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Abstract. We present a learning framework for fusion-based video re-
trieval system, which explicitly optimizes given performance metrics.
Real-world computer vision systems serve sophisticated user needs, and
domain-specific performance metrics are used to monitor the success of
such systems. However, the conventional approach for learning under
such circumstances is to blindly minimize standard error rates and hope
the targeted performance metrics improve, which is clearly suboptimal.
In this work, a novel scheme to directly optimize such targeted perfor-
mance metrics during learning is developed and presented. Our experi-
mental results on two large consumer video archives are promising and
showcase the benefits of the proposed approach.

1 Introduction
In many computer vision problems, the success of the learning algorithms is
measured by domain- and application-specific performance metrics that simulate
the real-world needs. One example is video retrieval, where diverse performance
metrics are used to measure the quality of the system as well as the potential
user experience. For example, [1,2] uses precision of top ranked retrieval results;
TRECVID multimedia event detection (MED) task [3] prefers the ratio of 12.5:1
between probability of miss and false alarm; and [4] uses F-1 score. However,
most learning methods optimize error rate, not the domain-specific performance
measure, potentially yielding suboptimal solutions.

Another imperative aspect of real-world computer vision systems is the ability
to fuse multiple features. The benefits of fusion have been clearly demonstrated in
recent literature. For example, for video retrieval, [2,4] use multiple audio visual
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cues, and [1,5,4] incorporate even text features from tags or the video webpages.
However, most of these techniques use the traditional hinge loss error function
during their learning process and have not attempted to directly optimize their
preferred performance metrics.

In this work, we propose a learning framework which is able to directly opti-
mize specific performance metrics, and demonstrate its value in effectively fusing
multiple features. First, we introduce a systematic learning framework to directly
optimize specific performance metrics beyond simple error rates. This direct op-
timization means that we can avoid the prolonged parameter search process
typically required when the target metrics are optimized indirectly. Second, we
apply our learning framework to fusion classifiers for consumer video retrieval
problems. We show that our approach can learn competitive fusion classifiers
while simultaneously optimizing given performance metrics. Our experiments
on challenging video datasets show promising results.

2 Related Work
With our focus on optimizing performance metrics for fusion classifiers in con-
sumer video retrieval, there are three areas of related work.

Performance Metric Optimization. Learning with explicit performance met-
ric optimization has been mostly studied in machine learning community, albeit
sparsely. [6] is a good reference and discusses optimization of a few performance
metrics for SVM and boosting. However, most of them use elements of discrete
search, different from our straightforward continuous optimization. Pareto cri-
teria was introduced for multiple performance metric optimization [7]; however,
Pareto criteria only provides partial ordering between multiple metrics, and joint
optimization or complex metrics are not supported. In contrast, the basis of our
approach, maximal figure-of-merit (MFoM), is a general framework which has
been applied to problems such as text categorization, e.g., [8]. This work pro-
vides the first study on incorporating MFoM framework for audio-visual fusion
for video retrieval, and presents the first principled approach to explicitly opti-
mize the criteria in Sec. 3.

Fusion. An example fusion method is multiple kernel learning (MKL) [9]. In
MKL, because a final fusion classifier is trained using all features jointly from
early stages, it can be categorized as an ‘early fusion’ method. However, MKL
does not systematically support the optimization of particular performance met-
rics, and reported results are not always competitive [10]. Other examples include
the use of boosting for fusion [11,10]. A variant of LP-Boost introduced in [10]
is more related to our work in terms of overall ‘late fusion’ architecture.

Fusion-Based Consumer Video Retrieval. The fusion of multi-modal fea-
tures for consumer video retrieval is an on-going area of research. For example,
[2] introduced CCV dataset and showcase a benchmark system which uses SVM
as a fusion classifier. [4] introduces a retrieval system which improves perfor-
mance by incorporating manually designed semantic hierarchy. [5,1] presents tag
recommendation approaches on YouTube videos. For collaborative competition,
TRECVID [3] runs an MED track and disseminates large datasets annually.
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3 Explicit Performance Metric Optimization

In this section, we show how our approach explicitly optimizes targeted per-
formance metrics. The novel elements are in the details of incorporating the
performance metric into the objective function of a learning framework. For
clarity, this paper focuses on our chosen metric; however, the derivation can be
easily extended to other metrics of interest.

3.1 Evaluation Metric for Real-World Video Retrieval

In real-world retrieval tasks, the performance metrics that capture user desires
can differ widely. For example, for a ‘Google search’, the important metric may
be precision of the top-N . For a statistical analysis problem, on the other hand,
recall may be the most important factor. In general, a large class of these metrics
can be thought of as the weighted combinations of the probabilities of missed
detections (PMD) and false alarms (PFA) at a particular operating point.

