
McOE: A Family of Almost Foolproof On-Line

Authenticated Encryption Schemes

Ewan Fleischmann, Christian Forler, and Stefan Lucks

Bauhaus-University Weimar, Germany
{ewan.fleischmann,christian.forler,stefan.lucks}@uni-weimar.de

Abstract. On-Line Authenticated Encryption (OAE) combines privacy
with data integrity and is on-line computable. Most block cipher-based
schemes for Authenticated Encryption can be run on-line and are prov-
ably secure against nonce-respecting adversaries. But they fail badly for
more general adversaries. This is not a theoretical observation only – in
practice, the reuse of nonces is a frequent issue1.

In recent years, cryptographers developed misuse-resistant schemes
for Authenticated Encryption. These guarantee excellent security even
against general adversaries which are allowed to reuse nonces. Their dis-
advantage is that encryption can be performed in an off-line way, only.

This paper considers OAE schemes dealing both with nonce-respecting
and with general adversaries. It introduces McOE, an efficient design for
OAE schemes. For this we present in detail one of the family members,
McOE-X, which is a design solely based on a standard block cipher. As all
the other member of theMcOE family, it provably guarantees reasonable
security against general adversaries as well as standard security against
nonce-respecting adversaries.

Keywords: authenticated encryption, on-line encryption, provable se-
curity, misuse resistant.

1 Introduction

On-Line Authenticated Encryption (OAE). Application software often requires
a network channel that guarantees the privacy and authenticity of data be-
ing communicated between two parties. Cryptographic schemes able to meet
both of these goals are commonly referred to as Authenticated Encryption (AE)
schemes. The ISO/IEC 19772:2009 standard for AE [21] defines generic compo-
sition (Encrypt-then-MAC [4]) and five dedicated AE schemes: OCB2 [38], SIV
[41] (denoted as “Key Wrap” in [21]), CCM [13], EAX [6], and GCM [34]. To
integrate an AE-secure channel most seamlessly into a typical software architec-
ture, application developers expect it to encrypt in an on-line manner meaning
that the i-th ciphertext block can be written before the (i+1)-th plaintext block

1 A prominent example is the PlayStation 3 ’jailbreak’ [20], where application develop-
ers used a constant that was actually supposed to be a nonce for a digital signature
scheme.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 196–215, 2012.
c© International Association for Cryptologic Research 2012

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 197

has to be read. A restriction to off-line encryption, where usually the entire plain-
text must be known in advance (or read more than once) is an encumbrance to
software architects.

Nonces and their reuse. Goldwasser andMicali [18] formalized encryption schemes
as stateful or probabilistic, because otherwise important security properties are
lost. Rogaway [37,39,40] proposed an unified point of view, by always defining a
cryptographic scheme as a deterministic algorithm that takes an user supplied
nonce (a number used once). So the application programmer – and not the en-
cryption scheme – is responsible for flipping coins or maintaining state. This re-
flects cryptographic practice since the algorithm itself is often implemented by a
multi-purpose cryptographic library which is more or less application-agnostic.

In theory, the concept of a nonce is simple. In practice, it is challenging to en-
sure that a nonce is never reused. Flawed implementations of nonces are ubiqui-
tous [9,20,28,44,45]. Apart from implementation failures, there are fundamental
reasons why software developers can’t always prevent nonce reuse. A persistently
stored counter, which is increased and written back each time a new nonce is
needed, may be reseted by a backup – usually after some previous data loss.
Similarly, the internal and persistent state of an application may be duplicated
when a virtual machine is cloned, etc.

Related Work and Our Contribution. We aim to achieve both simultaneously: se-
curity against nonce-reusing adversaries (sometimes also called nonce-misusing
adversaries) and support for on-line-encryption in terms of an AE scheme.
Apart from generic composition (Encrypt-then-Mac, EtM), none of the ISO/IEC
19772:2009 schemes – in fact, no previously published AE scheme at all – achieves
both of these goals, cf. Table 1. In this table, we classify a vast variety of prov-
ably secure block cipher-based AE scheme with respect to their on-line-ability
and against which adversaries (nonce-respecting versus -reusing) they are proven
secure.

Since EtM is not a concrete scheme but merely a generic construction tech-
nique, there are some challenges left in order to make it full on-line secure:
First, an appropriate on-line cipher has to be chosen. Second, a suitable, on-line
computable, secure deterministic MAC must be selected. And, third, the EtM
scheme requires at least two independent keys to be secure. Since two schemes
are used in parallel, is likely to squander resources in terms of run time and –
important for hardware designers – in terms of space. Since EtM first has to be
turned into an OAE scheme by making the appropriate choices, we don’t include
it in our analysis.

As it turned out, we actually found nonce-reuse attacks for all of those
schemes, cf. Table 2, Appendix A, and, especially, Appendix 1 in the full ver-
sion of this paper [14]. We present a new construction method for efficient AE
schemes, called McOE-X, that is actually able to fill the apparent gap in the
upper-right. It belongs to the family of McOE schemes [14]. We argue that
closing this gap is both practically relevant and theoretically interesting.

198 E. Fleischmann, C. Forler, and S. Lucks

Table 1. Classification of provably secure block cipher-based AE Schemes. CCM and
SSH-CTR are considered off-line because encryption requires prior knowledge of the
message length. Note that the family of McOE schemes, because of being on-line,
satisfies a slightly weaker security definition against nonce-reusing adversaries than
SIV, HBS, and BTM.

secure ... against nonce-respecting adversaries ag. nonce-reusing adversaries

on-line CCFB[33] CHM[22] CIP[23] CWC[29] EAX[6] McOE (this paper)

GCM[34] IACBC[26] IAPM[26] McOE

OCB1-3[40,38,30] RPC[10] TAE[31] XCBC[17]

off-line BTM[24] CCM[13] HBS[25] SIV[41] SSH-CTR[36] BTM[24] HBS[25] SIV[41]

Table 2. Overview of our nonce-reuse attacks on published AE schemes, excluding
SIV, HBS and BTM, which have been explicitly designed to resist nonce-reuse. Almost
all attacks achieve an advantage close to 1. An “attack workload” of X means that the
adversary is restricted to at most X units of time and at most X chosen texts. Details
are given in Appendix A and in the full version of this paper [14].

privacy authenticity

attack workload attack workload

CCFB [33] O(1) O(1)

CCM [13] O(1) � 2(n/2) [15]

CHM [22] O(1) O(1)

CIP [23] O(1) O(1)

CWC [29] O(1) O(1)

EAX [6] O(1) O(1)

GCM [34] O(1) O(1)

IACBC [26] O(1) O(1)

privacy authenticity

attack workload attack workload

IAPM [26] O(1) O(1)

OCB1 [40] O(1) O(1)

OCB2 [38] O(1) O(1)

OCB3 [30] O(1) O(1)

RPC [10] O(1) O(1)

TAE [31] O(1) O(1)

XCBC [17] O(2n/4) ?

