
A New Variant of Time Memory Trade-Off

on the Improvement of Thing and Ying’s Attack

Zhenqi Li1, Yao Lu2, Wenhao Wang2, Bin Zhang2, and Dongdai Lin2

1 Institute of Software Chinese Academy of Sciences, Beijing, China
2 The State Key Laboratory of Information Security

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{lizhenqi,luyao,wangwenhao,zhangbin,ddlin}@is.iscas.ac.cn

Abstract. In this paper, we present a rigorous evaluation of Thing and
Ying’s attack (TY attack) [11] along with practical implementations. We
find that the cryptanalysis time of their attack is too high to be practical.
We also propose a more general time memory trade-off by combining the
distinguished points strategy with TY attack. Both theoretical analysis
and experimental results show that our new design can save about 53.7%
cryptanalysis time compared to TY attack and can reduce about 35.2%
storage requirement compared to the original rainbow attack.

Keywords: time memory tradeoff, cryptanalysis, rainbow attack.

1 Introduction

A basic problem in symmetric-key cryptology is the computation of preimages
or inversion of one-way functions. There are two straightforward ways (suppose
the function has an n-bit input): first one can perform an exhaustive search
over an average of 2n−1 values until the target is reached. A second solution
is to precompute and store 2n input and output pairs in a table. If one then
needs to invert a particular value, one just looks up the preimage in the table, so
inverting requires only a single table lookup. Both methods will be impractical if
n becomes larger. Cryptanalytic time memory trade-off (TMTO) is a technique
that comes between these two extremes. It inverts a one-way function in time
shorter than the exhaustive search method, using a storage smaller than the
table lookup method.

Since the first TMTO algorithm was proposed by Hellman [6], many of its
extensions [5,3,1] and variants [9,7,2,8,4] have appeared. In 2009, Thing and Ying
proposed a new TMTO [11] for password recovery. Compared to the traditional
rainbow table, it has higher success probability and lower storage requirements.
In this paper, we present a rigorous evaluation on the performance of TY attack
along with practical implementations, we find that it has high cryptanalysis
time. Combining the distinguished point (DP) [5] strategy with TY attack, we
design a new variant of TMTO, which is a general framework not only applicable
to password crack but also to cryptanalysis of cryptosystems. We also make a
comparison between our new design and TY attack. Experimental results show

T.W. Chim and T.H. Yuen (Eds.): ICICS 2012, LNCS 7618, pp. 311–320, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

312 Z. Li et al.

that new design can save about 53.7% cryptanalysis time compared to TY attack
and can reduce about 35.2% storage requirement compared to original rainbow
attack.

The paper is organized as follows. In Section 2, some basic TMTO method-
ologies are provided, followed with the analysis of TY attack. Formal definitions
and algorithms of our new design are given in Section 3. Section 4 identifies
the performance evaluation and experimental results. Finally, conclusions are in
Section 5.

2 Time-Memory Trade-Off Methodology and Analysis of
TY Attack

2.1 Time-Memory Trade-Off Methodology

Let f be a one-way function, given output y (y ∈ Y), the trade-off target is
to recover the corresponding preimage x (x ∈ X) satisfying f(x) = y, where
X and Y are the input space and the output space respectively. In the of-
fline stage of Oechslin’s TMTO [9], we randomly choose m starting points:
SP0, SP1, ..., SPm−1 (SPi ∈ X, 0 ≤ i ≤ m− 1) and iteratively compute SPi for
t times by using a compound function: Fj = Rj ◦ f , where Rj is called reduction
function or mask function which maps Y to X , 1 ≤ j ≤ t and ◦ denotes function
composition. The offline computation is as follows.

SP0 = x0,0
F1−→ x0,1

F2−→ x0,2 · · · Ft−→ x0,t = EP0

SP1 = x1,0
F1−→ x1,1

F2−→ x1,2 · · · Ft−→ x1,t = EP1

...
...

SPm−1 = xm−1,0
F1−→ xm−1,1 · · · Ft−→ xm−1,t = EPm−1

we only store (SP0, EP0), (SP1, EP1), ..., (SPm−1, EPm−1) in a table called rain-
bow table and sort the table with respect to ending points. In the online stage,
we firstly apply Rt to y and look up the result in the ending points of the table.
If we find a matching ending point, we know how to rebuild the chain using the
corresponding starting point and locate x. If we don’t find a match, we try if we
find it by applying Rt−1, Ft to see if the preimage was in the second last column
of the table. Then we try to apply Rt−2, Ft−1, Ft, and so forth.