In this paper, we focus on the weighted sum of PMD and PFA at a particular
ratio, wihch is suggested by the TRECVID MED tasks. Concretely, the goal is:

Minimize Sτ = PMD + τ × PFA s.t.
PMD

PFA
= τ. (1)

In the following, we explain our approach with regards to this particular metric.
However, we note again that the framework is more general, and can be easily
applied to other metrics such as rankings, F1 or average precision.

To optimize the metric in Eq. 1, a standard scheme is to learn a model with
its own learning objectives and adjust detection thresholds until the desired
ratio of PMD/PFA = τ is met where the metric Sτ will be computed. With this
approach, however, there is no guarantee that the learning procedure will focus
on improving performance at particular operating points. Our solution described
in the following sections provides a principled approach to achieve such a goal.

3.2 Maximal-Figure-of-Merit (MFoM) Framework

Our learning task is formulated within a discriminative framework. Let T ={
(x, y) |x ∈ RD, y ∈ C

}
be a set of training data, where x is a D-dimensional

sample and y is a class label C = {C+, C−}, i.e., positive and negative.
Let d(x; Λ) ∈ (−∞,∞) be a class confidence function which indicates the

confidence that a sample x belongs to the positive class, C+, where a large
positive value corresponds to a high confidence. Given d(·) and Λ, the decision
rule for a sample x is defined as accept x ∈ C+ if d (x; Λ) > 0, and reject
otherwise. Our goal is to learn the parameters Λ to optimize the targeted metric.

The core ideas of our MFoM-based learning approach are two-fold. First, we
exploit the fact that most performance metrics and their sub-components, such
as PMD and PFA in Eq. 1, can be expressed as a combination of the four sub-
metrics from a confusion matrix: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). Second, we approximate a target metric
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such as Sτ in Eq. 1, that is based on discrete error counts with a parameterized
continuous and differentiable loss function L (T ; Λ).

In particular, the four sub-metrics are approximated as continuous functions
using (truncated) sigmoid functions σ (·), which approaches one for high confi-
dence for a positive class C+, or approaches zero otherwise. In detail, the four
approximated sub-metrics are expressed as follows:

T̂P =
∑

(x,y)|y∈C+

σ
(
d(x; Λ)

)
, F̂N =

∑

(x,y)|y∈C+

(
1 − σ

(
d(x; Λ)

))
(2)

F̂P =
∑

(x,y)|y∈C−

σ
(
d(x; Λ)

)
, T̂N =

∑

(x,y)|y∈C−

(
1 − σ

(
d(x; Λ)

))

where the sigmoid function, σ(z) =
(
1 + exp(−α · z)

)−1, is parameterized by a
positive constant α. Then, the overall loss function L is formulated from approx-
imate sub-metrics ( .̂ ) using a mapping function f(·) as follows:

Sτ ≈ L (T ; Λ) = f
(
T̂P, F̂P, T̂N, F̂N|Λ

)
(3)

The role of the mapping function f is to reconstruct the loss function L accu-
rately from sub-metrics. In fact, if the given target metric is a simple combina-
tion of sub-metrics, a precise mapping f is possible; e.g., for the F1 metric where
F1 = 2TP/ (2TP + FN + FP). In some cases, however, the loss function may
involve complex conditions such as the ratio constraint in Eq. 1, which needs
approximation. We discuss this issue further in Sec. 3.3.

Finally, the optimal parameter Λopt that minimizes L (T ; Λ) is learned by the
generalized probabilistic descent (GPD) [12] algorithms.

In all, there are three steps needed for the MFoM framework to be properly
used for problems at hand. First, an appropriate parameterized class-confidence
function d(x; Λ) needs to be defined. The class of linear discriminant functions
(LDF) is used in this work; but, in general, any parameterized function can
be used [8] such as a kernelized discriminant function. Second, a good mapping
function f needs to be designed to simulate the target metric. Finally, an effective
constant α which controls the slope of the sigmoid function needs to be selected.
The larger α is, the more accurate the approximations in Eq. 2. However, the
smaller α is, the smoother the overall approximation in Eq. 3. In practice, we
observed that the choice of α affects convergence speed, rather than accuracy,
for most datasets with reasonable sizes.

