case 2: r ≥ 3 and 2k(2k − 1)Cr
k ≤ n1/r

r−1 . We have

|m− φ(n)| < 3rn1+α−2/r = 3r n
n2/r−α < 3r 2φ(n)

n2/r−α

= φ(n)
n2/r−α

6r

< φ(n)
2d2+1 . ♦

Remark 1. 1. if α = 1
r , then the upper bound of d is

√
n1/r−6r

12r which is similar

to the upper bound
√

n1/r

2(2r2−1) in [12].

2. Since the maximum numbers of safe primes for MPRSA are 3, 3, 4, and 5
for 1024, 4038, 4096, and 8192 bits respectivelly [11], the condition 2k(2k −
1)Cr

k ≤ n1/r

r−1 in Theorem 3 is always satisfied.

4 Comparison

In this section, we compare between our attack and the previous attacks.

1. For r = 2, and 0 < α ≤ 1
2 , we have two cases:

(a) If 0 < α < 1
4 , then Fermat’s method [23] factorizes n = p1p2 in polyno-

mial time if p2 − p1 = nα.
(b) If 1

4 ≤ α ≤ 1
2 , then de Weger’s attack [23] finds d = nδ when p2−p1 = nα,

where δ < 3
4 − α.

2. To the best of our knowledge, for r ≥ 3, there is no generalization of Fer-
mat’s method for MPRSA. Our attack (Theorem 3) can be considered as an
extensions of de Weger’s attack since α ≥ 0 and for r = 2, de Weger’s attack
is a special case of Theorem 3.
It is important to point that all known small private exponent attacks on
MPRSA become less effective when increasing the number of primes in the
modulus [11, Section 9.3].

3. When the public exponent e is full sized, our attack is superior than other
small private exponent attacks on MPRSA. Figure 1 shows a comparison
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Fig. 1. Comparison between Theorem 3 and previous private exponent attacks on
MPRSA

between our attack and attacks of Hinek et al. (Eqs.(1) and (2)) [11,12] and
Ciet et al. (Eq.(3))[6,11] when r = 3, 4, and 5, where

δ <
1

3r
(4r − 1− 2

√
(r − 1)(4r − 1))− ε, ε > 0 (1)

δ <
1

5r
(6− 4r + 2

√
4r2 − 7r + 4)− ε, ε > 0 (2)

δ < (r −
√
r(r − 1))/r − ε, ε > 0 (3)
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5 Numerical Example

In this section we give an example for the presented attack. We used Shoup’s
package [20] NTL in the implementation.

Let n = p1p2p3p4 be a product of four primes each of size 100 decimal digits
such that p4 − p1 ≤ n0.19. Thus, α = 0.19 and δ = 0.15.

Suppose that e of size 400 decimal digits.

n = 2557376388987292753761761577769565198593697483152866036088506944889557\
1324087356114126315325667501129171069698135515159727452127849294044657\
0831074401027667970486289464022334468742943259375220427200453728525267\
6190931908757043225664568346467057103301435702171307412146715922277287\
201425288416218336119931028736578683955425009746831075119013819142265\
046330193730129013231484126392267563403208765626567.

e = 1282614524058427157062184165654804666686202713945353160716561456711662\
1440047797087437150450386110068699112022894288537169165237544058155230\
6989260432762549159378268935666955616295237915067408912864464892356007\
2178514725395063517274319094914872498494209259672479885879192200723926\
3551649087786820580473700277994100163665081397126926938775218211019808\
38177155732917433260529153810425421897963203104501.

Now, we compute m = n− Γ.

m = 2557376388987292753761761577769565198593697483152866036088506944889557\
1324087356114126315325667501114786198428094046819899205736032544379321\
4558263983852318376236785961085727729598425439320664127806023007674883\
4867456943752227591895411010482236721185353733731279977833581405492208\
9270729727409929097052543902309899002404074626571583979407425064383316\
94875626840505790931689488829900292770669173758408.