Initial Value (IV) based AE schemes maximally forgiving of repeated IV’s have
been addressed in [41], coining the notion of “misuse resistance” and proposing
SIV as a solution. SIV and related schemes (HBS [25] and BTM [24]) actually
provide excellent security against nonce-reusing adversaries, though there are
other potential misuse cases, cf. the Appendix of the full version of this paper
[14]. Their main disadvantage is that they are inherently off-line: For encryption,
one must either keep the entire plaintext in memory, or read the plaintext twice.

Ideally, an adversary seeing the encryptions of two (equal-length) plaintexts P1

and P2 can’t even decide if P1 = P2 or not. When using a nonce more than once,
deciding about P1 = P2 is easy. SIV and its relatives ensure that nothing else is
feasible for nonce-reusing adversaries. In the case of on-line encryption, where
the first few bits of the encryption of a lengthy message must not depend on the
last few bits of that message, there is unavoidably something beyond P1 = P2.
The adversary can compare any two ciphertexts for their longest common prefix,
and then conclude about common prefixes of the secret plaintexts. Our notion

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 199

of misuse resistance means that this is all the adversary can gain. Even in the
case of a nonce-reuse, the adversary

1. can’t do anything beyond determining the length of common plaintext pre-
fixes and

2. the scheme still provides the usual level of authenticity for AE (INT-CTXT).

The first property is common for on-line ciphers/permutations (OPRP) [1].
Recently, [43] studied the design of on-line ciphers from tweakable block ciphers
bearing some similarities to our approach, especially to TC3. In contrast to
the McOE family, the constructions from [43] provide no authentication. The
McOE schemes are, e.g., based on a normal block cipher or a tweakable block
cipher.

Design Principles for AE Schemes. The question how to provide authenticated
encryption (without stating that name) when given a secure on-line cipher is
studied in [3], the revised and full version of [1]. The first idea in [3] only provides
security if all messages are of the same length. The second idea repairs that by
prepending the message’s length to the message, at the cost of being off-line,
since the message length must be known at the beginning of the encryption
process. The third idea is to prepend and append a random W to a message M
and then to perform the on-line encryption of (W ||M ||W). This looks promising,
but the same W is used for two different purposes, putting different constraints
on the generation of W . For privacy, it suffices that W behaves like a nonce, not
requiring secrecy or unpredictability. Even if W is not a nonce, but the same W
is used for the encryption of several messages, all the adversary can determine
are the lengths of common plaintexts prefixes, as we required for nonce-reuse.
On the other hand, authenticity actually assumes a secret or unpredictable W ,
rather than a nonce. If the adversary can guess W before choosing a message,
she asks for the authenticated encryption of (M ||W). Then she can predict the
authenticated encryption of M without actually asking for it.

The McOE family replaces the “random” W by a proper nonce and a value
τ which is key-dependent, performing a nonce-dependent on-line encryption of
(M ||τ). The encryption can also depend on some associated data, which turns
McOE into a family of schemes for OAEAD (On-Line Authenticated Encryption
with Associated Data).

Roadmap. In this paper we focus on one member of the McOE [14] family of
schemes called McOE-X. In Section 2 we describe a concrete block cipher based
OAE scheme – called McOE-X– and provide performance data when McOE-
X is instantiated with either AES-128 or Threefish-512 as the underlying block
cipher. Section 3 deals with general notions and definitions, and Section 4 defines
the security of OAE. The main result of the paper, the full McOE-X scheme and
its analysis, is presented in Section 5. The discussion in Section 6 concludes the
paper. The appendix deals with misuse attacks against published AE schemes.

200 E. Fleischmann, C. Forler, and S. Lucks

K

KK

K K

KKK

V M1 ML−1

ML

ML||τ [0 . . . n− l∗ − 1]

τ

τ
E

EE

E E

EEE

C1 CL−1

CL

CL||T [0, . . . , n− l∗ − 1] T [n− l∗, . . . , n− 1]||Z

τ
0n

T

|ML|

1n

Fig. 1. The McOE-X-AES/McOE-X-Threefish encryption process. If, after the last
complete message block has been encrypted, there is some incomplete block left,
McOE-X performs tag-splitting (upper variant), Else, the tag can be computed with-
out splitting (lower variant). The key used for the block cipher E is computed by the
injective function K⊕W which is given the secret key K and the chaining value input
W . The tag returned is the n-bit value T . The n − l-bit value Z is discarded. The
decryption process works in a similar way from ’left to right’ only the block cipher
component E is replaced by its counterpart E−1 apart from one exception: the first
call computing τ .

2 Practical On-Line Authenticated Encryption Using
AES and Threefish

We start with the fruits of our analysis by giving two concrete instances of
OAE schemes (illustrated in Figure 1) including performance data and reference
source code2. One instance, McOE-X-AES uses AES-128 as the core component
while McOE-X-Threefish uses the block cipher Threefish-512, a cipher with
512-bit block size and key size, which is the core working component inside the
SHA-3 finalist Skein[35]. We also introduce the tag-splitting (TS) method for
processing messages whose length is not a multiple of the block length. Without
TS, we would have to pad such messages and then encrypt the padded messages
– resulting in an expanded ciphertext. The effect of TS is similar to the well-
known length preserving method called ciphertext stealing (CTS), e.g. [12]. But
the technique itself is quite different since CTS requires to process the last block
before the last but one, which is not possible for McOE-X.

Let EK be a block cipher taking a k-bit key K and a plaintext/ciphertext of
size n-bit. Note that for our chosen instances, AES-128 and Threefish-512, we
have n = k. The pseudo code for these two McOE-X instances is given in Table
4 – on the upper side without TS, on the lower side with TS.

2 The reference source code is available on request; it will be published as open source.

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 201

Table 3. Performance values (cycles-per-byte, single core), measured on an Core i5
540M for AES-128 and Threefish-512. McOE-X is the main contribution in the current
paper, McOE-D invokes the underlying block cipher twice and McOE-G uses Galois
field arithmetic. For a comparsion, we also provide the performance of unauthenticated
AES-CBC. The AES software implementation is based on Gladman [16], whereas the
hardware implementation is based on the Intel AES-NI Sample Library[11]. The Three-
fish implementation is based on the NIST/SHA-3 reference source as provided by the
Skein authors [35]. Finally, the implementation of Galois field NI multiplication (GF-
NI) is based on the example-code from [19].

Block cipher Impl.
Message length in Bytes

64 256 512 1024 2048 8192 32768

McOE-X-AES software 31.2 23.9 22.7 22 21.7 21.5 21.5
McOE-X-AES AES-NI 14.2 11.2 10.7 10.5 10.4 10.3 10.3
McOE-X-Threefish software 19.5 9.9 8.3 7.5 7.1 6.8 6.7

McOE-D-AES software 40.1 29.4 27.6 26.7 26.3 25.9 25.9
McOE-D-AES AES-NI 11.6 8.3 7.2 6.7 6.4 6.3 6.2

McOE-G-AES software 33 25.4 24.1 23.5 23.2 22.9 22.8
McOE-G-AES GF-NI/AES-NI 12.5 9.7 9.3 9 8.9 8.8 8.8

AES-CBC encryption software 38.3 13.5 13.3 13.2 13.2 13.1 13.1
AES-CBC encryption AES-NI 4 3.6 3.5 3.5 3.5 3.5 3.5

The algorithms without TS, EncryptAuthenticate and DecryptAuthen-
ticate, are simplified algorithms for messages that are aligned on n-bit bound-
aries, i.e. M = (M1, . . . ,ML) ∈ ({0, 1}n)L for some integer L. The TS al-
gorithms are EncryptAuthenticateSplitTag and DecryptAuthenticate-
SplitTag. they can handle arbitrarily sized messages, i.e., M = (M1, . . . ,ML) ∈
({0, 1}n)L−1||{0, 1}l∗ where L and l∗ are integers with 0 < l∗ < n and ′||′ denotes
the string concatenation operator. See Figure 1 and Table 4.