3.3 Strategies for Complex Target Metric Approximation

In this section, we present how a good mapping function f in Eq. 3 can be
designed to yield an accurate continous loss function L(T ; Λ) for a given target
metric, with focus on the example metric introduced in Eq. 1.

For cases where complex target metrics prohibit the use of precise mapping
function f , our proposed method is to approximate the target metric as a com-
bination of simpler sub-functions. This usually involves a set of parameters Γ
which control the relative weights of sub-functions. Optimal values for Γ may
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Fig. 1. Iso-contour curves of the loss function L(T ;Λ) defined in Eq. 4 when τ = 2 and
γ = 1. The dashed straight line corresponds to a iso-ratio PMD/PFA = 2.

be found through analytic approaches by minimizing the divergence between
the resulting approximation f and the given target metric. On the other hand,
good values for Γ can be found through cross validation as well. In fact, a more
complex scheme of dynamically varying Γ during learning can be beneficial. For
example, in Eq. 1, an optimal value for Γ may differ according to varying val-
ues of PMD and PFA during learning steps. The investigation of diverse detailed
learning strategies is beyond the scope of this work, so we focus on illustrating
these ideas on a concrete example below.

For the example target metric in Eq. 3, a linear sub-function for weighted error
rate

[
̂PMD + τ × P̂FA

]
can be incorporated in a straightforward manner where

the approximations ̂PMD and P̂FA are set to be equal to F̂N and F̂P (in Eq.
2) divided by the total number of positive and negative samples respectively. In
addition, our mapping function should be designed to prefer user-specified target
ratio τ between PMD and PFA. To enforce such a ratio constraint, we include
a sub-function R (τ, PMD/PFA) which monotonically increases loss with respect
to the difference between a target ratio τ and the exhibited ratio ̂PMD/P̂FA. By
incorporating both terms with a weighting parameter Γ = γ, the loss function
L(T ; Λ) that approximates Eq. 1 is finally defined as:

L (T ; Λ) =
[
̂PMD + τ × P̂FA

]
+ γ ×

[
R

(
τ, ̂PMD/P̂FA

)]
(4)

With small γ, learning focuses more on minimizing the error rate; however, the
learned model is less likely to show a desired target error ratio τ , since the
minimum value of the weighted error rate could be derived by reducing PFA and
sacrificing PMD, especially when τ is large. On the other hand, with large γ,
learning will focus more on meeting target error ratio, and less on decreasing
error rates. In this work, we set γ to a fixed constant by searching through
cross-validation; this has shown promising results.

Among many options for the ratio constraint approximation term R, we found
the following form to work well and used it in this work:

R
(
τ, ̂PMD/P̂FA

)
=

{

log (τ) − log

(
̂PMD

P̂FA

)}2

(5)
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The logarithmic squared form used above provides a computational advantage
in that overall gradients can be easily computed as a sum of two terms (i.e., the
gradients of PMD and PFA), avoiding the complications potentially caused by
the direct use of division PMD/PFA.

To showcase the quality of the approximation in Eq. 4, Fig. 1 illustrates
the iso-contour curves of the loss function, along with the iso-error ratio line
(dashed). It can be clearly seen that the designed loss function is correlated with
and declines towards the iso-error ratio line. This implies that the minimum
value of the loss function defined in Eq. 4 can be found near the iso-error ratio
line and left-bottom of the plot through the gradient descent procedures.

4 Late Score Fusion Framework

Our fusion-based video retrieval architecture is formulated within the late fusion
paradigm. By late fusion, we mean that scores are computed independently by
multiple base classifiers, one per feature type, and fusion classification is con-
ducted on the computed scores. We use the MFoM approach to learn the fusion
classifier parameters while explicitly optimizing target performance metrics.

4.1 Training Discriminative Score Fusion

During training, each base classifier is trained in a one-vs-all manner as well,
and is used to generate a single score for the target class. For base classifiers, we
used SVMs and their estimated probabilities as base classifier scores.

For a fusion classifier, we used MFoM learning scheme and adopted LDF
as our class-confidence function as d (x; Λ) =

∑
j ωjxj + ω0, where x is the

score vector from base classifiers. Accordingly, MFoM systematically learns the
weights for each score dimension for the target class, while explicitly optimizing
the desired performance metric. This way, the fusion classifier becomes confident
when multiple base classifier scores are high, and vice versa.