2.2 Analysis of TY Attack

The basic idea of TY attack is similar to rainbow attack. The difference lies
in their table structures. Suppose h is a hash function which is often used to
password encryption. The precomputation of the i-th table is as follows.

A New Variant of TMTO on the Improvement of Thing and Ying’s Attack 313

xi h−→ H
R1−→ xi

1,1
F2−→ xi

1,2 · · · Ft−→ xi
1,t

H + 1
R1−→ xi

2,1
F2−→ xi

2,2 · · · Ft−→ xi
2,t

H + 2
R1−→ xi

3,1
F2−→ xi

3,2 · · · Ft−→ xi
3,t

...
...

H + k
R1−→ xi

k+1,1
F2−→ xi

k+1,2 · · · Ft−→ xi
k+1,t

where H is the hash value of xi and Fj = Rj ◦ h (1≤ j ≤ t). It only store one
starting point of xi and k + 1 ending points for the i-th table. k is a constant
value to control the table size. The online analysis is the same to that of rainbow
attack. When a match is found in the table, it is easy to rebuild the corresponding
H + d (0 ≤ d ≤ k) by using the matched chain index and the stored xi, then
locate the possible preimage.

In [11], Thing et al. said that the optimal value of k is 2m−2, where m is num-
ber of chains in rainbow table. In this way, storage usage can be maximum and
only one table is computed in the offline stage. It can save 50% storage require-
ment in comparison to rainbow table. However, we found that it requires higher
cryptanalysis time which makes it to be impractical in real world applications. In
traditional TMTO, we often sort the precomputed table and the searching time
in a sorted table is often ignored. But in TY attack, hash value of the second
column increased in order and sorting will break this order, thus disturbing the
correctness of the attack. Searching in an unsorted table will greatly increase the
online cost. Online time comparisons between TY attack and rainbow attack
are listed in Table 1.

Table 1. Online time complexity comparison

Attack Rainbow attack TY attack

Parameters (m, t, r) (k, t, r)

Function calculation O(t
2

2) O(t
2

2)
Table look-up O(t) O(t)
Comparison of each table look-up O(log(m)) O(k + 1)

From table 1, given N = 224,m = 215, t = 29, r = 1 for rainbow attack and
N = 224, k = 2m − 2 = 216 − 2, t = 29, r = 1 for TY attack, table look-up of
TY attack needs totally t(k+1) = 225− 29 ≈ 225 comparisons, which is slightly
larger than brute force comparisons of 224. The online performance comparisons1

among rainbow attack, TY attack and brute force attack are given in Table 2.

1 We randomly generate 500 integers in the searching space {i|0 ≤ i ≤ 224 − 1, i ∈ Z}
and calculate their digest values by using MD5. Inversion of each digest value is done
by rainbow attack, TY attack and brute force attack.

314 Z. Li et al.

Table 2. Experimental results of the online time complexity comparison

Rainbow attack TY attack Brute force attack

(m, t, r)|(k, t, r)|N (215, 29, 1) (216 − 2, 29, 1) 224

Average cryptanalysis time

to success 1.86 sec 7.59 sec 14.70 sec
to failure 2.58 sec 15.18 sec -
total 2.22 sec 9.83 sec 14.70 sec

Average function calculations

to success 43505 74978 4499522
to failure 174654 215898 -
total 110391 116549 4499522

Average false alarms

to success 52 139 -
to failure 256 497 -
total 156 245 -

From Table 2, the average function calculations (total) of TY attack is almost
the same to that of rainbow attack as we just expected in Table 1, but it takes
more cryptanalysis time than rainbow attack in all cases, since the cost of table
look-up dominates the total online cost. In failure case, TY attack takes more
time than brute force attack.

In the meantime, Ying and Thing themselves also found the existing drawback
of TY attack and proposed a sorting method [12] to improve the performance of
the recovery process. The basic idea is to add some tags to each ending point and
sort the ending points in the usual alphabetical order. These tags can be used
to derive the corresponding initial hash value, which correctly solve the sorting
problem. However, the revised attack can only be applied to password cracking
scenario and the existence of these reserved tags will add difficulties in designing
the index algorithm. They also did not present any experimental comparisons
between their improved version and original rainbow attack but only gave a
theoretical estimation of 23% reduction in storage requirement, which seems to
be lack of convincing.

3 A New Design

In this section, we propose a new variant of TMTO by combining DP strat-
egy with TY attack. It is a general framework and can be applied not only to
password cracking but also to the cryptanalysis of cryptosystem.

