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Abstract. Currently, object tracking/detection is based on a “shallow learning” 
paradigm; they locally process features to build an object model and then they 
apply adaptive methodologies to estimate model parameters. However, such an 
approach presents the drawback of losing the “whole picture information” re-
quired to maintain a stable tracking for long time and high visual changes. To 
overcome these obstacles, we need a “deep” information fusion framework. 
Deep learning is a new emerging research area that simulates the efficiency and 
robustness by which the humans’ brain represents information; it deeply propa-
gates data into complex hierarchies. However, implementing a deep fusion 
learning paradigm in a machine presents research challenges mainly due to the 
highly non-linear structures involved and the “curse of dimensionality”. Anoth-
er difficulty which is critical in computer vision applications is that learning 
should be self adapted to guarantee stable object detection over long time spans.  
In this paper, we propose a novel fast (in real-time) and adaptive information 
fusion strategy that exploits the deep learning paradigm. The proposed frame-
work integrates optimization strategies able to update in real-time the non-linear 
model parameters according in a way to trust, as much as possible, the current 
changes of the environment, while providing a minimal degradation of the pre-
vious gained experience.  

1 Introduction 

The current object detection methods exploit a “shallow learning paradigm”; they 
locally process and map features to build an object model and then they apply adap-
tive learning methods to estimate model parameters [1]. However, the use of local 
features inherently presents the drawback of losing the “whole picture information” 
resulting in several mismatches (see Fig. 1a). Although attempts have been recently 
proposed to solve this critical aspect through global optimization strategies [2], it 
seems that there is no a unified mathematical framework that allows “deep” informa-
tion fusion under a fast (in real-time) and adaptive way (robust to environmental visu-
al changes). The current approaches present the drawback that the training procedures 
are highly unstable; we need several implementation cycles to conclude to a stable 
solution.  
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However, the main difficulty in implementing such a deep information fusion algo-
rithm is the so called “curse of dimensionality”, i.e., the learning complexity exponen-
tially grows with a linear increase in the dimensionality of the data. To make things 
worse, the data should be related with highly non-linear associations, which present 
additional research challenges to be optimized and adapted under real-time con-
straints. This is the reason why until now only shallow learning paradigms have been 
adopted in computer vision.  

Although multi-layer learning models have been known for many years ago, they 
could not been trained well due to the fact that the performance of the existing train-
ing algorithms is significantly deteriorated for large number of hidden layers. This 
drawback was alleviated, to an extent, when a reasonably efficient, new learning algo-
rithm was introduced by Hinton et al. [3], opening new frontiers for the use of deep 
structures. However, even with these significant contributions, deep information fu-
sion learning lacks self adaptability which is a critical aspect in computer vision; ob-
ject tracking for very long time periods encounters abrupt and high visual changes 
(see Fig.1(b)-(d)). For this reason, semi-supervised learning strategies (SSL) have 
been investigated as an efficient learning paradigm to increase the reliability of object 
tracking [1] using, however, shallow boosting mechanisms. However, again semi-
supervision (e.g., simple inclusion of unlabelled) does not face the inherent problem 
of instability and time consuming training process which is presented in deep, non-
linear structures.   

 
   
   

(a) (b) (c) (d) 

Fig. 1. (a) The deep learning paradigm; local processing looses the ‘whole picture information. 
Although one could discriminate the content of the whole image, it is impossible to understand 
where the six sub-images come from. (b,c) The self training necessity; It is impossible for the 
tracker to remain stable for both images due to background/foreground changes. Thus, we need 
self-training mechanisms; For example, the green (blue) regions are selected as confident back-
ground (foreground) from the pool of unlabelled data by exploiting motion information (see 
Fig.1c). (d) The final tracking after several adaptation cycles.             

