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Abstract. Attributes based image classification has received a lot of at-
tention recently, as an interesting tool to share knowledge across different
categories or to produce compact signature of images. However, when
high classification performance is expected, state-of-the-art results are
typically obtained by combining Fisher Vectors (FV) and Spatial Pyra-
mid Matching (SPM), leading to image signatures with dimensionality
up to 262,144 [1]. This is a hindrance to large-scale image classification
tasks, for which the attribute based approaches would be more efficient.
This paper proposes a new compact way to represent images, based on
attributes, which allows to obtain image signatures that are typically
103 times smaller than the FV+SPM combination without significant
loss of performance. The main idea lies in the definition of intermediate
level representation built by learning both image and region level visual
attributes. Experiments on three challenging image databases (PASCAL
VOC 2007, CalTech256 and SUN-397) validate our method.

1 Introduction

Attribute based image classification [2–6] – in which an image is represented by
a set of meaningful visual attributes – has several interesting properties such as
the ability to handle large number of categories or the compactness of image
representation. For example, in [5], an image is represented by a 2659-d binary
vector, each of which corresponds to a visual attribute. However, the attribute
based methods typically need a large amount of human efforts, i.e. manually
defining visual attributes and labeling training images for these attributes. The
only exception is [6] which learns both discriminative and nameable visual at-
tributes without labeled training images. But this learning process still includes
human supervision and therefore is semi-supervised. Another drawback of visual
attributes is their classification performance, which is below or comparable to
the simple Bag-of-Words histogram when using the same low-level features.

Indeed, recent literature in image classification have shown that the state-
of-the-art results are typically obtained by combining Fisher Vectors (FV) and
Spatial Pyramid Matching (SPM) which leads to very high dimensional image
signatures. For example, as in [1], the fisher vector for an image is 32,768-d and
the final image signature with a three level pyramid (1 × 1, 2 × 2, 3 × 1) is is
262,144-d. This is a hindrance to large-scale image classification since storing
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high dimensional features for thousands of (or even millions of) images and
learning classifiers based on them is very difficult if not impossible. Considering
that, many methods were proposed to produce compact image signatures.

SPM [7] divides an images into fixed regions which are not guaranteed to be
optimal. Thus, some extensions of SPM were proposed to either learn the posi-
tions and sizes of regions [8, 9] or learn a weight for each region [10]. Although
these methods produce more compact image signatures than SPM by using less
regions, the compression rate is only about 1/4 or 1/2 which is far from enough
for large-scale classification tasks. The quantization based techniques were also
proposed to compress the high dimensional image signatures (e.g. [11–13]). Es-
pecially, in [13] the product quantizers (PQ) are adopted to compress the FVs
to 1/64 of their original size, without significant loss of performance.

In this work, we propose a novel way to automatically (i.e. without any ad-
ditional annotations) learn both image-level and region-level attributes. The
former encode the common visual structures of whole images (corresponding to
the 1 × 1 channel of SPM), while the latter encode the common visual struc-
tures of image regions (corresponding to the 2× 2, 3× 1 channels of SPM). More
specifically, to learn the visual attributes, we first compute descriptors (FVs in
our case) for training images or regions randomly sampled from training im-
ages. Then we build a small set of prototypes (clusters) from these descriptors
and train one classifier per prototype. An image is then encoded by measuring
the similarities between its descriptors and the prototypes using the pre-learned
prototype classifiers. Since the prototypes usually encode high-level visual struc-
tures (see Fig.2), they can be also considered as visual attributes. In the follows,
we use the words attribute and prototype interchangeably. The resultant image
signature is called as visual attribute feature (VAF). We show by experiments
that, compared with some best known methods, the VAF leads to much better
trade-off between compactness and classification performance.

2 Method

Our method has two components: offline learning of image/region attributes
and online prediction of them. The former learns a set of attributes from both
images and image regions and, based on them, the latter produces compact
image signatures. Fig. 1 illustrates how to learn and predict region attributes.
The process for image attributes is similar.