4.2 Additional Non-target Class Scores for Fusion Classifiers

To improve the performance of the fusion classifier further, we have investigated
the use of additional non-target base classifier scores as inputs for 1-vs-All fusion
classifiers, and observed consistent improvement in the final fusion classification.
For example, we can incorporate the output by a base classifier trained for Birth-
day party for the training of a fusion system for the target class of Wedding. In
this scheme, our fusion classifier uses (M × K)-dimensional discriminative scores
as its inputs, where there are K features and M base classifiers available. We
believe the improvement is obtained because a fusion classifier systematically
incorporates the correlation among event classes. Negative correlation as well as
positive correlation could be helpful to acquire more discriminant power, i.e.,
high probabilities of outdoor event classes infer low confidence on indoor event
classes. Fig. 5 illustrates the learned model parameters of fusion classifiers for
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Fig. 2. Comparison of performance metrics (lower is better). Results by base classi-
fiers, LR-, SVM-, and MFoM-based fusion with only target class scores (‘_S’) and
additional non-target class scores (‘_M’) are shown; (Left) 10 classes and average
from TRECVID 2011 MED and (Right) Average of 20 classes from the CCV dataset.

the 10 test event classes from TRECVID 2011 MED. The details of this experi-
mental results, in addition to the comparison of performance with and without
the use of non-target scores illustrated in Fig. 2 are described in Sec. 5.

5 Experiments and Result Analysis

We have applied the proposed framework on two challenging large-scale con-
sumer video datasets including TRECVID ’11 MED [3] and Columbia Consumer
Video (CCV) [2] datasets. Both the size and complexity of the datasets are be-
yond other alternatives such as YouTube Sports [11] or Holywood datasets [13].

Our proposed methods are compared against other standard fusion techniques
[10,4] based on logistic regression (LR) and linear SVM. We also compare fusion
results with and without non-target base classifier scores, as discussed in Sec.
4.2. For all experiments, performance measure in Eq. 1 has been used, with
τ = 12.5 for TRECVID ’11 MED and τ = 10 for the CCV dataset. For the
training of comparative approaches, we have assigned the weights equal to τ to
positive samples. Operating points were selected on the training performance
curves where the specified ratio τ is satisfied. Finally, the performance metrics
are computed at the selected operating points.

5.1 Results on TRECVID 2011 MED Dataset

TRECVID 2011 MED corpus [3] provides an excellent test-bed for real-world
video retrieval problems due to its large size (45K video clips) and huge inter-
and intra-class content variability. For the MED task, there are 10 annotated
event classes: E006-Birthday party, E007-Changing a vehicle tire, E008-Flashmob
gathering, E009-Getting a vehicle unstuck, E010-Grooming an animal, E011-
Making a sandwich, E012-Parade, E013-Parkour, E014-Repairing an appliance,
and E015-Working on a sewing project.

Features and Base Classifiers. We used five types of features in our experi-
ments: HoG3D [14], Object Bank (OB) [15], GIST [16], MFCCs [17], and ASMs
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Fig. 3. (Left) Comparison among the fusion results for E007, E008, and E015. MFoM
outperforms SVM and LR, especially along with the isoline of PFA : PMD = 1 : 12.5.
(Right) Comparison among the results by the base and fusion classifiers for E012.

[17]. HoG3D is designed to be a low-level feature which captures texture and mo-
tion within videos, while OB consists of 177 semantic object detectors. MFCCs
and ASMs are low- or mid-level audio features. For HoG3D, MFCC, and ASMs,
we aggregated them into a clip-level bag-of-words feature, and learned a SVM
with a histogram intersection kernel (HIK). For OB, we aggregated the features
using max-pooling across multiple frames, and learned a linear SVM. For GIST,
we learned a linear SVM using per-frame features, and performed clip-level clas-
sification by averaging the scores over multiple frames (Note this paper is not
focused on the specifics of the base classifiers, but rather on their fusion).

Comparison of Fusion Performance on the Target Metric. The overall
performance is summarized in Fig. 2(Left) where lower bars indicate superior
performance. For training of different fusion classifiers (MFoM, SVM, LR), iden-
tical base classifier scores were used where the results with and without non-
target class scores are denoted by postfixes _M and _S respectively. It can be
observed that Fusion_MFoM_M (Sτ=0.7374) achieves the best performance
consistently across all events, where it shows meaningful improvement of rel-
atively 12.9% on average, against Fusion_LR_M (Sτ=0.8326) and 7.3% from
Fusion_SVM_M (Sτ=0.7916). A similar result holds when using only target-
class scores (_S).