1.1 Previous Works 

Recently a great effort has been dedicated to handle object tracking as a classification 
problem [4]. However, these approaches exploit no adaptable mechanisms to update 
the performance of the classifier and thus the structure of the model remains fixed. 
One of the first approaches towards an adaptable classification for object tracking 
have been presented in [5], [6]. These works, however, do not face efficiently the 
general trade-off between model stability and adaptability. A highly specific model 
significantly increases the reliability of the tracker to capture the target but looses 
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adaptability. On the other hand, a highly general model copes with the legitimate 
changes in appearance but with a cost in reliability. To cope with these problems, 
Matthews et al. [7] propose an updated template algorithm that avoids the "drifting" 
inherent. Other methods exploit the semi-supervised paradigm [1], [8]  a co-training 
strategy [9], a combination of generative and discriminative trackers [10] or finally 
coupled layered visual models [11].  

The realization that local information sometimes is not enough to make a correct 
decision led to the development of global optimization trackers. These trackers oper-
ate on larger time scales and make use of high-level reasoning to re-solve ambiguities. 
Examples are the use of a minimum cost graph matching that runs the Hungarian 
algorithm [12]. Other works handle the problem as a minimum flow cost problem 
[13], [2]. However, in case that the background / foreground significantly change, 
there is no way to estimate matches for long time periods forcing the algorithm to fail.   

1.2 Contribution 

In this paper, we propose a novel mathematical framework which permits fast and 
adaptive information fusion over deep learning structures. Very few works have been 
proposed in the literature that exploit conventional (i.e., non-adaptive) deep learning 
strategies in computer vision/image processing applications.  The [3] demonstrates the 
efficiency of deep learning on simple image recognition while [14] addresses the 3D 
based object recognition problem. The use of conditional Deep Belief and Convolu-
tional Networks for video sequence and human motion synthesis was reported in [15], 
[16]. However, none of the aforementioned approaches adopt an adaptive and fast 
deep learning strategy; therefore they cannot be applied in real-life application scena-
rios where dynamic and abrupt changes of the environment are encountered.   

The proposed methodology assumes that few labeled data are first used to train 
multi-layered deep structures and then the “parameters” of the architecture are dy-
namically updated as new unlabelled data come to adjust the performance of the deep 
structures to the statistical characteristics of the new data. In this way, we are able to 
deal with the trade-off regarding adaptability versus stability. The proposed adaptable 
deep learning architectures are able to perform stable tracking even in complex envi-
ronmental conditions, while retains the adaptable behavior of the tracker. The pro-
posed framework incorporates highly non-linear models but simultaneously integrates 
optimization strategies able to update in real-time the non-linear model parameters 
according in a way to trust, as much as possible, the current changes of the environ-
ment, while providing a minimal degradation of the previous gained experience.  

2 Problem Formulation  

In the deep learning paradigm, a region instead of a single pixel value is used as input 
in object modeling. In particular, we consider the object detection problem as the 
estimation of a multi-valued non-linear function )(⋅h that maps features of the region s  
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[we denote the respective feature map as x(s)] with a probability vector d̂  (an esti-

mate of the actual probability vector d). Vector d̂ assigns a region s to one of the M 
available objects.   

 ))(()(ˆ ss q xhd ≈  (1) 

where subscript q refers to the total parameters’ space of the non-linear model )(⋅h . 
In the following, we assume, for simplicity, a two-class object detection problem. 

Then, the probability vector d̂ becomes scalar )(sd and non-linear model as )(⋅h . 
Extension to an M class object detection problem can be performed straightforwar-
dedly.  

The main difficulty in implementing Eq. (1) is that )(⋅h  is actually unknown. Using 
concepts from functional analysis and assuming some simple restrictions regarding 
the continuity of )(⋅h , we can model the )(⋅h as a finite sum of known functional com-
ponents. 

 )()(ˆ )(NT
Nsd uw ⋅≈ φ  (2a) 

                            with ( ))1(
1

)( −
− ⋅= lT

l
l uWφu  , Nl ,...,2,1=  and )()0( sxu =  (2b) 

In Eq. (2) )(⋅φ is a known vector-valued functional component which should be 
bounded, continuous and monotonically increasing. In our case, we select func-
tion )(⋅φ as the sigmoid function. Vector 1w are coefficients that weigh the non-linear 

transformations u of the input feature map x(s). Matrix 0W  represents the weighted 

coefficients used for the initial transformation of x(s). l indicates the layer of the deep 
representation.    