In addition to McOE-X, we introduce two further authenticated encryption
schemes following the McOE design principles. The first one is called McOE-
D and is based on the THC-CBC construction [7]. The ratio of this scheme is
2-1, i.e. the block cipher is invoked twice to encipher resp. decipher one message
block. The second one is called McOE-G and is based on the HCBC-2 construc-
tion [2]. This scheme updates the chaining value by invoking a universal hash
function, i.e., a n-bit Galois-Field multiplication.

Remarks. For McOE-X we actually do need related key resistance for the block
cipher E since the adversary can ’partially control’ some relations among keys
used in the computation. This is not true for the other mentioned constructions.

All McOE schemes are easily extended to smoothly handle associated data,
i.e. data that is not encrypted but only authenticated. This is discussed in more
detail in Section 5.

202 E. Fleischmann, C. Forler, and S. Lucks

Table 4. Instances of McOE-X: upper side is for messages whose size is evenly divisible
by the block size n; Lower side is for arbitrarily sized messages (TS-variant); see text
for details

EncryptAuthenticate(V,M)
1. τ ← EK(V)
2. U ← V ⊕ τ ⊕K
3. for i = 1, . . . , L loop

Ci ← EU(Mi)
U ←Mi ⊕ Ci ⊕K

4. T ← EU (τ)
5. return (C1, . . . , CL, T)

EncryptAuthenticateSplitTag(V,M)
1. τ ← EK(V)
2. U ← V ⊕ τ ⊕K
3. for i = 1, . . . , L− 1 loop

Ci ← EU(Mi)
U ←Mi ⊕ Ci ⊕K

4. M∗ ← (ML||τ [0 . . . n− l∗ − 1])
5. M∗ ←M∗ ⊕ EK⊕1n(|ML|)
6. C∗ ← EU (M

∗)
7. Parse CL||T [0 . . . n− l∗ − 1]← C∗

8. U ←M∗ ⊕ C∗ ⊕K
9. C∗∗ ← EU(τ)

10. T [n− l∗ . . . n− 1]← C∗∗[0 . . . l∗ − 1]
11. return (C1, . . . , CL−1, C

∗
L, T)

DecryptAuthenticate(V,C, T)
1. τ ← EK(V)
2. U ← V ⊕ τ ⊕K
3. for i = 1, . . . , L loop

Mi ← E−1
U (Ci)

U ←Mi ⊕Ci ⊕K
4. if T = EU (τ) then

return (M1, . . . ,ML)
else return ⊥

DecryptAuthenticateSplitTag(V,C, T)
1. τ ← EK(V)
2. U ← V ⊕ τ ⊕K
3. for i = 1, . . . , L− 1 loop

Mi ← E−1
U (Ci)

U ←Mi ⊕Ci ⊕K
4. C∗ ← CL||T [0 . . . n− l∗ − 1]
5. M∗ ← E−1

U (C∗)
6. U ←M∗ ⊕ C∗ ⊕K
7. M∗ ←M∗ ⊕ EK⊕1n (|CL|)
8. Parse ML||τ ′[0 . . . n− l∗ − 1]←M∗

9. T ′ ← EU(τ)
10. if τ ′[0 . . . n− l∗−1] = τ [0 . . . n− l∗−1]

and T ′[0 . . . l∗−1] = T [n−l∗ . . . n−1]
then return (M1, . . . ,ML)
else return ⊥

3 On-Line Authenticated Encryption and Related
Notions

Length of Longest Common Prefix (LLCPn). The length of a string x ∈
{0, 1}n is denoted by |x| := n. For integers n, �, d ≥ 1, set Dd

n = ({0, 1}n)d, and
D∗n :=

⋃
d≥0D

d
n, and D�,n =

⋃
0≤d≤�D

d
n. Note that D

0
n only contains the empty

string. For M ∈ Dd
n; we write M = (M1, . . . ,Md) with M1, . . . ,Md ∈ Dn. For

P,R ∈ D∗n, say, P ∈ Dp
n and R ∈ Dr

n, we define the length of the longest common
n-prefix of P and R as

LLCPn(P,R) = max
i
{P1 = R1, . . . , Pi = Ri} .

Let Q a non-empty set of strings in D∗n,. Then we define LLCPn(Q, P) as
max
q∈Q
{LLCPn(q, P)}, e.g., if P ∈ Q, then LLCPn(Q, P) = |P |/n.

For convenience, we introduce a notation for a restriction on a set. If Q =
{0, 1}a × {0, 1}b × {0, 1}c, we write Q|b,c = {(B,C) | ∃A : (A,B,C) ∈ Q}. This
generalizes in the obvious way.

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 203

3.1 Block Ciphers and On-Line Permutations

Block Ciphers. An (k, n) block cipher is a keyed family of permutations con-
sisting of two paired algorithms E : {0, 1}k×Dn → Dn and E−1 : {0, 1}k×Dn →
Dn, accepting a k-bit key and an input from Dn for some k, n > 0. For n > 0,
Block(k, n) is the set of all (k, n) block ciphers. For any E ∈ Block(k, n) and
a fixed key K ∈ {0, 1}k, the decryption E−1K (Y) := E−1(K,Y) is the inverse
function of encryption EK(X) := E(K,X), so that E−1K (EK(X)) = X holds for
any X ∈ Dn. We follow the usual convention to write oracles, that are provided
to an algorithm, as superscripts. We define the related key PRP-security of a
block cipher E by the success probability of an adversary trying to differentiate
between the block cipher and a random permutation.

Definition 1. Let E ∈ Block(k, n) and denote by E−1 the corresponding in-
verse. Let ϕ : {0, 1}k × {0, 1}n → {0, 1}k. A fixed related key adversary A
has access to an E oracle with two parameters such that she can query either
Eϕ(K,·)(·) or its inverse. Let Perm(n, n) be the set of n-bit permutations such
that the first parameter models the permutation and the second parameter the
value that is to be permuted, i.e. for π ∈ Perm(n, n) it holds that π(Z, ·) is a
random permutation for any given value of Z. The related-key (RK) advantage
[32] of A in breaking E is then defined as

AdvRK-CPA-PRP
E (A) = |Pr[K $← {0, 1}k : AEϕ(K,·)(·) ⇒ 1]

− Pr[π
$← Perm(n,n) : Aπ(·,·) ⇒ 1]|

AdvRK-CCA-PRP
E,E−1 (A) = |Pr[K $← {0, 1}k : A

Eϕ(K,·)(·),E−1
ϕ(K,·)(·) ⇒ 1]

− Pr[π
$← Perm(n,n) : Aπ(·,·),π−1(·,·) ⇒ 1]|.