2.1 Describing Images and Regions

Recently, Fisher Vector (FV) has shown state-of-the-art performance on image
classification. FV characterizes the first and second order differences between
the local features and the centers of a Gaussian mixture model (GMM) which
is learned on the local features extracted from training images. Given a set of
local features {xi : i = 1, . . . , N} extracted from an image or an image region,
the FV for the k-th GMM component are computed as:
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Fig. 1. Learning and prediction of region attributes. See text for details.
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where wk, μk, σk are the parameters of GMM and γik is the soft assignment value.
Concatenating both uk and vk for all the K components leads to a FV of size
2KD where D is the dimension of local features. To speedup the computation of
FV, we sparsify the γik, i.e. set those for which γik ≈ 0 to 0. It is worth noting
that in this case the FV is still a dense feature vector since the number of GMM
components is very small.

In this work, an image is represented by one image-level descriptor and several
region-level descriptors. The former is computed by aggregating all the local
features from the image into a FV, while the latter are computed by randomly
sampling rectangular regions from the image and aggregating the local features
within each region into a FV.

2.2 Learning Visual Attributes and Their Predictors

Let {fi : i = 1, . . . ,M} be the FVs extracted from either training images or
image regions. Our objective is to obtain a set of visual attributes representing
images and regions. We do this by performing spectral clustering [14] on image
and region level FVs separately. Each cluster contains visually similar images
or regions, and constitutes a visual attribute. In spectral clustering, the FVs
are first projected into a low-dimensional manifold by using a similarity matrix
of them, and then the traditional k-means is performed on the low-dimensional
data to obtain the clusters. Compared with performing k-means directly on the
high dimensional FVs, spectral clustering can better capture the intrinsic visual
structure of images or regions.
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In our implementation, the similarity between two FVs fi and fj is computed
using a Gaussian kernel s(fi, fj) = exp(−||fi − fj||2/2σ2) where the scaling
parameter σ is determined by cross-validation. The visual structures of images
or regions, which we aim to capture, can exist at different levels. Thus, in our
method, we run the spectral clustering with different number of clusters and
aggregate all the so-obtained clusters to form a vocabulary of attributes. We
finally have two vocabularies of attributes: [ag1, . . . , a

g
Cg

, al1, . . . , a
l
Cl
], where ag

and al are the image and region attributes respectively.
After obtaining visual attributes, we train a classifier (linear SVM in this

work) for each of them by the one-vs-rest strategy, producing a set of attribute
classifiers [φg

1, . . . , φ
g
Cg

, φl
1, . . . , φ

l
Cl
]. The classifier training process is performed

for the different clustering levels independently. These attribute classifiers are
then used as predictors to produce the attribute features, as described in the
next section.

2.3 Generating Visual Attribute Feature

The generation of attribute feature can be considered as an encoding process.
The simplest method is the hard assignment in which a vector (FV in our case) is
represented by its nearest prototype. The underlying assumption of this strategy
is that the vectors satisfy Gaussian mixture distribution and a vector can be rep-
resented by a single prototype. To relax this assumption, soft-assignment [15] has
been proposed: a vector is assigned to multiple prototypes with assigned values
proportional to its similarities to the prototypes. However, this soft-assignment
model also assumes the Gaussian mixture distribution of vectors.

In practice, the assumption of Gaussian mixture distribution is not always
well satisfied, especially when the dimensionality of feature space is high. In
our case, the FVs are much higher dimensional than some common-used local
features (e.g. 128-d SIFT). It explains why both the traditional hard-assignment
and soft-assignment methods fail to perform well in our case. Thus, we propose
in this work a classifier-based soft assignment to encode both image and region
descriptors. Specifically, for a descriptor f , its assigned value to an attribute a
is computed as

Θ(f, a) =
1

1 + exp(−φa(f))
(2)

where φa(f) = wT
a f + ba is the classifier (linear SVM) of attribute a and the

output of φ is transformed to (0, 1) by the sigmoid function.
As above mentioned, an image I is represented by an image-level FV and sev-

eral region-level FVs. For the former, the image signature Ψg(I, ag) is computed
by using Eq. (2) directly, i.e. Ψg(I, ag) = Θ(f, ag) where f is the image-level
FV. For the latter, the image signature is computed by pooling all the encoded
image regions:

Ψ l(I, al) =
1

R

R∑

i=1

Θ(fi, a
l) (3)
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where fi is i-th region-level FV extracted from image I and R is the number of
regions. Finally, an image is represented by its visual attribute features (VAF):
A(I) = [Ψg(I, ag1), . . . , Ψ

g(I, agCg
), Ψ l(I, al1), . . . , Ψ

g(I, alCl
)].

