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Abstract. In the last few years, substantially different approaches have
been adopted for segmenting and detecting “things” (object categories
that have a well defined shape such as people and cars) and “stuff”
(object categories which have an amorphous spatial extent such as grass
and sky). This paper proposes a framework for scene understanding that
relates both things and stuff by using a novel way of modeling high order
potentials. This representation allows us to enforce labelling consistency
between hypotheses of detected objects (things) and image segments
(stuff) in a single graphical model. We show that an efficient graph-cut
algorithm can be used to perform maximum a posteriori (MAP) inference
in this model. We evaluate our method on the Stanford dataset [1] by
comparing it against state-of-the-art methods for object segmentation
and detection.

1 Introduction

The last decade has seen the development of a number of methods for object
detection, segmentation and scene understanding. These methods can be divided
into two broad categories: methods that attempt to model and detect object cat-
egories that have distinct shape properties such as cars or humans (things), and
methods that seek to model and identify object categories whose internal struc-
ture and spatial support are more heterogeneous such as grass or sky (stuff ). In
the first category, we find that methods based on pictorial structures [2] or gen-
eralized Hough transform [3,4] work best. These representations are appropriate
for capturing shape or structural properties of things, and typically parameterize
the object hypothesis by a bounding box. The second category of methods aim
at segmenting the image into semantically consistent regions [5,6,7] and work
well for stuff, like sky or road.

Recently, researchers have proposed methods to jointly detect things and seg-
ment stuff. Gould et al. [8] proposed a random field model incorporating both
stuff-stuff, thing-stuff, and thing-horizon relationships. However, MAP inference
on their model is computationally expensive and typically takes around five
minutes per image. To overcome this limitation, some authors have proposed in-
ference procedures which iteratively solve different visual tasks (e.g., detection,
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Fig. 1. Our goal is to segment the image into things (e.g., cars, humans, etc) and stuff
(e.g., road, sky, etc) by combining segmentation (bottom) with object detection (top).
Notice that our final ACRF recovers missing detections, and corrects mistaken segment
labels since an object hypothesis and segments are reinforced or suppressed from the
novel higher-order potential. At the top of each column, we show the top 3 probable
bounding boxes, where light and dark boxes denote the confidence ranking from high
to low, and dashed lines are used to indicate false detections. Segmentation results are
shown in each bottom column, where we highlight our instance-based segmentation
in (c)-bottom, where different colors represent different object instances. Notice that
our final ACRF captures the key relationships and recovers many missing detections
and segmentation labels by jointly reinforcing or suppressing each other. Thing-Stuff
relationships are indicated by arrows connecting a bounding box and segments.

segmentation, occlusion reasoning, etc) using the outputs of state-of-the-art de-
tection or segmentation methods as the input feature [9,10,11]. The drawback
of these inference procedures is that different objective functions are optimized
independently without guaranteeing that a joint solution is reached and that
performances are improved at each iteration.

Ladicky et al. [12] introduce a higher-order potential to incorporate thing-
stuff relationships and demonstrate that the information from object detection
can be used to improve the segmentation performance. Their higher-order po-
tential is designed so that an efficient graph-cut algorithm can be used to solve
the MAP inference problem. However, the model of [12] encourages the labels of
the segments to be the same as the label of the detection only when a detection
is encountered. When a detection is not found, the labels of the segments are
encourage to take labels other than the particular label of the detection. There-
fore, the consistency of the object detections and segment labels is only weakly
enforced. Finally, both [12,13] cannot be used to assign segments to object in-
stances (i.e., object instances of same class cannot be distinguished in a labeling
space.). On the contrary, our proposed model can address both issues.

We propose a novel framework for jointly detecting things and segmenting
stuff by using a novel way of modeling high order potentials. Our contributions
are three-fold. Firstly, the model enables to segment objects in expanded label-
ing space where classes as well as instances can be distinguished (see color coded
segments in Fig. 1(c)) by associating segments of thing categories to instance-
specific labels. Secondly, the higher-order potential enforces two types of con-
sistency (i.e., reinforcement and suppression) between an object hypothesis and
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Fig. 2. Our Augmented CRF model (ACRF). In panel (a), we show an image and the
indicator variables corresponding to the different object hypotheses present in it. Notice
there are two person instance hypotheses in this example. The blue indicator is correct
(solid-circle) and the purple indicator is mistaken (dash-circle). In panel (b), the figure
shows the label space of the segmentation variables X and the indicator variables
Y using the color-coded column. The interaction between variables are represented
using edges. Notice that the dash-edges denote the indicator variable is turned off
and suppresses the corresponding label in X, and the solid-edges denote the indicator
variable is turned on and reinforces the corresponding label in X.

segments. As seen in Fig. 1(b), detections typically do not agree with the segmen-
tation results if the detection and segmentation are applied separately. However,
in our model the person segments are reinforced by a strong person detection,
and the mistaken car segments are suppressed by a weak car detection from the
background (Fig. 1(c)). Finally, the special design of the higher-order potential
allows efficient inference which takes a few seconds per image in average using
graph-cut.