The benefits of explicit performance metric optimization by our methods can
be examined in more detail by looking at the the detection error tradeoff (DET)
curves [18] for three test event classes shown in Fig. 3(Left). For the three event
classes, the DET curves of the proposed MFoM approach (red) is superior or
comparable to the other approaches. The remaining seven event classes showed
similar patterns. However, while MFoM performs better than the other methods
around the operating point, it is not always better away from the operating point
(e.g. E15 (solid) and E07 (dot-dash)). This is not unexpected, since the goal of
our approach is to explicitly improve performance at the operating point.
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In terms of training parameters, the MFoM fusion classifiers were trained with
the following parameters: α = 30, and γ = 0.2 ∼ 0.4. γ varies across classes, and
was determined by cross-validation. Similar cross validation schemes were used
to identify optimal parameters for SVM and LR.

Performance of Base Classifiers and the Effect of Fusion. Among the
individual features shown in Fig. 2(Left), HoG3D shows the best performance
on average, especially for events with temporal dynamics, such as E012. Next,
OB is followed, which is competitive for relatively static classes, such as E011.
Notably, audio features are competitive for audio-rich events such as E006.

All the fusion methods consistently outperform base classifiers, showing the
clear benefits of fusion. For example, Fig. 3(Right) illustrates the effect of fu-
sion by the proposed algorithm for E012 in the DET plot. It is notable that
the fusion of the visual features (blue line) is better than the individual visual
features (HoG3D, OB, and GIST). Furthermore, the final fusion result (red line)
is improved by additionally incorporating the audio features.

For a qualitative assessment, Fig. 4 shows the top retrieved results for E011
from the proposed fusion approach and the two base classifiers. It is interesting to
see that the two visual features seem complementary. HoG3D captures textures
of scenes as well as temporal dynamics, while OB outputs responses from object
detectors. Accordingly, some of the top results by HoG3D are mainly triggered by
only textures such as roads or plain background, while most of the top results by
OB contain a vehicle in the middle. Combining textures of scenes and responses
from object detectors, the fusion results show much better performance that
mostly have a vehicle object and a consistency in spatio-temporal dynamics.

Model Parameters and Effect of Additional Non-target Class Scores.
The learned model parameters of our MFoM fusion scheme are illustrated in Fig.
5. Each row represents 50-dimensional LDF parameters, which is composed of
the weights for the 10-dimensional scores from each feature block. A high positive
value indicates strong positive correlation of the corresponding score element to
a target class, while a negative value implies a negative correlation. Diagonal
structures are observed because base classifiers learned for the same target class
are more discriminative, as expected. It is also interesting to see correlations
between different event types. For example, the fusion classifier for E011 (row
6) shows positive correlation with ObjectBank base classifiers (column 11) for
E006, perhaps because both events frequently occur in dining rooms.

5.2 Results on Columbia Consumer Video dataset

As the second dataset, we applied the proposed fusion scheme on Columbia Con-
sumer Video (CCV) dataset [2], which is another publicly available large-scale
consumer video dataset. It includes 9,317 consumer videos in 20 complex event
classes. In addition, it provides 3 types of precomputed bag-of-words features for
SIFT, STIP [13], and MFCC.

We conducted identical experiments on CCV dataset. For all three types of
features, base classifiers are learned using HIK SVMs. Then, LR-, SVM-, MFoM-
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Top 30 results by fusion

Top 10 results by HoG3D

Top 10 results by OB

Fig. 4. Top 30 results by the proposed fusion algorithm, top 10 results by HoG3D and
OB; sorted from top-left to botom-right. True positives are marked with green boxes.

Fig. 5. Learned model parameters of LDF for the event classes E006–E015 on the
MED dataset. Each row is the 50-dimensional model parameter of one-versus-all fusion
classifiers for every event. Each column corresponds to one of 50 base classifiers.

based fusion classifiers were learned on top of the identical base classifiers. Ex-
perimental results on CCV dataset are summarized on Fig. 2(Right). Patterns
identical to the results on TRECVID dataset has been observed for all 20 event
classes. For brevity, only the average performance across all classes is shown here.
Overall, there is an average gain of 10.1% and 6.3% achieved by MFoM fusion
(MFoM_M, Sτ=0.5208), over the LR fusion method (LR_M, Sτ=0.5637) and
the SVM fusion method (SVM_M, Sτ=0.5536), respectively.

6 Conclusion

In this work, we have presented our novel late-fusion framework for video re-
trieval, which explicitly optimizes given performance metrics. In particular, we
showcased an effective approximation scheme for the important class of weighted
metrics which can include sub-metrics such as PMD and PFA, and requirements
for an operating point. Our experimental results on two large consumer video
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archives are promising, and suggest that our approach will add value for real-
world computer vision applications with sophisticated user needs.
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