2.4 Producing Compact Image Signature

Since the learned visual attribute have large redundancy, a selection process is
needed to get a compact subset of them. Given the original VAF A = [r1, ..., rC ]
obtained in the previous section, a sequential feature selection algorithm (similar
to [16]) is used to select a compact subset of features (attributes) with low
redundancy. At iteration p, the set As

p−1 of the p − 1 already selected features
is extended by choosing a new feature in A−As

p−1 such as:

r̂p = argmin
r∈A−As

p−1

⎛

⎝ 1

p− 1

∑

ri∈As
p−1

MI(r, ri)

⎞

⎠ (4)

where MI(r, ri) is the mutual information between r and ri which is estimated
from the training set. From the information theory point of view, this criterion
chooses for each step the feature with the lowest dependence (redundancy) to
the set of already selected features. As to As

1, in our implementation, it includes
a randomly chosen feature.

To get more compact image signature, the As is further compressed by using
the Locality-Sensitive Hashing (LSH) [17]. Specifically, we draw B random vec-
tors {hb : b = 1, . . . , B} and represent the image by the sign of h′

bA
s which is a

B-bits binary vector.

3 Experiments

3.1 Databases

The proposed method is evaluated on three challenging image databases: PAS-
CAL VOC 2007 [18], Caltech256 [19] and SUN-397 [20].

PASCAL VOC 2007 database contains 9,963 images of 20 object classes. Fol-
lowing the protocol in [18], the performance is measured by the mean Average
Precision (mAP) of 20 binary classification tasks.

Caltech256 database contains 256 object categories with about 30K images.
Following the protocol in [19], we run the experiments with different numbers of
training images per category (ntrain=10 and 30). One-vs-rest strategy is used
for multiclass classification and the performance is reported as the average clas-
sification rate on 256 categories.

SUN-397 database contains 397 scene categories, each of which has at least
100 images collected from the Internet. The experimental setup [20] is similar to
that of Caltech256 except that the training images per category is 50.
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(a) (b) (c) (d)

Fig. 2. Examples of image prototypes (a) (b) and region prototypes (c) (d)

3.2 Implementation Details

For the local features, we adopt SIFT descriptors extracted on a dense grid
of patches over 8 scales separated by a factor 1.2 and the step size is half of
the patch-size. The smallest patch size is 16 × 16 pixels. As in [1], the SIFT
descriptors are reduced from 128 to 64 by PCA and modeled by a GMM with
256 components, which results in a FV of 32,768-d (64× 256× 2).

When generating clusters by spectral clustering, 10 different clusterings are
done for both image and region level FVs, with the number of clusters varying
from 50 to 500 (with an increment of 50), which finally produces 5500 attributes.
The train/validation set of PASCAL VOC 2007 is used learn the attribute clas-
sifiers and select a compact set of them.

For image classification, the classifier is also learned by linear SVM. The regu-
larization parameter of SVM is also determined on the PASCAL train/validation
set. It is worth pointing out that the randomness of the classification perfor-
mance comes from the randomly sampled image regions, random initialization
of attribute selection as well as the randomly selected training images (for Cal-
Tech256 and SUN-397 databases). However, in the following experiments, only
the averaged performances are reported since the variances in all the experimen-
tal settings are no more than 1%.

3.3 Evaluation of Attribute Learning and Prediction

Attribute learning. As above mentioned, the learned prototypes tend to have
semantic meanings and therefore can be considered as visual attributes. Fig.2
gives some examples. Specifically, the four prototypes from (a) to (d) can be in-
terpreted as group of persons, animal in the grass, vertical structure and circular
object respectively. We also compare the spectral clustering with k-means for at-
tribute learning. It can be seen from Fig. 3 that spectral clustering gives better
performance no matter how many attributes are selected, which is consistent
with our analysis in Section 2.2.

Attribute prediction. In this experiment, we compare the different encoding
strategies for attribute prediction as introduced in Section 2.3, i.e. traditional
distance-based hard/soft assignment and classifier-based hard/soft assignment.
Here the classifier-based hard assignment is to assign a image or region descriptor
to the attribute with the highest classifier output. It can be seen from Fig. 4 that
the classifier-based soft assignment performs best, which validates our analysis
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in Section 2.3. In addition, 50 regions per image gives the best tradeoff between
performance and computational cost. Thus, in the following experiments, this
parameter is set to 50.