Augmented CRF. Our framework extends the basic conditional random field
(CRF) formulations for scene segmentation (i.e., stuff recognition) [14,6] by intro-
ducing the concept of an object instance hypothesis (Fig. 2-Top). Each hypoth-
esis is described by object categorical label l, and 2D bounding box (u, v, h, a),
where (u, v) denotes the 2D location and (h, a) denote the height and aspect
ratio. We refer to our model as the augmented CRF, or ACRF, to highlight the
newly added object hypothesis indicator variables. The indicator variables can
take only two states, 0 or 1, which represents the absence or presence of an ob-
ject instance hypothesis, respectively. The edges between two layers of ACRF
highlight that labelling consistency between object detection and segment labels
is enforced (Fig. 2).

Learning. We formulate the problem of learning these costs as a Structured
SVM (SSVM) [15] learning problem with two types of loss functions related to
the segmentation loss and detection loss, respectively (see Sec. 4 for details).

MAP Inference. Jointly estimating the segmentation variables X and object
indicator variables Y (Fig. 2(c)) is challenging due to the intrinsic difference
of the variable space and the presence of high-order potentials between things
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and stuff. We design an efficient graph-cut-based move making algorithm by
combining state-of-the-art discrete optimization techniques. Our method is based
on the α-expansion move making approach [16], which works by projecting the
energy minimization problem of segmentation variables X into a binary energy
minimization problem to have the same space as the indicator variables Y . Our
MAP inference algorithm takes only a few seconds per image in average as
opposed to five minutes in [8].

Outline of the Paper. The rest of the paper is organized as follows. We de-
scribe the model representation, inference, learning, and implementation details
in Sec. 2, 3, and 4, respectively. Experimental results are given in Sec. 5.

2 Augmented CRF

Object segmentation, like other image labelling problems, is commonly formu-
lated using Conditional Random Fields (CRF). The conventional CRF model is
defined over a set of random variables X = {xi}, i ∈ V where V represents the
set of image elements, which could be pixels, patches, super-pixels, etc (Fig. 2
(b)-Bottom). Each random variable xi is assigned to a label from a discrete label
space L, which for the task of object-category segmentation, is considered the
set L of object categories such as grass, road, car and people.

The energy (or cost) function E(X) of the CRF is the negative logarithm of
the joint posterior distribution of the model and has the following common form:
E(X) = − logP (X |E) = − logφeRF (X |E) +K =

∑
c∈CX ψc(Xc) +K, where E is

the given evidence from the image and any additional information (e.g., object
property lists), φeRF (X |E) takes the form of a higher order CRF model defined
over image elements. φeRF (X |E) can be decomposed into potential ψc which is a
cost function defined over a set of element variables (called a clique) Xc indexed
by c ∈ CX , CX is the set of cliques for image elements, and K is a constant
related to the partition function. The problem of finding the most probable or
maximum a posteriori (MAP) assignment of the CRF model is equivalent to
solving the following discrete optimization problem: X∗ = argminX∈L|V| E(X).

The standard CRF model mostly relies on bottom-up information. It is con-
structed using unary potentials based on local classifiers and smoothness poten-
tials defined over pairs of neighboring pixels. Higher-order potentials such as the
ones used in [6] reinforce labels of groups of image elements to be the same. This
classic representation for object segmentation has led to excellent results for the
stuff object categories, but has failed to replicate the same level of performance
on the thing object categories.

In addition to the variables representing image elements, our model contains a
set of indicator variables (later referred as indicators) Y = {yj ∈ {0, 1}} for every
possible configuration j ∈ Q̂ of an object (Fig. 2 (c)-Top). The configuration set
Q̂ is a Cartesian product of the space of all possible object category labels
L, all possible 2D bounding boxes in the image. For example, a configuration
j ∈ Q̂ specifies that an instance of the object category lj ∈ L exists at location
(uj , vj) with height hj and aspect ratio aj in the image. We also associate each
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object instance with a segmentation mask Vj which is the set of image elements
associated with the object (see technical report [17]).