A New Variant of TMTO on the Improvement of Thing and Ying’s Attack 315

3.1 Offline Stage

In the offline stage, we choose a constant value X (i.e.,X = 0) and com-
pute k1 × k2 starting points through H(X + i) + j (0 ≤ i < k1, 0 ≤ j <
k2). Then, we choose tmax different evaluation function: F1, F2, ..., Ftmax , where
Fk = Rk ◦ h, 1 ≤ k ≤ tmax and Rk is the reduction function. We iteratively
compute the (i, j)-th chain through Xj

i,k = Fk(X
j
i,k−1), X

j
i,0 = (H(X + i) ⊕

j) mod N, 1 ≤ k ≤ tmax. The chain stops when the most significant |k2|2 bits
of some Xj

i,k is found to be j or the current chain length exceeds tmax. If the
chain stops in the latter case, we discard it. The offline stage can be shown as
follows.

SP 0
0 = H(X + 0)⊕ 0

F1−→ ◦ F2−→ · · ·
F

l0
0−→ (0 ‖ R0

0) = EP 0
0

SP 0
1 = H(X + 1)⊕ 0

F1−→ ◦ F2−→ · · ·
F

l0
1−→ (0 ‖ R0

1) = EP 0
1

...
...

SP 0
k1−1 = H(X + k1 − 1)⊕ 0

F1−→ ◦ F2−→ · · ·
F

l0
k1−1−→ (0 ‖ R0

k1−1) = EP 0
k1−1

SP 1
0 = H(X + 0)⊕ 1

F1−→ ◦ F2−→ · · ·
F

l1
0−→ (1 ‖ R1

0) = EP 1
0

SP 1
1 = H(X + 1)⊕ 1

F1−→ ◦ F2−→ · · ·
F

l1
1−→ (1 ‖ R1

1) = EP 1
1

...
...

SP 1
k1−1 = H(X + k1 − 1)⊕ 1

F1−→ ◦ F2−→ · · ·
F

l1
k1−1−→ (1 ‖ R1

k1−1) = EP 1
k1−1

...
...

SP k2−1
0 = H(X + 0) ⊕ (k2 − 1)

F1−→ ◦ F2−→ · · ·
F

l
k2−1
0−→ (k2 − 1 ‖ Rk2−1

0) =
EP k2−1

0

SP k2−1
1 = H(X + 1) ⊕ (k2 − 1)

F1−→ ◦ F2−→ · · ·
F

l
k2−1
1−→ (k2 − 1 ‖ Rk2−1

1) =
EP k2−1

1
...

...

SP k2−1
k1−1 = H(X + k1 − 1)⊕ (k2 − 1)

F1−→ ◦ F2−→ · · ·
F

l
k2−1
k1−1−→ (k2 − 1 ‖ Rk2−1

k1−1) =

EP k2−1
k1−1

2 For all || in this paper, |α| means the binary length of integer α.

316 Z. Li et al.

For each chain, we only store:

S[0, 0] = {R0
0, l

0
0, 0} 0 < l00 ≤ tmax

S[1, 0] = {R0
1, l

0
1, 1} 0 < l01 ≤ tmax

...

S[i, j] = {Rj
i , l

j
i , i} 0 < lji ≤ tmax

...

S[k1 − 1, k2 − 1] = {Rk2−1
k1−1, l

k2−1
k1−1, k1 − 1} 0 < lk2−1

k1−1 ≤ tmax

where Rj
i (0 ≤ i ≤ k1 − 1, 0 ≤ j ≤ k2 − 1) is the rest (n−|k2|) bits of the ending

point in the (i, j)-th chain, lji is the length of the (i, j)-th chain and n = |EP j
i |.

All these chains have different lengths and can be split into groups of size k2
according to their definition of DP. We sort each DP group with respect to Rj

i

and store them in k2 tables indexed by their DP definition, which is also equal
to j of the starting points and also to the most significant |k2| bits of ending
points.

Let d1 = |k1|, d2 = |k2|, l = |tmax| and n = |N |, then |S[i, j]| = |Rj
i |+ |lji |+

|i| = n − d2 + l + d1 bits. We have k1 × k2 starting points, thus the storage
requirement is M = P × k1× k2× (n− d2 + l+ d1) bits, where P (0 < P ≤ 1) is
the proportion of chains which meet a predefined DP before their length reach
tmax. More details of P is given in the next section.