3.4 Evaluation of Real-Valued VAF

In this experiment, we compare the real-valued VAF with the original FV (or
BoW histogram) with SPM (1× 1, 2× 2, 3× 1, making a total of 8 channels), as
well as other two compact image signatures. The first one is obtained by using
PCA to reduce the dimensionality of FV+SPM. The second one is the classemes
descriptor [5] which is the output of a large number of weakly trained category
classifiers (called as ”classemes”) on the image. The categories are selected from
the LSCOM ontology and the training images are collected by the Bing image
search engine. It is worth pointing out that in [5] multiple low-level features (e.g.
GIST, HOG and SIFT) are used to learn the classemes. The BoW histogram
is built with 1,000 visual words (learned by clustering SIFT features), so its
dimensionality with SPM is 8,000.

It can be seen from Fig.5 that the proposed VAF is very compact. Specifi-
cally, VAF with 500 dimensions performs slightly worse than the FV+SPM with
262,144 dimensions (less than 3% loss of performance for all the databases). In
this case, the compression rate is about 1/500 since both VAF and FV are dense
features. With this compact image signature, the time and memory costs for
training image classifiers can be greatly reduced. Moreover, the VAF outper-
forms the PCA reduced feature which validates the effectiveness of representing
images by high level visual structures. Compared with the classemes descriptor
which can be considered as the image level attribute feature, our method extract
both image and region level attributes therefore produce more informative im-
age signature. Besides, the proposed VAF also outperforms the standard BoW
histogram.
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(a) PASCAL VOC 2007 (b) SUN 397 ntrain=50

(c) CalTech256 ntrain=10 (d) CalTech256 ntrain=30
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Fig. 5. Comparison of the real-valued VAF with FV+SPM, BoW+SPM, FV+SPM
reduced by PCA as well as the classemes descriptor.

3.5 Comparison between Binary VAF and State-of-the-Art

In this experiment, we evaluate the binary VAF which is generated by apply-
ing LSH on the selected attribute feature (500-d), and compare them with two
state-of-the-art binary image signatures. One is the binary classemes descriptor
[5]. The other is the PiCoDes [21] which is learned by explicitly optimizing the
performance of classifying 2659 categories randomly sampled from the ImageNet
dataset [22]. It can be seen from Fig.6 that the binary VAF outperforms both
binary classemes descriptor and PiCoDes except the case of small training sam-
ples (ntrain=10 on Caltech256 database). Moreover, the VAF is built from single
type of local features (i.e. SIFT) while both classemes descriptor and PiCoDes
are built from multiple types of local features. As to the runtime cost, on a
machine with two 3.2GHz CPUs, it takes about 1 second to extract the binary
VAF from an image of 500×500 pixels, while it takes about 2 seconds to extract
binary classemes descriptor or PiCoDes.

Especially, the performance of 4096-bits VAF is almost the same as the 500-
d real-valued VAF. In this case, the compression rate relative to the original
FV+SPM (with 4 bytes float point for each dimension) is 1/2048 which is
much higher than that of product quantizers (1/64) used in [13] to compress
the FV.
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(a) PASCAL VOC 2007 (b) SUN 397 ntrain=50

(c) CalTech256 ntrain=10 (d) CalTech256 ntrain=30
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Fig. 6. Comparison of binary VAF with binary classemes descriptor and PiCoDes

4 Conclusions

In this paper, we have introduced compact visual attribute features which encode
both image and region level visual structures. Compared with the state-of-the-
art fisher vector (with spatial pyramid), the proposed attribute feature is 2048
times smaller with about 3% loss of performance on all the evaluated databases.
In the sense of compactness, the proposed attribute feature outperforms the
best known methods, e.g. fisher vector with product quantizer [13], classemes
descriptor [5] and PiCoDes [21].

It is worth noting that all the learning processes in our method (e.g. clustering
and classifier training) are performed on PASCAL train/validation set and the
learned attributes generalize well for both Caltech256 and SUN-397 databases.
Thus, in practice, the visual attributes can be firstly learned in an offline manner
and then applied to any classification task. Future works include applying the
attribute feature to larger scale image classification (e.g. on ImageNet10K [22])
and image retrieval (e.g. on Holiday+Flickr1M [23]).
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