As mentioned earlier, variables X representing the image elements in the clas-
sical CRF formulation for object segmentation take values for the set of object
categories L only. In contrast, in our framework, these variables take values from
a set of all possible object configuration xi ∈ L = Q̂ (refer as augmented labeling
space). On the one hand, this allows us to obtain segmentations of individual
instances of particular object categories which the classical CRF formulations
are unable to handle. On the other hand, the space of all possible detections Q̂
is clearly huge, which makes learning and inference much more challenging. We
will come back to this issue later.

The joint posterior distribution of the segmentation X and indicator vari-
ables Y can be written as: P (X,Y |E) ∝ φeRF (X |E) φcon(X,Y |E). The potential
function φcon enforces that the segmentation and indicator variables take values
which are consistent with each other (Fig. 2 (b)). The term is formally defined
as: φcon(X,Y |E) = ∏

j∈Q̂ e
Φ(yj,X), Hence, the model energy can be written as:

E(X,Y ) =
∑

c∈CX

ψc(Xc) +
∑

j∈Q̂
Φ(yj , X) . (1)

The first term of the energy function is defined in a manner similar to [6]. We now
describe other terms of the energy function in detail in the following subsection.

Implicit Representation of Inactive Object Configurations. It is easy
to see that the space of all possible configuration space Q̂ is huge, which would
make learning and performing inference in the above model completely infeasible.
However, in real world images, only a few possible configurations are actually
present. Thus, most indicator variables yj , j ∈ Q̂ are inactive (take value 0),
and similarly the label set for the segmentation variables is typically quite small.
We use an object detector that has been trained on achieving high recall rate
to generate the set of plausible object configuration space Q instances that are
likely to be present in any given image. In this way, we reduce the problem into
a manageable size so that the inference algorithm can handle it in practice.

2.1 Relating Object Hypotheses Y and Segments X

The function Φ(yj , X) is a likelihood term that enforces consistency in the as-
signments of the jth indicator variable yj and a set of segmentation variables
X . It is formally defined as:

Φ(yj , X) =

⎧
⎪⎨

⎪⎩

inf if yj �= δj(X)

γlj · |Vj | if yj = δj(X) = 1

0 if yj = δj(X) = 0

, (2)

where j is any possible object configuration in Q, the function δj(X) indicates
whether the indicator j shares a consistent object category label with image
elements in Vj , and is defined as:
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δj(X) =

{
1 if Rj(X) =

|Vj(X)|
|Vj | ≥ R(lj)

0 otherwise
, (3)

where |Vj(X)| = |{i;xi = lj for i ∈ Vj}| is the number of elements in Vj as-
signed with label lj, |Vj | is the total number of elements in Vj , Rj(X) is the
consistency percentage, and R(lj) ∈ [0 1] is an object category-specific consis-
tency threshold. Hence, the first condition in the above function ensures that
yj = 1 if and only if the detection j shares an object label with at least R(lj)
percent of the pixels (or image element) in Vj (i.e. Rj(X) ≥ R(lj)). The remain-
ing conditions in Eq. 2 shows that if the detection is considered correct by our
model, the energy is penalized by γj · |Vj |, where γj is inversely proportional to
the detection confidence.

3 Inference

We now show that the MAP inference problem in our ACRF model can be solved
by minimizing the energy function using an efficient graph cut based expansion
move making algorithm [16].

Standard move making algorithms repeatedly project the energy minimization
problem into a smaller subspace in which a sub-problem is efficiently solvable.
Solving this sub-problem produces a change to the solution (referred to as a
move) which results in a solution having lower or equal energy. The optimal
move leads to the largest possible decrease in the energy.

The expansion move algorithm projects the problem into a Boolean label
sub-problem. In an α-expansion move, every segmentation variable X can either
retain its current label or transit to the label α. One iteration of the algorithm
involves making moves for all α in L successively. Under the assumption that the
projection of the energy is pairwise and submodular, it can be exactly solved
using graph cuts [18,19]. We derive graph construction only for energy terms
related to indicator variables Y , for all other terms, the constructions are intro-
duced in [6,16].

The energy terms related to the instance indicator variables are Φ(yj , X) in
Eq. 2. We observe that, when yj = 1

Φ(yj , X) =

{
inf if δj(X) = 0

γj if δj(X) = 1
≈ γj

1−Rj(X)

1−R(lj)
. (4)

When yj = 0

Φ(yj , X) =

{
inf if δj(X) = 1

0 if δj(X) = 0
≈ γj

Rj(X)

R(lj)
. (5)

Hence, Φ(yj , X) can be approximated by

Φ(yj , X) = γj(yj
1−Rj(X)

1−R(lj)
+ (1− yj)

Rj(X)

R(lj)
) . (6)
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Fig. 3. Comparison between the original function Φ(y,X) (blue line) and the approx-
imated function (red lines) in Eq. 5 and 4. The left panel shows the case when y = 1.
The right panel shows the case when y = 0. Notice the dash blue lines indicate the
sharp transition from finite values to infinite values.