2.1 Limitations of Conventional Re-training 

Although Eq. (2) is a robust mathematical framework for object modeling using deep 
architectures, the main difficulty results from the efficiency of the algorithm used to 
approximate the unknown coefficients lW with l=1,…,N-1 and Nw . In the following, 

for simplicity we denote all these coefficients as q. Under a supervised framework, a 
least squared steepest descent approach is usually applied to estimate the unknown 
coefficients q. However, in complex non-linear relationships and in case of a consi-
derable number of input variables, there are multiple local minima in the error sur-
face. Thus, it is quite possible the optimization to be trapped into local minima instead 
of global one. Another difficulty is that real-world applications are dynamic 
processes. The probabilistic characteristics of the data change through time while the 
collection effort for the labeled data is enormous and arduous. Furthermore, training a 
multi-layer structure on the use of only labeled data often leads to poor performance 
since adaptability is not permitted. Thus, supervised learning even though deep archi-
tectures are used, is not sufficient to address a stable object tracking for very long 
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time spans, where usually abrupt and high visual changes take place. To address this 
problem, in this paper, we propose the mathematical framework of a fast and adaptive 
deep information fusing learning strategy and apply it to automatically update the 
behaviour of a tracker in a way to trust as much as possible, the current visual 
changes, while minimally degrading the already gained experience. 

3 The Adaptive and Fast Deep Fusion Paradigm   

Traditional classifiers use only labeled data (feature and label pairs) to train. Due to 
the nature of computer vision applications labeled data are difficult to obtain. This is 
due to the fact that it requires a specialist to label the data, which is not practically 
feasible especially under real-time video supervision processes. On the other hand, 
unlabeled data is abundant and can be easily collected. In this paper, we exploit this 
feature by letting the aforementioned deep learning structure to automatically self-
adapt to the current conditions of the environment (dynamic changes of the visual 
scene conditions). Thus, the initially trained deep models can be enhanced, through 
the proposed adaptive strategy learning. 

Let us now formulate the adaptive deep fusion framework. We assume that we 
have an incomplete (approximate) object model )(⋅

inqh  the parameters of which inq  

have been estimated using for example a supervised training phase. Let us now as-
sume that at a time t+T we process the image I(t+T) and extract a set of unlabeled fea-

tures )(su
ix  for regions )( TtIs +⊆ . Then, our target is to refine the object function 

)(⋅inqh from the incomplete model coefficients inq  to a new more accurate (updated) 

model, i.e., )()( ⋅→⋅
adin qq hh , exploiting the unlabeled data )(su

ix . 

In particular, initially, from the pool of unlabeled data U we estimate a very small 
set of samples of high confidence UC ⊂  to belong to the objects of interest. Actually 
set C describes the current knowledge of the environment (see Section 4). Assuming a 
two-class object detection problem, set C can be exclusively divided into two sub-sets 

21 CCC ∪= ; where C1 (C2) refers to the foreground (background) object. 
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Eq. (3) means that after the adaptation the new coefficients inq  should be updated so 

that they trust as much as possible the most confident unlabeled data.  
 We also assume that a small perturbation of the coefficient space is sufficient to 

get an adequate modification of the model function. Therefore, we have that  

 dqqq inad +=  or equivalently (4) 

 l
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where dq , Ndw , ldW  refers to a small perturbation of the coefficients space.  

3.1 The Proposed Adaptive and Fast Retraining Strategy 

Assuming a small perturbation for the coefficients, we can linearize Eq. (3) on the use 
of first order Taylor series expansion. This way, we can linearly express the unknown 

coefficients Ndw and ldW  as a function of the weights before adaptation in
lW  and 

in
Nw .Then, the following theorem can be proven.  