and CF (e/m) =

[0, 1, 1, 162, 2, 1, 63, 1, 4, 5, 2, 1, 1, 1, 1, 9, 2, 1, 1, 2, 1, 5, 1, 1, 278, 1, 10, 3, 2,
1, 3, 1, 1, 1, 1, 2, 1, 7, 3, 11, 7, 15, 1, 1, 1, 17, 4, 5, 2, 2, 2, 8, 1, 2, 3, 1, 6, 1, 1,
1, 1, 4, 2, 2, 1, 1, 2, 3, 1, 1, 14, 1, 2, 7, 1, 1, 3, 2, 2, 1, 1, 1, 2, 5, 143, 1, 2, 1, 1,
1, 10, 1, 7, 18, 1, 4, 3, 1, 1, 101, 1, 8, 2, 1, 32, 1, 6, 2, 8, 1, 2, 53, 11, 3, 3, 1, 1, 1,
1, 1, 2, 1, 1646332861278020346917835445367, 1, 6, 3, 1, 1, 4, 1, 2, 1, 11, 1, 4, 3,
1, 2, 1, 1, 1, 7, 2, 5, 5, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 5, 10, 1, 7,
1, 4, 1, 4, 2, 1, 1, 1, 1, 3, 154, 5, 2, 11, 2, 23, 7, 1, 2, 1, 6, 5, 1, 9, 1, 6, 1, 8, 1, 3,
3, 1, 1, 8, 2, 1, 6, 1, 1, 2, 9, 2, 3, 1, 1, 3, 1, 1, 2, 1, 1, 7, 1, 6, 2, 1, 2, 1, 7, 2, 71,
2, 1, 5, 2, 1, 97, 4, 1, 1, 1, 1, 3, 1, 2, 6, 2, 1, 5, 1, 33, 15, 1, 1, 5, 1, 1, 19, 2, 1, 6,
5, 2, 8, 1, 1, 14, 1, 1, 1, 2, 1, 2, 12, 1, 2, 3, 3, 133, 3, 6, 12, 3, 14, 1, 3, 29, 3, 5, 3,
4, 1, 1, 1, 2, 4, 15, 2, 15, 1, 1, 3, 6, 1, 2, 2, 1, 5, 3, 1, 6, 18, 1, 1, 1, 2, 1, 1, 1, 1,
1, 1, 69, 399, 4, 1, 6, 1, 3, 3, 1, 1, 1, 6, 1, 7, 1, 3, 8, 1, 2, 50, 3, 1, 1, 11, 2, 62, 1,
5, 5, 1, 1, 1, 3, 1, 1, 1, 6, 1, 2, 3, 1, 2, 1, 1, 1, 12, 5, 1, 22, 2, 36, 1, 1, 1, 3, 4, 1,
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4, 15, 1, 3, 1, 3, 2, 1, 1, 1, 3, 1, 5, 2, 2, 1, 1, 17, 1, 16, 1, 2, 1, 1, 6, 6, 27, 3, 1, 4,
2, 2, 10, 2, 1, 2, 3, 2, 1, 1, 4, 4, 11, 2, 3, 1, 10, 1, 1, 2, 1, 1, 2, 20, 13, 1, 2, 1, 3, 3,
1, 1, 1, 1, 11, 3, 1, 1, 97, 1, 4, 12, 3, 6, 2, 73, 1, 1, 1, 1, 3, 1, 1, 16, 8, 4, 5, 1, 2,
60, 1, 1, 10, 1, 3, 2, 1, 1, 2, 20, 1, 1, 1, 2, 1, 61, 1, 3, 1, 44, 2, 13, 1, 1, 6, 3, 4, 1,
3, 1, 2, 202, 1, 4, 1, 9, 1, 2, 2, 1, 40, 1, 8, 2, 6, 99, 3, 2, 3, 1, 10, 2, 22, 1, 4, 1, 3,
4, 1, 3, 1, 15, 2, 10, 5, 1, 1, 1, 427, 1, 3, 1, 2, 3, 2, 2, 91, 1, 1, 1, 2, 1, 1, 2, 1, 23,
1, 3, 12, 6, 2, 13, 1, 16, 1, 1, 8, 4, 1, 2, 44, 1, 2, 22, 2, 1, 1, 4, 1, 3, 27, 1, 2, 3, 1,
2, 7, 1, 6, 1, 1, 1, 6, 5, 1, 1, 1, 1, 1, 1, 5, 4, 1, 1, 15, 2, 1, 4, 18, 1, 1, 1, 2, 2, 3, 2,
4, 13, 4, 1, 9, 3, 1, 2, 11, 1, 1, 6, 30, 2, 2, 2, 11, 17, 1, 1, 1, 1, 1, 2, 7, 7, 1, 2, 2,
1, 2, 1, 3, 7, 31, 1, 3, 1, 2, 452, 1, 19, 9, 11, 1, 2, 1, 1, 2, 6, 1, 28, 10, 4, 1, 2, 3,
2, 5, 2, 1, 15, 1, 3, 2, 42, 5, 1, 1, 2, 1, 1, 4, 1, 1, 9, 2, 1, 3, 8, 6, 32, 1, 3, 2, 12, 1,
4, 1, 11, 2, 1, 41, 4, 1, 6, 2, 1, 1, 48, 2, 2, 3, 2, 2, 4, 2, 4, 4, 10, 1, 12, 14, 4, 1, 2, 92].

Thus, we can conclude that

d = 189877018016769650162234978064222550351916979376481456967901.

p1 = 71112944731410736200936098026102194286183896202223461645293266435374\
24133992279467748393278156440741.

p2 = 71112944731410736200936161704354259548674079134065376681839091861977\
76492054347020753847107491042031.

p3 = 71112944731410736200936135161274092520974419744378917664439975869666\
14471703183603466271783937017379.

p4 = 71112944731410736200936153839445191771143086686623743978164216730335\
75558876657813072394314100437063.

6 Conclusion and Futures Work

Let n = p1p2 · · · pr, and pr − p1 = nα. Based on Wiener’s Interval , we have

showed that MPRSA is insecure if 2d2 + 1 < n2/r−α

6r < φ(n), for r ≥ 3; and

2d2 + 1 < 2n3/2−2α + 1, for r = 2 and φ(n) > 3
4n.

Many interesting questions arise from the work presented above. For examples:

1. The possibility to generalize Fermat’s method to MPRSA. It seems that
pr − p1 = nα, α = 1

r .

2. Uses of lattice instead of CF.

3. Improve the condition 2d2 + 1 < n2/r−α

6r .
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