The effect of the approximation in Eq. 5 and 4 are shown in Fig. 3. Instead of
imposing an infinite cost when δ(X) �= y, our approximation imposes an cost
which is linearly proportional to the consistency percentage R(X). When y =
1, the ratio between the consistency percentage and the consistency threshold
R(X)/R(l) are reinforced to be large, which means the more elements in X
labeled as l the better (Fig. 3-Left). On the contrary, When y = 0, the ratio
between the consistency percentage and the consistency threshold R(X)/R(l)
are suppressed to be small, which means the less elements in X labeled as l the
better (Fig. 3-Right). In the next section, we show that the approximated higher-
order potential becomes pair-wise and submodular when applying the standard
transformation function for the α-expansion move.

3.1 α-Expansion Move Energy

We first define the transformation function Tα(xi; ti) for the α-expansion move
which transforms the label of a random variable xi as:

Tα(xi; ti) =

{
α, if ti = 0

xi, if ti = 1
(7)

The corresponding α-expansion move energy for the term in Eq. 6 can be written
as: Φ(yj , Tα(X ;T )) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γj(
yj

1−R(lj)
(1−Rj(X) +

∑
i∈Vj(X)

(1−ti)
|Vj| )

+
1−yj

R(lj)
(
∑

i∈Vj(X)
(ti)
|Vj| )), if α �= lj

γj(
1−yj

R(lj)
(Rj(X) +

∑
i∈Vj\Vj(X)

(1−ti)
|Vj| )

+
yj

1−R(lj)
(
∑

i∈Vj\Vj(X)
(ti)
|Vj| )), if α = lj

(8)

where T = {ti} and Vj \Vj(X) is the remaining set of elements in Vj with labels
(i.e.,{xi �= lj ; i ∈ Vj}). Notice that when α �= lj the function is submodular in



300 B. Kim et al.

(yj , ti), but when α = lj it is submodular in (yj , ti), where yj = 1 − yj is the
negation of yj . After the transformation, the original model energy becomes a
pairwise and submodular function of T , Y , and Y as follows,

E(T, Y, Y ) =
∑

c∈CX

ψc(Tc) +
∑

j∈Q̂1

Φ(yj , T ) +
∑

j∈Q̂2

Φ(yj , T ) . (9)

where Q̂1 = {yj; lj �= α} and Q̂1 = {yj; lj = α}. Therefore, we will construct the
graph using T , partially using indicator yj, and partially using the negation of
indicator yj depending on whether lj = α.

4 Learning

The full CRF model in Eq. 1 contains several terms. In order to balance the
importance of different terms, we introduce a set of linear weights for each term
as follows,

W TΨ(X.Y ) =
∑

c∈C
wcψc(Xc) +

∑

j∈Q1

wu(lj)(Φ(yj , X)) (10)

where wc models weights for unary, pair-wise, and higher-order terms in X, and
wu(l) is the object category specific weight for the consistency potential between
Y and X .

Assume that a set of example images, ground truth segment object category
labels, and ground truth object bounding boxes {In, Xn, Y n}n=1,...,N are given.
The SSVM problem is as follows,

minW,ξ≥0 W
TW + C

∑

n

ξn(X,Y ) (11)

s.t. ξn(X,Y ) = max
X,Y

(�(X,Y ;Xn, Y n) +W TΨ(Xn, Y n)−W TΨ(X,Y )),∀n ,

where W concatenates all the model parameters which are linearly related to
the potentials Ψ(X,Y ); C controls the relative weight of the sum of the violated
terms {ξn(X,Y )} with respect to the regularization term; �(X,Y ;Xn, Y n) is
the loss function that generates large loss when the X or Y is very different from
Xn or Y n. The designed loss functions and the algorithm we used to solve this
optimization problem are described in the technical report [17].

The remaining model parameters are set as follows. The object category-
specific R(l) in Eq. 2 are estimated using the median values observed in training
data.

5 Experiments

We compare our full ACRF model with [1,20,21,12,13] on Stanford Background
(refer as Stanford) dataset [1]. As opposed to other datasets, such as MSRC
[14], Stanford dataset contains a large number of cluttered scenes and “things”
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Back- Motor- Bi-
ground Car Person bi ke Bus Boat Cow Sheep cycle Global Avg.