On-Line Permutations. We aim for larger permutations that not only per-
mute single blocks but can handle multiple/variable block messages. Such a
permutation, from D∗n to D∗n, is (n-)on-line if the i-th block of the output is
determined completely by the first i blocks of the input.

Definition 2. Let n, k ≥ 0, K ∈ {0, 1}k, V ∈ Dn. A function Π : {0, 1}k ×
D∗n → D∗n is an (n-)on-line permutation if for any fixed K,V the function
Π(K,V, ·) is a permutation and there exists for any message M = (M1, . . . ,Mm)
a family of functions π̃i : {0, 1}k × {0, 1}n ×Di

n → Dn, i = 1, . . . ,m such that

Π(K,V,M) = π̃1
K(V,M1)||π̃2

K(V,M [1..2])

|| . . . ||
π̃m−1
K (V,M [1..m− 1])||π̃m

K (V,M [1..m]),

where M [a . . . b] := Ma||Ma+1|| . . . ||Mb with “||” being the concatenation of
strings, holds.

An encryption scheme is (n-)on-line if the encryption function is (n-)on-line. A
thorough discussion of on-line encryption and its properties can be found in [1].

204 E. Fleischmann, C. Forler, and S. Lucks

3.2 Authenticated Encryption (With Associated Data)

An authenticated encryption scheme is a tuple Π = (K, E ,D). Its aim is to
provide privacy and data integrity. The key generation function K takes no input
and returns a randomly chosen key K from the key space, e.g. from {0, 1}k.
The encryption algorithm E and the decryption algorithm D are deterministic
algorithms that map values from {0, 1}k×H×D∗n to a string or – if the input is
invalid – the value ⊥. The headerH consists either only of the initial value/nonce
V ∈ Dn (if no data is to be authenticated/checked in the encryption/decryption
process) or is a combination of V and a value fromD∗n. SoH ⊂ D+

n in either case.
For sake of convenience, we usually write EHK (M) for E(K,H,M) and DH

K(M) for
D(K,H,M), where the messageM is chosen fromD∗n,H ∈ H and a key from the
key space. We require DHK(EHK (M)) = M for any possibleK,M,H , and define the
tag size for a message M ∈ D∗n and header H ∈ H as tag(H,M) := |EHK (M)| −
|M |. We denote an authenticated encryption scheme with the requirement that
the initial vector V is only used once in a nonce based scheme. Otherwise, we
call such a scheme deterministic. Similarly, we call an adversary nonce-respecting
(nr) if no nonce is used twice for any query. Otherwise, the adversary is called
nonce-ignoring (ni).

4 Security Notions for On-Line Authenticated Encryption

Authenticated (On-Line) Encryption tries to achieve privacy and authenticity at
the same time. Therefore we need security notions to handle this twofold goal.
For AE, there have been notions and their relations introduced for deterministic
[42] and nonce based [4,5,27,37,40] AE schemes. In order to have one convenient
toolset of notions, we adopt the notion of CCA3 security suggested in [42] as a
natural strengthening of CCA2 security.

We parameterize our definition in order to define different – but closely related
– notions by explicitly stating whether we mean an on-line or off-line scheme,
ω ∈ {ae,oae} and stating the adversary behavior as either nonce-respecting or
nonce-ignoring, ν ∈ {nr,ni}.
Definition 3 (CCA3(ω, ν)). Let Π = (K, E ,D) be an authenticated encryption
scheme with header space H and message space D∗n, and fix an adversary A. The
advantage of A breaking Π is defined as

Adv
CCA3(ω,ν)
Π (A) =

∣
∣
∣Pr

[
K

$← K : AEK(·,·),DK(·,·) ⇒ 1
]
− Pr

[
A$ω(·,·),⊥(·,·) ⇒ 1

]∣
∣
∣

The adversary’s random-bits oracle, $ae(·, ·) or $oae(·, ·), returns on a query with
header H ∈ H and plaintext X ∈ D∗n a random string of length |EK(M)| which
is either on-line or not, depending on the variable ω. The ⊥(·, ·) oracle returns
⊥ on every input. We assume wlog. that the adversary A never ask a query which

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 205

Game GCPA, GCCA3

1 In i t i a l i z e (ω, ν)

2 b
$← {0, 1} ;

3 i f (b=1) then
4 K ← K() ;

5 Finalize(d)
6 return (b = d) ;

10 Encrypt(H,M)
11 i f (ν = nr and V ∈ B) then
12 return ⊥ ;
13 i f (b=1) then
14 C ← EK (H,M) ;
15 else
16 C ← $ω(H,M) ;
17 B ← B ∪ {V } ;
18 Q ← Q∪ {(H,C)};
19 return C;

20 Decrypt (H,C)
21 i f ((H,C) ∈ Q) then
22 return ⊥ ;
23 i f (b=1) then
24 M ← DK (H,C) ;
25 else
26 M ← ⊥(H,C) ;
27 return M;

Fig. 2. GCPA(ω, ν) is the CPA
(ω,ν)
Π -Game and GCCA3(ω, ν) the CCA3

(ω,ν)
Π -Game where

Π = (K, E ,D). Game GCCA3 contains the code in the box while GCPA does not. The
oracle $ae(H,M) returns a string of length |M |+tag(H,M), this string is on-line com-
patible if ω = oae. V denotes the last block of the header representing the nonce/initial
value.

answer is already known. It is easy to see that we can rewrite the term given in
Definition 3 as

∣
∣
∣Pr

[
K

$← K : AEK(·,·),DK(·,·) ⇒ 1
]
− Pr

[
K

$← K : AEK(·,·),⊥(·,·) ⇒ 1
]

(1)

+ Pr
[
K

$← K : AEK(·,·),⊥(·,·) ⇒ 1
]
− Pr

[
A$ω(·,·),⊥(·,·) ⇒ 1

]∣
∣
∣ . (2)

One can interpret (1) as the advantage that an adversary has on the integrity
of the ciphertext and (2) as the advantage that an CPA adversary has on the
privacy. Using this decomposition as a motivational starting point, we now define
ciphertext integrity and what we mean by a CPA adversary on authenticated
encryption schemes. From now on, our definitions are based on the game playing
methodology. For example, we can restate Definition 3 using the game GCCA3

given in Figure 2 as

Adv
CCA3(ω,ν)
Π (A) = 2|Pr[AGCCA3(ω,ν) ⇒ 1]− 0.5|.

We denoteAdv
CCA3(ω,ν)
Π (q, t, �) as the maximum advantage over allCCA3(ω, ν)

adversaries run in time at most t, ask a total maximum of q queries to E and D,
and whose total query length is not more than � blocks.

4.1 Privacy and Integrity Notions for Authenticated Encryption
Schemes.

Similarly, we define the privacy and integrity of an authenticated (on-line) en-
cryption scheme Π = (K, E ,D) with header space D+

n , message space D∗n and
tag-size function tag(H,M) as follows.