Theorem 1: The constraint of (3) under the assumption of (5) is decomposed to a 

system of linear equations of the form  ⋅= l l
T
l dveca )( Wc , where vector c and vec-

tors, la depends only on the previous known  coefficients, in
lW  and in

Nw ; )(⋅vec is an 

operator that forms a vector from a matrix by stacking up all of the matrix elements. 
 
Vector c expresses the differences between the multi-layer output after and before the 
adaptation. In other words, it provides an estimate of how much the classifier should 
be modified to trust the current visual properties (trust the current conditions). Vectors 

la  are more complex relationships of the previous coefficients inq . However, usual-

ly, a very small set of confident unlabeled data is selected to reduce error accumula-
tion in tracking. Thus, the number of unknowns of the linear system of Theorem 1 is 
greater than the number of equations. To handle this problem, an additional constraint 
is introduced to restrict the solution of (3) on a feasible space. In our case, we assume 

that the norm dq should undergone a minimal modification.  

 dqmin  (6) 

The minimization of Eq. (6) subject to the constraint of Eq. (3) is in fact a convex 
minimization problem subject to linear constraints. Among several applicable tech-
niques, the reduced gradient method has been selected due to its cost effectiveness.  

4 Confident Data Selection 

The purpose of this section is to automatically evaluate the unlabelled data so that the 
most confident ones are detected. This is an independent mechanism compared with 
the deep learning process; it exploits apart from the output of the object model 
(through the deep learning structure) additional criteria coming from moving cohe-
rency. It is worth noting that this process is not a classification framework, but an 
automatic way to train with unlabeled data. Let us form a graph ),( EVG = , the vertic-
es of which corresponds to a set of selected unlabelled samples while the edge ex-
presses a distance confident metric between two samples. In particular, let jie , denote 

the graph edge between the node i and the node j.  Then, graph edges should reflect 
the likelihood of the two samples to belong to the same object.  
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 ( ) ))((ˆ),((ˆ()(),(, jsdisdXNORjsiscorrjie xxxx ⋅=  (7) 

Eq. (7) expresses that the two samples present high likelihood to belong to the same 
objet class if their features present the same properties and the respective outputs of 
the initial (before updating) object model also present consistency. In case, we refer to 
foreground extraction applications, we can enrich (7) with additional constraints. For 
example, the likelihood that the two pixels belong to the foreground object is tempo-
rality constrained by the motion information. Thus, we have  

 ))((),(((,, jsisANDjiejiTe xx ϑϑ⋅=  (8) 

To select the most confident unlabelled data, we partition the graph using spectral 
clustering algorithm. 

5 Real-World Experiments 

The experiments have been conducted using four public datasets; PETS2007 (a confe-
rence room), PETS2006 (a metro station) and two views of SCOVIS [19] depicting 
industrial workflows. Wide overlapped windows of 64x64 pixels have been chosen as 
regions s. Within this area, the MPEG-7 descriptors, such as Scalable Color, Domi-
nant Color, and the Color Structure are used as features, which are fed into a 3-layer 
deep structure to perform tracking, each comprises of 10 neurons. In the rest, we fo-
cus on a foreground / background separation problem. The initial weights was esti-
mated based on a training set of 320, 230, 570 samples for PETS2007, PETS2006 and 
SCOVIS dataset.  

To estimate the most confident unlabelled data, we exploit the motion activity of 
the scene, estimated by Lucas-Kanade optical flow on selecting good features. For 
acceleration, we activate the adaptation strategy only in case where significant motion 
activity is encountered and we skip for the selection data of similar feature properties.  
 

 

 

Fig. 2. Background changes effect. From left to Right: a,b) Two workers’ detection of small 
size on complex background, c) tracking failure due to background change (workers move a car 
equipment), d) background content correction and accurate foreground detection by adaptation. 

