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Abstract. We propose a method for minimizing a non-convex function, which
can be split up into a sum of simple functions. The key idea of the method is
the approximation of the convex envelopes of the simple functions, which leads
to a convex approximation of the original function. A solution is obtained by
minimizing this convex approximation. Cost functions, which fulfill such a split-
ting property are ubiquitous in computer vision, therefore we explain the method
based on such a problem, namely the non-convex problem of binary image seg-
mentation based on Euler’s Elastica.
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1 Introduction

Many problems in computer vision such as image restoration, image segmentation,
stereo and motion can be formulated as energy minimization problems. The energy
functions to be minimized can be developed in different settings. In a MRF setting, the
energy can be derived from the maximum a posteriori (MAP) formulation on a discrete
graph with a node set representing the image pixels, and an edge set defining the pixel
interactions to measure smoothness. In a variational setting, images are interpreted as
continuous functions, and differential operators are used to measure smoothness of the
functions. Although, both methods are very different in their theoretical background,
they have in common that in the end one has to solve a numerical optimization prob-
lem. Hence, their success largely depends on the ability of the underlying numerical
algorithm to find a solution close to the global optimizer.

Energies that can be solved globally are rare in computer vision. If the label set is
binary and the pairwise terms are submodular, the energies can be minimized glob-
ally by computing a minimum cut [6,12] on the graph. The equivalent formulation in
a variational setting is given by the total variation. See [3] for detailed relationships.
Multi-label problems can not be solved globally in general. A remarkable exception
is the case where the label set is ordered linearly and the pairwise terms are convex
functions. It has been shown in [8] that this class of problems can be solved exactly by
computing a minimum cut on an extended graph in higher dimensions. In a variational
setting, it has been shown that the same class of energies can be minimized globally by
solving a minimal surface problem in higher dimensions [16].
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Recently, higher order terms have attracted a lot of attention in the MRF community,
because of their ability to model complex interactions between image pixels. Minimiz-
ing higher order terms is even harder than minimizing pairwise terms. One possibility
is to apply reduction schemes such as the one presented in [9] to transform the higher
order terms into pairwise terms and to subsequently make use of certain relaxation
techniques such as QPBO [7,17,10] to solve the transformed energy. Although, the
transformed energy is in general non-submodular, QPBO can still compute a partially
optimal solution. Another possibility is to solve the higher order problem directly [10].
It is also possible to use linear programming (LP) relaxation techniques which can turn
the problem into a tractable linear programming problem. This approach has been orig-
inally presented in [19] and has been extended and improved over the years in various
ways e.g. [18,22,14].

In this paper, we propose a method for minimizing general non-convex energies,
and we will discuss it based on the task of binary image segmentation with length and
curvature regularization. Such curvature-based models have attained considerable at-
tention in recent years, due to psychophysical experiments on contour completion [11].
These experiments pointed out, that curvature plays an important role in human percep-
tion. Thus, there is an increasing interest to incorporate curvature information as a prior
to various imaging problems. Unfortunately, such curvature depending functionals are
hard to minimize, due to their strong non-convexity.

In principal, any non-convex energy could be minimized by computing its convex
envelope and by minimizing the convex envelope instead. However, computing the con-
vex envelope is not tractable for most problems. Therefore, we propose to minimize an
approximated convex envelope, which is computed by splitting the energy into combi-
natorially tractable parts, and then globally minimize the sum of the convex envelopes
of those parts. Note, that the main idea of splitting the problem into appropriate sub-
problems is similar to the dual decomposition technique, which was used in [13] to
address discrete MRF-based optimization problems in computer vision.

The paper is organized as follows. In Section 2 we will describe the task of binary
image segmentation with length and curvature regularization, and we will show how to
split up the according cost function into a set of simple functions. In Section 3 we will
show how to minimize such type of functions. In Section 4 we will present some results
and in the last section we will finally give a short conclusion.

2 Binary Image Segmentation with Curvature Regularity

The task of binary image segmentation is to divide the domainΩ ⊂ R
2 of a given image

I : Ω → R into foreground R and background Ω \R by minimizing the functional

f(R) = λ

∫

R

d(x)dx +

∫

∂R

(α+ β |κ∂R(x)|p) dH1(x) , (1)

where d(x) = dΩ(x)− dΩ\R(x). dΩ and dΩ\R are functions, that depend on the input
image I , and κ∂R is the curvature of the boundary of R. Thus, the first integral in (1)
represents the data-term weighted by λ. The second integral is Mumford’s elastica curve
model [15], where α weights the boundary length and β the curvature.
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In what follows we will discretize f(R) and split it into a finite sum of local func-
tions fi(R), 1 � i � m. Therefore, we have to divide our image domain Ω into a
set of non-overlapping basic regions, called a cell-complex. Next, we define m local
neighborhoods Ni, that are sets of connected basic regions and satisfy

⋃m
i=1 Ni = Ω.