Definition 4. Let GCPA(ω, ν) be the CPAω,ν
Π game given in Figure 2. Fix an

adversary A. The advantage of A breaking Π is defined as

Adv
CPA(ω,ν)
Π (A) ≤ 2|Pr[AGCPA(ω,ν) ⇒ 1]− 0.5|.

206 E. Fleischmann, C. Forler, and S. Lucks

Game GINT−CTXT

1 In i t i a l i z e (ν)
2 K ← K();

3 Finalize ()
4 return win ;

10 Encrypt (H,M)
11 i f (ν = nr and
12 V ∈ B) then
13 return ⊥ ;
14 C ← EK (H,M) ;
15 B ← B ∪ {V } ;
16 Q ← Q ∪ {(H,C)} ;
17 return C ;

20 Verify (H,C)
21 M ← DK (H,C) ;
22 i f ((H,C) �∈ Q
23 and M �= ⊥) then
24 win ← true ;
25 return (M �= ⊥) ;

Fig. 3. Game GINT−CTXT (ν) is the INT-CTXTω,ν
Π game where Π = (K, E ,D). V

denotes the last block of the header representing the nonce/initial value.

Definition 5. Let GINT-CTXT(ν) be the INT-CTXTν
Π game given in Figure 3.

Fix an adversary A. The advantage of A breaking Π is defined as

Adv
INT-CTXT(ν)
Π (A) ≤ Pr[AGINT-CTXT(ν) ⇒ 1].

We denote Adv
CPA(ω,ν)
Π (q, t, �) and Adv

INT-CTXT(ν)
Π (q, t, �) as the maximum

advantage over all CPA(ω, ν) resp. INT-CTXT(ν) adversaries run in time at
most t, ask a total maximum of q queries to E and D, and whose total query
length is not more than � blocks.

4.2 CCA3 Is Equal to INT-CTXT Plus CPA

We now give a generalization of Theorem 3.2 from Bellare and Namprempre
[4]. It simply states the equivalence of a scheme being CCA3 secure and both
INT-CTXT and CPA secure. These statements hold in the on-line and offline
case.

Theorem 1. Let Π = (K, E ,D) be an authenticated encryption scheme. Fix
ω ∈ {ae,oae} and ν ∈ {nr,ni}. Let A be an CCA3(ω, ν)Π-adversary running
in time t, making q queries with a total length of at most � blocks. Then there are
a CPA(ω, ν)-adversary Ap and an INT-CTXT(ω, ν)-adversary Ac such that

Adv
CCA3(ω,ν)
Π (A) ≤ Adv

CPA(ω,ν)
Π (Ap) +Adv

INT-CTXT(ω,ν)
Π (Ac).

Furthermore, Ac and Ap run in time O(t) and both make at most q queries in
each case.

The proof is given in the full version of this paper [14].

5 The On-Line Authenticated Encryption Scheme
McOE-X

In this section, we present McOE-X, a construction for an OAE scheme. We
prove that McOE-X achieves our two-fold goal. First, it guarantees a certain
minimum, well defined, security against a nonce-ignoring adversary. And, second,

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 207

we show – in the full version of the paper [14] – that the complete McOE family
of OAE schemes (including McOE-X) is fully secure against a nonce-respecting
adversary.

Since we already have presented two McOE-X instances in Section 2, we
proceed by formally defining McOE-X and giving its pseudocode. Indeed this
is very similar to the results presented in Section 2, but here our definitions are
slightly more general. Instead of fixing the key computation function to K ⊕ V ,
where R is the chaining value and K the secret key, we here use a key derivation
function ϕ(K,R). By this we make sure that our proof also works for tweakable
block ciphers - with K as key and R as tweak - leading to more efficient design.

Definition 6 (McOE-X). Let k, n ∈ N with k ≥ n, E ∈ Block(k, n), and
ϕ : {0, 1}k × {0, 1}v → {0, 1}k such that ϕ(K, ·) is injective. The encryption
function takes a header H ∈ DLH

n , a message M and returns a ciphertext C and
a tag T ∈ Dn. The decryption function takes a header H ∈ DLH

n , a ciphertext
C and a tag T ∈ Dn and returns either a plaintext M or the fail symbol ⊥.
(i) ’Non-TS’. Let M,C ∈ DL

N for some integer L, then McOE-X is defined by
the algorithms EncryptAuthenticate and DecryptAuthenticate given in
Table 5.

(ii) ’TS’. Let M,C ∈ DL
N ||{0, 1}l

∗
for some integers L and l∗, 0 < l∗ < n, then

McOE-X/TS is defined by the algorithms EncryptAuthenticateSplitTag
and DecryptAuthenticateSplitTag given in Table 5.

We now proceed to show the security of McOE-X. For this we use the results of
Theorem 1 and show the INT-CTXT and RK-CPA-PRP security separately.

Theorem 2

(i) Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (i). We further
assume that the block cipher E is secure against related key attacks. Then

Adv
CCA3(oae,ni)
Π (q, �, t) ≤ 2(q + �)(q + �+ 1) + 3q + 2�

2n − (q + �)

+ 3AdvRK-CCA-PRP
E,E−1 (q + �).

(ii) Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (ii). We further
assume that the block cipher E is secure against related key attacks. Then

Adv
CCA3(oae,ni)
Π (q, �, t) ≤ 4(q + �+ 2)(q + �+ 3) + 6(2q + �)

2n − (q + �)
+

3q(q + 1)

2n − q

+
q

2n/2 − q
+ 3AdvRK-CCA-PRP

E,E−1 (2q + �).

Proof. The proof of (i) follows from Theorem 1 together with Lemmas 1 and 2.
Due to the lack of of space the proof of (ii) it is skipped here and is available in
the full version of the paper [14].

208 E. Fleischmann, C. Forler, and S. Lucks

Table 5. Instances of McOE-X: Left side is for messages whose size is evenly divisible
by the block size n; Right side is for arbitrarily sized messages (TS-variant); see text
for details

EncryptAuthenticate(H,M)
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH)
4. U ← ϕ(K,HLH ⊕ τ)
5. for i = 1, . . . , L do

Ci ← EU (Mi)
U ← ϕ(K,Mi ⊕ Ci)

6. T ← EU(τ)
7. return (C1, . . . , CL, T)

EncryptAuthenticate(H,C, T)
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH)
4. U ← ϕ(K,HLH ⊕ τ)
5. for i = 1, . . . , L− 1 do

Ci ← EU (Mi)
U ← ϕ(K,Mi ⊕ Ci)

6. M∗ ←ML||τ [0 . . . n− l∗ − 1]
7. M∗ ←M∗ ⊕EK⊕1n (|ML|)
8. C∗ ← EU (M

∗)
9. Parse CL||T [0 . . . n− l∗− 1]←

10. C∗

11. U ← ϕ(K,M∗ ⊕ C∗)
12. C∗∗ ← EU (τ)
13. T [n− l∗ . . . n− 1]←

C∗∗[0 . . . l∗ − 1]
14. return (C1, . . . , CL, T)

DecryptAuthenticate(H,C, T)
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH)
4. U ← ϕ(K,HLH ⊕ τ)
5. for i = 1, . . . , L do

Mi ← E−1
U (Ci)