CRF 77.4 49.1 39.9 15.3 76.3 18.9 65.0 70.4 17.3 79.9 47.7
ACRF 77.1 56.7 61.7 9.3 69.7 36.9 88.1 62.8 64.2 82.0 58.5

(b)(a) Global Accuracy

[20] [35] [34] [30][11] ACRF

76.4 76.9 77.5 80.280.0 82.4

(a) Global Accuracy

[1] [21] [20] [12][13] ACRF

76.4 76.9 77.5 80.280.0 82.0

Fig. 4. Segmentation performance comparison on the Stanford dataset. (a) Global seg-
mentation accuracy of our ACRF model compared with state-of-the-art methods, where
“Global” is the overall percentage of pixels correctly classified. (b) System analysis of
our model. The CRF row shows the results by using only the stuff-stuff relationship
component (first term in Eq. 1) of our ACRF model. The last row shows results of the
full ACRF model. Notice “Avg.” is the average of the percentage over eight foreground
classes and one background class.

Ground truth Segmented labels Segmented instances(a) Original image

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

Re
ca

ll

FPPI
 

 

ACRF (Ours)
LSVM

(b)

Fig. 5. (a) Typical thing segmentation results on the Stanford dataset. Notice that
our model can obtain instance-based segmentations (last column) due to the ability to
reason in the augmented labeling space Q̂. (b) Recall v.s. FPPI curves of our ACRF
and LSVM on Stanford dataset. Our ACRF achieves better recall at different FPPI
values.

object instances per image which makes segmenting and detecting “things” to
particularly challenging tasks.

For the experiments below, we use the same pre-trained LSVM detectors [2]
to obtain a set of object-instance hypotheses for “things” categories (e.g., car,
person, and bike). The object depths are inferred by combining both cues from
the size and the bottom positions of the object bounding boxes similar to [22,10].
The responses from off-the-shelf stuff classifiers are used as the unary stuff po-
tentials in our model. We model different types of pair-wise stuff relationships
using a codebook representation similar to [23].

Stanford Dataset. Stanford dataset [1] contains 715 images from challenging
urban and rural scenes. On top of 8 background (“stuff”) categories, we an-
notate 9 foreground (“things”) object categories - car, person, motorbike, bus,
boat, cow, sheep, bicycle, others. We follow the 5-fold cross-validation scheme
which splits the data into different 572 training and 143 test images. We use
the same STAIR Vision Library [24] used in [1] to obtain the stuff unary po-
tentials. Pixel-wise segmentation performance are shown in Fig. 4. Our ACRF
model outperforms all state-of-the-art methods [20,1,21,12,13] 1 (Fig. 4(a)). A
system analysis of our model (Fig. 4(b)) shows that the performances of most
foreground classes (five out of eight) are significantly improved when additional
components are added on top of the baseline CRF model, while the performance

1 We implement [12,13] by ourselves and evaluate the performance.
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Fig. 6. Typical results on Stanford. Every set of results compare ground truth an-
notation, disjointed model (disjointedly applied object detection and segmentation),
CRF+Det, ACRF, from left to right, respectively. The odd rows show the top K ob-
ject hypotheses (color-coded bounding boxes representing the confidence ranking from
light to dark), where K is the number of recalled objects in the ACRF result. The even
rows show the segmentation results (color-code as shown at the bottom).

of the background classes remain almost unchanged. As a result, the full ACRF
model obtains the best performance for six out of eight foreground classes and a
10.8% average improvement over the baseline model. Typical results are shown
in Fig. 6-Top. We highlight that our model can generate object instance-based
segmentations due to the ability to reason in the augmented labeling space Q̂
(Fig. 5(a)). Our method can predict the numbers of object instances per image
accuractely with an average errors of 0.27.

Another advantage of using our model is the ability to improve detection ac-
curacy. We measured detection performance in terms of Recall v.s. False Positive
Per Image (FPPI) in Fig. 5(b), where detection results from 5-fold validations are
accumulated and shown in one curve. The performance of the proposed model is
compared with the pre-trained LSVM [2]. Our model achieves consistent higher
recall than the LSVM baseline as shown in Fig. 5(b).

6 Conclusion

We have presented a unified CRF-based framework for jointly detecting and seg-
menting “things” and “stuff” categories in natural images. We have shown that
our framework incorporates in a coherent fashion various types of (geometrical
and semantic) contextual relationships by introducing a novel high order poten-
tial model. Our new formulation generalizes previous results based on CRF where
the focus was only to reinforce agreement between detections and segmentations.
We have quantitatively and qualitatively demonstrated that our method: i) pro-
duces better segmentation results than state-of-the art on the Stanford dataset;
ii) improves the recall of object instances on Stanford dataset.
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