3.2 Online Stage

Give Y (ciphertext in block ciphers and MACs, key stream segment in stream
ciphers, hash value in password encryptions, etc), to lookup the preimage (secret
key in block ciphers and MACs, internal state in stream ciphers, password in
password encryptions, etc), we proceed in the following manner: First we apply
Rtmax to the ciphertext Y and get Y0 = Rtmax(Y), Y0 is now a DP for some
definition of DP. The value of the most significant |k2| bits of Y0 is corresponding
to a table in which the most significant |k2| bits of each ending point equals to
that of Y0. Then, we look up the rest n− |k2| bits in this table as follows.

{
Rj

i
?
= (rest (n− |k2|) bits of Y0)

lji
?
= tmax

(1)

If both equations succeed, then a match is found and we get the corresponding
index i stored in the match S[i, j] and compute Xj

i,tmax−1 from the starting point
(H(X + i)⊕ j) mod N , where j is the value of the most significant |k2| bits of
Y0. Then we check whether Xj

i,tmax−1 is the preimage or a false alarm.

If either equation of (1) fails, then we apply Rtmax−1, Ftmax to Y as Y
Rtmax−1−→

Y1
Ftmax−→ Y0 and check Y0 and Y1 separately. Provided that we have computed Y

iteratively for k times and 1 ≤ k ≤ tmax:

X
Rtmax−(k−1)−→ Yk−1

Ftmax−(k−2)−→ Yk−2 · · · Ftmax−→ Y0. (2)

A New Variant of TMTO on the Improvement of Thing and Ying’s Attack 317

We search each Yq(0 ≤ q ≤ k − 1) in a corresponding DP table and check

{
Rj

i
?
= (rest (n− |k2|) bits of Yq)

lji
?
= tmax − q

(3)

if both equations succeed, then a match is found. Xj
i,tmax−q can be computed

from the starting point (H(X + i) ⊕ j) mod N by iteratively doing the com-
putation from F1 to Ftmax−q−1. Then we check whether Xj

i,tmax−q is a false
alarm or the preimage. If no match is found or false alarm occurred, then we
set k ← k + 1 and repeat the process above until k > tmax. It is easy to know

that new design needs O(
t2max

2) function calculations and O(
t2max

2) table look-ups,
each table look-up only needs log2|k1| comparison because of the sorted ending
points.

3.3 The Selection of tmax

The main modification caused by the introduction of DP is the variable chain
length. Therefore, the selection of tmax has a great influence on the performance
of the new design. Let k = |k2|, n = |N | and P1(t) be the probability that a
DP is reached in less than t iterations. Let P2(t) be the probability that no
DP is reached in less than t iterations. Thus P1(t) = 1 − P2(t) and we can

easily get P2(t) =
∏t−1

i=0(1 − 2n−k

2n−i). An approximate expression can be obtained

knowing that i
 2n. By fixing i to t−1
2 , we have P2(t) ≈ (1 − 2n−k

2n− t−1
2

)t. Finally,

we have P1(t) ≈ 1− (1− 2n−k

2n− t−1
2

)t, thus the probability to reach a DP in less

than tmax iterations is P1(tmax) which is also the P we defined in Section 3.3.
According to [10], The average chain length of a DP table is t = 2k = k2. Given
N = 224, k1 = 28, and k2 = 28, the theoretical and experimental results of
P1(tmax) are listed in Table 3.

Table 3. The value of P1(tmax)

tmax Theoretical result Experimental result

1.0× 28 63.28% 63.26%
1.5× 28 77.75% 77.56%
2.0× 28 86.25% 86.43%
2.5× 28 91.83% 91.90%
3.0× 28 95.05% 95.13%
a (N, k1, k2) = (224, 28, 28)

From Table 3, we see that the larger tmax is, the higher P1(tmax) will be.
However, larger tmax also leads to higher time complexity in the online stage as
described in Section 3.3. Therefore, tmax should not be too large or too small.

318 Z. Li et al.

4 Performance Evaluation and Experimental Results

In this section, we present a rigorous evaluation on the performance of our new
design correspond with experimental results (the analysis of success probability
can be found in the full version).

4.1 Online Time Complexity Comparison

Given N = 232, common parameters of TY attack are (k, t, r) = (2 × 220 −
2, 212, 1) and common parameters of new design are (k1, k2, tmax) = (455, 212, 2×
212). These chosen parameters can assure that both attacks have the same stor-
age requirement and TY attack has the optimal table structure. Experimental
results are listed in Table 4.