U ← ϕ(K,Mi ⊕ Ci)
6. if T = EU (τ) then

return (M1, . . . ,ML) else
return ⊥

DecryptAuthenticateSplitTag(H,C, T)
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH)
4. U ← ϕ(K,HLH ⊕ τ)
5. for i = 1, . . . , L do

Mi ← E−1
U (Ci)

U ← ϕ(K,Mi ⊕ Ci)
6. C∗ ← CL+1||T [0 . . . n− l∗ − 1]
7. M∗ ← E−1

U (C∗)
8. U ← ϕ(K,M∗ ⊕ C∗)
9. M∗ ←M∗ ⊕EK⊕1n (|CL|)

10. Parse ML||τ ′[0 . . . n− l∗−1]←M∗

11. T ′ ← EU (τ)
12. if τ ′[0 . . . n − l∗ − 1] = τ [0 . . . n −

l∗ − 1]
and T ′[0 . . . l∗ − 1] = T [n −

l∗ . . . n− 1]
then return (M1, ...,ML) else

return ⊥

Lemma 1. Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (i). Let
q be the number of total queries an adversary A is allowed to ask and � be an
integer representing the total length in blocks of the queries to E and D. Then,

Adv
INT-CTXT(ni)
Π (q, �, t) ≤ (q + �)(q + �+ 1)

2n − (q + �)
+

2q + �

2n − (q + �)

+AdvRK-CCA-PRP
E,E−1 (q + �).

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 209

Proof (Lemma 1). Our bound is derived by game playing arguments. Consider
games G1-G3 of Figure 4 and a fixed adversary A asking at most q queries with
a total length of at most � blocks. The functions Initialize and Finalize are
identical for all games in this proof. Lets denoteG0 as the Game INT-CTXT(ni)
as defined in Figure 3. Definition 5 states that

Adv
INT-CTXT(ni)
Π (A) ≤ Pr[AG0 ⇒ 1].

In G1, the encryption and verify placeholders are replaced by their specific

McOE-X counterparts as of Definition 6. Clearly, Pr[AG0 ⇒ 1] = Pr[AG1 ⇒ 1].
We now discuss the differences between G1 and G2. The set B is initialized to
{ϕ(K, 0n)} and then collects new key-input values U which are computed during
the encryption or verification process (in lines 204, 207, 213, 223, 226, 232 and
237). We note that, since ϕ is injective, a collision for the chaining values follows
if there is a collision in the U values.

In lines 203 and 222, the LLCPn oracle is inquired. Finally, the variable bad

is set to true if one of the if-conditions in lines 208, 214, 227, 233, or 238 is
true. None of these modifications affect the values returned to the adversary
and therefore

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

For our further discussion we require another game G4 which is explained in
more detail later in this proof3. It follows that

Pr[AG2 ⇒ 1] = Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1|
≤ Pr[AG3 ⇒ 1] + Pr[AG3sets bad]

≤ Pr[AG4 ⇒ 1] + |Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]|+Pr[AG3sets bad].
(3)

We now proceed to upper bound any of the three terms contained in (3) – in
right to left order. The success probability of game G3 does not differ from the
success probability of G2 unless a chaining value U occurs twice. In this case,
the adversary must (i) either have ’found’ a collision for Eϕ(K,X)(Y)⊕Y , i.e. she
stumbles over (X,Y) and (X ′, Y ′) such that Eϕ(K,X)(Y)⊕Y = Eϕ(K,X′)(Y

′)⊕Y ′
or, (ii), must have found a preimage of ϕ(K, 0n), which is always the starting
point of our chain. Note that that value ϕ(K, 0n) is initially stored in the set B.
In both cases, the variable bad would have been set to true, and it follows [8]
that

Pr[AG3sets bad] ≤ (q + �)(q + �+ 1)

2n − (q + �)
+

q + �

2n − (q + �)
.

3 Since the difference is very minor, we do not provide an extra figure.

210 E. Fleischmann, C. Forler, and S. Lucks

1 In i t i a l i z e ()

2 K
$
← K() ;

3 B ← {ϕ(K, 0n} ;

4 Finalize ()
5 return win ;

100 Encrypt(H,M) Game G1

101 LH ← |H|/n ; L← |M |/n ;
102 U ← ϕ(K, 0n) ;
103 for i = 1, ..., LH do
104 τ ← EU (Hi) ;
105 U ← ϕ(K,Hi ⊕ τ) ;
106 for i = 1, ..., L do
107 Ci ← EU (Mi) ;
108 U ← ϕ(K,Ci ⊕Mi) ;
109 T ← EU (τ) ;
110 Q ← (H,M,C, T) ;
111 return (C1, . . . , CL, T) ;

112 Verify(H,C, T) Game G1

113 LH ← |H|/n ; L← |C|/n ;
114 U ← ϕ(K, 0n) ;
115 for i = 1, ..., LH do
116 τ ← EU (Hi) ;
117 U ← ϕ(K,Hi ⊕ τ) ;
118 for i = 1, ..., L do

119 Mi ← E−1
U

(Ci) ;
120 U ← ϕ(K,Ci ⊕Mi) ;
121 i f (T = EU (τ) and (H,C) �∈ Q|H,C)

122 then win ← true ;
123 Q ← (H,⊥, C,⊥) ;
124 return (T = EU (τ))

200 Encrypt(H,M) Game G2, G3

201 LH ← |H|/n ; L← |M |/n ;
202 A← A ∪H ;
203 p← LLCPn(Q|H,M , (H,M)) ;

204 U ← ϕ(K, 0n) ;
205 for i = 1, . . . , LH do
206 τ ← EU (Hi) ;
207 U ← ϕ(K,Hi ⊕ τ) ;
208 i f (U ∈ B and i > p) then

209 bad ← true ; U
$
← {0, 1}

n
\ B;

210 B ← B ∪ U ;
211 for i = 1, . . . , L do
212 Ci ← EU (Mi) ;
213 U ← ϕ(K,Ci ⊕Mi) ;
214 i f (U ∈ B and i + LH > p) then

215 bad ← true ; U
$
← {0, 1}

n
\ B;

216 B ← B ∪ U ;
217 T ← EU (τ) ;
218 Q ← (H,M,C, T) ;
219 return (C1, . . . , CL, T) ;

220 Verify(H,C, T) Game G2, G3

221 LH ← |H|/n ; L← |C|/n ;
222 p← LLCPn(Q|H,M , (H,M)) ;

223 U ← ϕ(K, 0n) ;
224 for i = 1, . . . , LH do
225 τ ← EU (Hi) ;
226 U ← ϕ(K,Hi ⊕ τ) ;
227 i f (U ∈ B and i > p) then

228 bad ← true ; U
$
← {0, 1}

n
\ B;

229 B ← B ∪ U ;
230 for i = 1, . . . , L− 1 do

231 Mi ← E−1
U

(Ci) ;
232 U ← ϕ(K,Ci ⊕Mi) ;
233 i f (U ∈ B and i + LH > p) then

234 bad ← true ; U
$
← {0, 1}

n
\ B;

235 B ← B ∪ U ;

236 ML ← E−1
U

(CL) ;
237 U ← ϕ(K,CL ⊕ML) ;
238 i f (U ∈ B and H �∈ A) then

239 bad ← true ; U
$
← {0, 1}

n
\ B;

240 i f (T = EU (τ) and (H,C, T) �∈ Q|H,C,T)

241 then win ← true ;
242 Q ← (H,⊥, C,⊥) ;
243 B ← B ∪ U ;
244 return (T = EU (τ)) ;

Fig. 4. Games G1-G3 for the proof of Lemma 1. Game G3 contains the code in the
box while G2 does not.