Initially, we present the results regarding SCOVIS dataset due to its complexity. 
To demonstrate tracker stability, we apply the proposed algorithm on more than  
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20,000 frames of SCOVIS other than the ones used in the training set. Within this 
long span of test sequence, several complex environmental changes occur which 
present challenges to maintain a stable object tracking. In particular, Fig. 2 presents a 
scene where a slight background change takes place; a car equipment is moving by 
the workers. As is observed, the tracker consistently detects the two workers. Howev-
er, in Fig. 2c, the equipment is erroneously considered part of the tracking objects but 
as the algorithm runs and more unlabelled data are exploited, the proposed deep struc-
ture unlearns the error and sets the equipment as background (Fig. 2d). 
 

  

  

Fig. 3. Occlusions effect. From left to Right: a) The left worker is partially occluded and the 
tracker stably detects this, b) the left worker re-appears, c) again the left worker is occluded, d) 
the two workers overlaps each other, e) both workers are partially occluded.   

  

  

Fig. 4. Tracking effect over long time spans. a) One of the two workers disappears from the 
scene, while the background has changed from Fig. 3. b) Welding fire in the background; track-
ing efficiency under illumination changes. c) Active camera effect; the background has signifi-
cantly changed; stable tracking after several adaptation cycles. d,e) new foreground enters the 
scene, stable tracking after several iterations, through the second worker is missed in Fig 4e.   

Fig. 3 shows five frames of another part of the sequence to demonstrate the effect 
on occlusions. In Fig. 3a, the left worker is partially extracted since he is occluded by 
the rack. Then, he is tracked again (Fig. 3b) while he is again occluded in Fig. 3c.  
Similar performance is observed for the other frames. In Fig. 4a, we observe the sta-
bility of the algorithm as the worker leaves the scene. Fig. 4b show the stability of the 
algorithm for high illumination changes (fire welding). Finally, the last two frame 
presents tracking performance for long time spans where background has significantly 
change and new foreground object enter the scene. After several adaptation cycles 
stable tracking is encountered.  

We then objectively evaluate and compare our scheme with other methods. The 
evaluation was performed using four segments of the SCOVIS sequence of different 
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visual properties, which are merged together to form one sequence. Fig. 5 shows the 
confident error as the ratio of the XOR of the tracked and ground truth mask over 
ground truth. In Fig. 5, we have compared the results with the on-line SVM [10], the 
Semi Boost [8], the Students-t [18] and the Gaussian [17] tracking. For fair compari-
son, we have modified the algorithms to use the same confident unlabelled data. We 
observe that our algorithm better handles the problem of adaptability vs. stability in 
terms of providing well enough generative models which can simultaneously special-
ize well to visual changes. Table 1 shows the average confidence over the four ex-
amined video sequences of our method and the four compared ones.  
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Fig. 5. Comparison of the proposed algorithm with other adaptable tracking methodologies 
over a merged of difference scene segments of SCOVIS dataset. We observe that the proposed 
algorithm is  more stable in terms of adaptability and tracking accuracy.  

Table 1. Average tracking confidence over different datasets and methods 

  Sequences SSL Deep 
Learning 

On Line 
SVM

Semi 
Boost

Student’s
t Distribution

Gaussian 
Tracking 

SCOVIS Cam 32 85.22% 76.28% 80.32% 65.99% 58.02% 
SCOVIS Cam 34 84.64% 74.66% 79.73% 65.23% 57.57% 
PETS2007 88.33% 82.22% 84.44% 79.55% 74.54% 
PETS2006  90.12% 87.33% 89.12% 83.22% 80.18% 

6 Conclusions 

In this paper, we introduced a semi-supervised deep learning algorithm for stable long 
time object tracking in real-time. We exploited perturbation theory with optimization 
strategies to efficiently self-adapt non-linear deep structures in a way to trust as much 
as possible the current visual properties, while simultaneously providing a minimal 
degradation of the already gained experience. We have tested the proposed semi-
supervised deep learning under quite complex video footages, where several occlu-
sions, illumination changes, background / foreground content modification are en-
countered.  
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