Table 4. Experimental results of the online comparison

New design TY attack

(k1, k2, tmax)|(k, t, r) (455, 212, 213) (221 − 2, 212, 1)

Average cryptanalysis time

to success 3 min, 23.10 sec 7 min, 17.74 sec
to failure 6 min, 7.11 sec 16 min, 46.89 sec
total 4 min, 31.00 sec 9 min, 45.72 sec

Average function calculations

to success 4,393,370 4,772,551
to failure 15,470,394 13,971,075
total 12,206,927 7,164,167

Average false alarms

to success 548 1153
to failure 1388 4099
total 896 1919

The experimental results show that the average function calculations of our
new design is higher than TY attack, but it can save 53.7% cryptanalysis cost,
since it needs less table look-ups and occurs less false alarms than TY attack.

4.2 Storage Requirement Comparison

In this part, the basic consumption is that all these attacks have the same
precomputation time. Therefore, given N = 224, the common parameters for
these attacks and the storage space comparison are listed in Table 5 (more
details can be found in the full version).

A New Variant of TMTO on the Improvement of Thing and Ying’s Attack 319

Table 5. Storage space comparison

Attack Rainbow attack New design TY attack

(m, t, r)|(k1, k2, tmax)|(k, t, r) (215, 29, 1) (26, 29, 210) (215, 29, 1)
Entries 215 0.8643× 215 215 + 2
Entry size 48-bit 31-bit 24-bit
Experimental result 256 KB 166 KB 161 KB

N = 224

The storage medium is ’.txt’ file and we put each entry in a single line to
the file. Results in Table 5 show that our new design can save about 35.2%
storage requirement compared with rainbow attack, TY attack can save about
37.1% storage requirement compared with rainbow attack. For more details and
further discussion, please refer to the full version.

5 Conclusion

In this paper, we present a rigorous analysis on the performance of TY attack
and find that it has higher precomputation time and its online attack time is
no better than brute force attack. Therefore, TY attack is an impractical attack
even though it has higher success probability and lower storage requirement than
rainbow attack. By combining the DP strategy with TY attack, we propose a
new variant of TMTO, which is a general framework and can be applied not only
to password cracking, but also to cryptanalysis of cryptosystems. Evaluations of
the performance show that our new design has higher success probability than
rainbow attack and has slightly lower success probability than TY attack under
the basic assumption that all these three attacks use the same storage space.
It can save about 53.7% cryptanalysis time compared with TY attack and can
save about 35.2% storage requirement compared with original rainbow attack.
The amount of storage requirement we have saved is slightly lower than that of
TY attack (37.1%), but we achieved a great improvement on the cryptanalysis
time, making our new design to be a practical TMTO which can well be used in
the storage limited applications.

References

1. Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Transactions on Information and
Systems Security 11(4), Article 17 (2008)

2. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved Time-Memory Trade-Offs
with Multiple Data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006)

3. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

320 Z. Li et al.

4. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Compos-
ite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial
Search Problems. Cryptology ePrint Archive. Report 2012/217 (2012)

5. Denning, D.: Cryptography and Data Security, p. 100. Addison-Wesley (1982)
6. Hellman, M.: A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions on

Information Theory 26(4), 401–406 (1980)
7. Hong, J., Jeong, K.C., Kwon, E.Y., Lee, I.S., Ma, D.: Variants of the Distinguished

Point Method for Cryptanalytic Time Memory Trade-Offs. In: Chen, L., Mu, Y.,
Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 131–145. Springer, Heidelberg
(2008)

8. Hong, J., Sarkar, P.: New Applications of Time Memory Data Tradeoffs. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer, Heidelberg
(2005)

9. Oechslin, P.: Making a Faster Cryptanalytic Time-Memory Trade-Off. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)

10. Standaert, F.X., Rouvroy, G., Quisquater, J.J., Legat, J.D.: A Time-Memory
Tradeoff Using Distinguished Points: New Analysis & FPGA Results. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 593–609.
Springer, Heidelberg (2003)

11. Thing, V.L.L., Ying, H.M.: A novel time-memory trade-off method for password
recovery. Digital Investigation 6, S114–S120 (2009)

12. Ying, H.M., Thing, V.L.L.: A Novel Rainbow table sorting method. In: Proceedings
of the 2nd International Conference on Technical and Legal Aspects of the e-
Society, CYBERLAWS 2011 (2011)

	A New Variant of Time Memory Trade-Off on the Improvement of Thing and Ying’s Attack

	Introduction
	Time-Memory Trade-Off Methodology and Analysis of TY Attack
	Time-Memory Trade-Off Methodology
	Analysis of TY Attack

	A New Design
	Offline Stage
	Online Stage
	The Selection of tmax

	Performance Evaluation and Experimental Results
	Online Time Complexity Comparison
	Storage Requirement Comparison

	Conclusion
	References