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 211

We now describe the new game G4. It is equal to G3 except that the block cipher
E and its inverseE−1 are replaced by randomly chosen functions EncryptBlock
and DecryptBlock, which are modeled as pseudo random permutations. We
assume that they are implemented via lazy sampling. More precisely, the call
EK(A) is replaced by an invocation of EncryptBlockK(A) and the call E−1K (A)
is replaced by an invocation of DecryptBlockK (A). We now upper bound the
difference between G3 and G4.

So, by definition of G4, we have

|Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]| ≤ AdvRK-CCA-PRP
E,E−1 (q + �).

Finally, we have to upper bound the advantage for the adversary A to win the
game G4. A can only win this game if the condition in line 238 (resp. 438 for
game G4) is true. As usual, we assume wlog. that A doesn’t ask a question if
the answer is already known which implies that (H,C, T) �∈ Q|H,C,T . For our
analysis we distinguish between three cases. So we formally adjust line 240 (i.e.
choose as the tag computation operation either E or E−1) such that we always
have enough randomness left for our result.
Case 1: H has already been used in an Encrypt or Verify query before and

U ∈ B. Since we already have computed τ in the past, the chance of success
is upper bounded by the probability Pr[E−1U (T) = τ] which can be upper
bounded by 1/(2n − (q + �)).

Case 2: H has never been used before, also U has never been used as a chaining
value. Then the tagging operation uses a ’new key’ – essentially due since ϕ
is injective – and therefore the output of EU (τ) is uniformly distributed and
the success probability is ≤ 1/2n.

Case 3: H ∈ A but U has never been used as a chaining value. The chance of
success is upper bounded by Pr[E−1U (T) = τ] which can be upper bounded
by 1/2n.

Note that the ’missing’ fourth case has been explicitly excluded by line 240 (resp.
440). Since these three cases are mutually exclusive, we can upper bound the
success probability for q queries as

Pr[AG4 ⇒ 1] ≤ q

2n − (q + �)
.

Our claim follows by adding up the individual bounds.
�
Lemma 2. Let Π = (K, E ,D) be a McOE-X scheme as in Definition 6 (i). Let
q be the number of total queries an adversary A is allowed to ask and � be an
integer representing the total length of the queries to E and D. Then,

Adv
CPA(aoe,ni)
Π (q, �, t) ≤ 2

(
(q + �)(q + �+ 1)

2n − (q + �)
+

q + �

2n − (q + �)

+AdvRK-CPA-PRP
E (q + �)

)
.

The proof is given in the full version of this paper [14].

212 E. Fleischmann, C. Forler, and S. Lucks

6 Discussion

New Challenges for Research. At the this point of time, cryptographic research
has developed an inpressive number of good schemes for encryption, authenti-
cation, and authenticated encryption. Many of these schemes have been proven
secure under standard assumptions on the underlying primitives. In practice,
however, such schemes are often used in a way that undermines security. Try-
ing to design cryptosystems as “misuse resistant” as possible still stands as a
challenge for cryptographers.

Furthermore, our research seems to pose new challenges for the design of sym-
metric primitives. Ideally, we would like to implement McOE using a tweakable
n-bit block cipher with n-bit tweaks, supporting fast random tweak changes. Due
to the current lack of such a primitive, we designed McOE-X, which requires
an ordindary n-bit block cipher being secure against XOR-related key attacks,
and supporting fast random key changes. Much beyond McOE, cryptosystem
designers could benefit from new tweak-agile tweakable block ciphers and new
key-agile ordinary block ciphers.

It is mentionable that McOE-X, when using Threefish-512 in software, per-
forms considerably better as when using software or even hardware AES-128.
(Note that Threefish-512 actually is a tweakable block cipher, but the 128-bit
tweak is too short for McOE.) As an alternative, we developed further vari-
ants of McOE using double encryption and Galois field arithmetic. These two
variants also don’t expose the underlying block cipher to related-key attacks.

Conclusion. Originally, this research has been inspired by the search for a default
authenticated encryption mode of operation for a general-purpose cryptographic
library. It should offer, by default, a huge failure tolerance for practical software
developers and still allow being used in an on-line manner.

Since the well-known schemes as, such as OCB and SIV, did not fit our require-
ments, we searched for other ways to achieve the security and functionality we
were looking for. Apart fromMcOE, generic composition (Encrypt-then-Mac) of
a secure on-line cipher for encryption and a secure deterministic MAC for authen-
tication, using two independent keys might be another solution. As it turned out,
using McOE, one can save the additional key and the time to generate the MAC
by using a slightly tweaked on-line cipher for both encryption and authentication.

Acknowledgments. We like to thank JakobWenzel for very helpful comments,
Phil Rogaway for making us aware of the Galois field native instructions, and
the participants of the Dagstuhl Seminar on Symmetric Cryptography 2012 for
inspiring discussions.

References

1. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online Ciphers and
the Hash-CBC Construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 292–309. Springer, Heidelberg (2001)

2. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: On-Line Ciphers and
the Hash-CBC Constructions. IACR Cryptology ePrint Archive, 2007:197 (2007)

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 213

3. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online Ciphers and
the Hash-CBC Construction. Cryptology ePrint Archive, Report 2007/197; full
version of [1] (2007), http://eprint.iacr.org/

4. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions
and Analysis of the Generic Composition Paradigm. J. Cryptology 21(4), 469–491
(2008)

5. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit
Nonces or Redundancy in Plaintexts for Efficient Cryptography. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg
(2000)

6. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

7. Black, J.A., Cochran, M., Shrimpton, T.: On the Impossibility of Highly-Efficient
Blockcipher-Based Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 526–541. Springer, Heidelberg (2005)

8. Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, p. 320. Springer, Heidelberg (2002)

9. Borisov, N., Goldberg, I., Wagner, D.: Intercepting Mobile Communications: The
Insecurity of 802.11. In: MOBICOM, pp. 180–189 (2001)

10. Buonanno, E., Katz, J., Yung, M.: Incremental Unforgeable Encryption. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 109–124. Springer, Heidelberg (2002)

11. Intel Corporation. AES-NI Sample Library v1.2 (2010),
http://software.intel.com/en-us/articles/

download-the-intel-aesni-sample-library/
12. Daemen, J.: Hash Function and Cipher Design: Strategies Based on Linear and

Differential Cryptanalysis. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven,
Belgium (March 1995)

13. Dworkin, M.: Special Publication 800-38C: Recommendation for block cipher
modes of operation: the CCM mode for authentication and confidentiality. National
Institute of Standards and Technology, U.S. Department of Commerce (May 2005)

14. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Foolproof On-Line Authenticated
Encryption Scheme. IACR Cryptology ePrint Archive, 2011:644 (2011)

15. Fouque, P.-A., Martinet, G., Valette, F., Zimmer, S.: On the Security of the
CCM Encryption Mode and of a Slight Variant. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 411–428.
Springer, Heidelberg (2008)

16. Gladman, B.: Brian Gladman’s AES Implementation (June 19, 2006),
http://gladman.plushost.co.uk/oldsite/AES/index.php

17. Gligor, V.D., Donescu, P.: Fast Encryption and Authentication: XCBC Encryption
and XECB Authentication Modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

18. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

19. Gueron, S., Kounavis, M.E.: Efficient implementation of the Galois Counter
Mode using a carry-less multiplier and a fast reduction algorithm. Inf. Process.
Lett. 110(14-15), 549–553 (2010)

20. Hotz, G.: Console Hacking 2010 - PS3 Epic Fail. 27th Chaos Communications
Congress (2010), http://events.ccc.de/congress/2010/Fahrplan/
attachments/1780 27c3 console hacking 2010.pdf

http://eprint.iacr.org/
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://gladman.plushost.co.uk/oldsite/AES/index.php
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
http://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf

214 E. Fleischmann, C. Forler, and S. Lucks

21. ISO/IEC. 19772:2009, Information technology – Security techniques – Authenti-
cated Encryption (2009)

22. Iwata, T.: New Blockcipher Modes of Operation with Beyond the Birthday Bound
Security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006)

23. Iwata, T.: Authenticated Encryption Mode for Beyond the Birthday Bound Secu-
rity. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142.
Springer, Heidelberg (2008)

24. Iwata, T., Yasuda, K.: BTM: A Single-Key, Inverse-Cipher-Free Mode for Deter-
ministic Authenticated Encryption. In: Jacobson Jr., M.J., Rijmen, V., Safavi-
Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 313–330. Springer, Heidelberg
(2009)

25. Iwata, T., Yasuda, K.: HBS: A Single-Key Mode of Operation for Deterministic
Authenticated Encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 394–415. Springer, Heidelberg (2009)

26. Jutla, C.S.: Encryption Modes with Almost Free Message Integrity. J. Cryptol-
ogy 21(4), 547–578 (2008)

27. Katz, J., Yung, M.: Unforgeable Encryption and Chosen Ciphertext Secure Modes
of Operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299.
Springer, Heidelberg (2001)

28. Kohno, T.: Attacking and Repairing the WinZip Encryption Scheme. In: ACM
Conference on Computer and Communications Security, pp. 72–81 (2004)

29. Kohno, T., Viega, J., Whiting, D.: CWC: A High-Performance Conventional Au-
thenticated Encryption Mode. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS,
vol. 3017, pp. 408–426. Springer, Heidelberg (2004)

30. Iwata, T.: New Blockcipher Modes of Operation with Beyond the Birthday Bound
Security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006)

31. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

32. Lucks, S.: Ciphers Secure against Related-Key Attacks. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004)

33. Lucks, S.: Two-Pass Authenticated Encryption Faster Than Generic Composition.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 284–298.
Springer, Heidelberg (2005)

34. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

35. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: Skein source code and test vectors,
http://www.skein-hash.info/downloads

36. Paterson, K.G., Watson, G.J.: Plaintext-Dependent Decryption: A Formal Security
Treatment of SSH-CTR. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 345–361. Springer, Heidelberg (2010)

37. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: ACM Confer-
ence on Computer and Communications Security, pp. 98–107 (2002)

38. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

39. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

http://www.skein-hash.info/downloads

A Family of Almost Foolproof On-Line Authenticated Encryption Schemes 215

40. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM Conference on Computer
and Communications Security, pp. 196–205 (2001)

41. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

42. Rogaway, P., Shrimpton, T.: Deterministic Authenticated-Encryption: A Provable-
Security Treatment of the Key-Wrap Problem. Cryptology ePrint Archive, Report
2006/221; full version of [41] (2006), http://eprint.iacr.org/

43. Rogaway, P., Zhang, H.: Online Ciphers from Tweakable Blockciphers. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 237–249. Springer, Heidelberg (2011)

44. Sabin, T.: Vulnerability in Windows NT’s SYSKEY encryption. BindView Security
Advisory (1999), http://marc.info/?l=ntbugtraq&m=94537191024690&w=4

45. Wu, H.: The Misuse of RC4 in Microsoft Word and Excel. Cryptology ePrint
Archive, Report 2005/007 (2005), http://eprint.iacr.org/

A Misuse-Attacks: The Weak Point of Current
Authenticated Encryption (AE) Schemes

We now give a short overview on one of the attack patterns we have successfully
used (cf. Table 2). A more detail led analysis (including more attack patterns)
can be found in the full version of this paper [14].

Cipher-block-chaining (CBC) is an unauthenticated encryption mode which is
sometimes used as the encryption component of an AE scheme. It is well known
that, for constant nonces, the ciphertext of two different plaintexts do reveal the
full keystream. It was to be expected that a scheme using counter mode or CBC
inherits the nonce reuse issue from that mode. But, as it turned out, common
AE schemes also fail at the authenticity frontier, as was already indicated in
Table 2 using the following ’linear tag’ attack pattern. Schemes susceptible to
this attack are CWC [29], GCM [34], EAX [6], and CHM [22].

Linear Tag Attack. Assume an AE scheme which generate a keystream S =
FK(V) depending on a secret key K and a nonce V encryption a message M by
computing a ciphertext C = S ⊕M . For AE schemes using the encrypt-then-
authenticate paradigm, we rewrite the authentication tag T as

T = f(V)⊕ g(C),

where V is the nonce, C is the ciphertext, and f and g are some key-dependent
functions. This enables the adversary to mount the following attack:
– Encrypt the plaintext M under the nonce V to (C, T) with T = f(V)⊕g(C).
– Encrypt the plaintext M ′ �= M with |M ′| = |M | under the nonce V ′ �= V to

(C′, T ′) with the tag T ′ = f(V ′)⊕ g(C′).
– Set M ′′ := M ′ ⊕ C′ ⊕ C. Encrypt M ′′ under the nonce V ′ to (C′′, T ′′).

Observe C′′ = C, thus T ′′ = f(V ′)⊕ g(C).
– Set T ∗ = T ⊕T ′⊕T ′′ = f(V)⊕ g(C′), The adversary accepts (C′, T ∗) under

V .

http://eprint.iacr.org/
http://marc.info/?l=ntbugtraq&m=94537191024690&w=4
http://eprint.iacr.org/

	McOE: A Family of Almost Foolproof On-Line Authenticated Encryption Schemes

	Introduction
	Practical On-Line Authenticated Encryption Using AES and Threefish
	On-Line Authenticated Encryption and Related Notions
	Block Ciphers and On-Line Permutations
	Authenticated Encryption (With Associated Data)

	Security Notions for On-Line Authenticated Encryption
	Privacy and Integrity Notions for Authenticated Encryption Schemes.
	CCA3 Is Equal to INT-CTXT Plus CPA

	The On-Line Authenticated Encryption Scheme McOE-X
	Discussion
	References