In order to discretize the energy f(R) we choose an arbitrary planar graph G =
(V,E) covering Ω with a vertex-set V and an edge-set E. The face-set F of the graph
G defines the set of basic regions. Hence, the discrete version of (1) can be defined as

fD(R) = λ

|F |∑
k=1

Rkdk +

|V |∑
j=1

(α lj(πj(R)) + β κj(πj(R))) , (2)

where R ∈ {0, 1}|F | and each element Rk indicates if the basic region Fk is part of the
foreground or not. d ∈ R

|F | contains the data-term for each basic region, and lj and
κj are functions calculating the length and curvature costs at each vertex Vj . Note, that
for calculating the regularization costs for Vj we only need those elements of R, that
correspond to the adjacent regions of Vj . Therefore, we select the according elements
of R with a linear operator πj . Now, we define for each neighborhood Ni a function

fi(R) = λ

|F |∑
k=1

χNi(Fk) cik Rk dk (3)

+

|V |∑
j=1

χN̂i
(Vj) ĉij (α lj(πj(R)) + β κj(πj(R))) ,

where N̂i is the set of interior vertices of the neighborhood Ni, cik and ĉij are positive
normalization coefficients satisfying

m∑
i=1

χNi(Fk) cik =

m∑
i=1

χN̂i
(Vj) ĉij = 1 . (4)

As a result we can write (2) as a sum of simple functions fi(R).

fD(R) =

m∑
i=1

fi(R) (5)

Now we explain how the functions lj and κj calculate the regularization costs for
the vertex Vj by an example. Consider the situation sketched in Fig. 1(a). Here, the
gray regions belong to the foreground and the white regions belong to the background.
Thus, the node V1 belongs to the boundary of R with length cost l1 (R1, . . . , R5) =
1
2 (|e1|+ |e4|) , where |e| is the length of the edge e. The division by two is necessary
to get the correct length, when summing up over all vertices.

To measure the curvature we use a discrete formulation introduced by Bruckstein et
al. [2]. Hence, in the case at hand, shown in Fig. 1(a), the curvature cost is

κ1 (R1, . . . , R5) =
φp
e1,e4

min{|e1|, |e4|}p−1
, (6)

where φe1,e4 is the angle between e1 and e4.
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Fig. 1. (a) and (b) show two foreground/background configurations for the adjacent regions of a
vertex V1. Such configurations are used to assign regularization costs to the vertex V1. (a) shows
a common boundary and (b) a situation where two boundary segments meet in a single vertex.
(c) and (d) illustrate possible neighborhoods Ni (blue regions) and their corresponding interior
vertices N̂i (marked by purple dots), for 4- and 8-connectivity. These neighborhoods are defined
for each pixel in the image, where a single pixel is indicated by the dark blue region.

The regularization costs are precomputed for certain configurations of Rk within a
neighborhoodNi. Note that in the case where all adjacent regions of a vertex belong to
either foreground or background the regularization cost vanishes. Configurations where
different boundary segments meet at a single vertex (compare Fig. 1(b)) can be treated
separately, i.e. we can calculate reasonable regularization cost, or we can also exclude
such configurations by setting the costs to infinity. Thus, with our approach we can
avoid problems with self-intersecting boundaries, present in the approach of Schoene-
mann et al. [20,21]. Furthermore, we can calculate the correct boundary cost for each
configuration, including those, where boundaries meet at a single vertex. Such configu-
rations are e.g. incorrectly handled in the 3-clique strategy presented by El-Zehiry and
Grady [5].

Finally, Fig. 1(c) and 1(d) show some possibilities to define the cell-complex and the
according neighborhoods.

3 Approximate Envelope Minimization

We are given the following minimization problem

min
x∈X

f(x), with f(x) =

m∑
i=1

(
f̃Ai ◦ πAi

)
(x) , (7)

where X is the n dimensional Euclidean space R
n and f : X → R is a non-convex

function. Moreover, the function f(x) fulfills a certain splitting property, which allows
us to rewrite it as the sum of functions fAi(x) := (f̃i ◦ πAi)(x). Here f̃Ai : XAi →
R is a function defined on an appropriate subspace XAi ⊆ X . Each subspace XAi

is implicitly defined according to an ordered index set Ai = {k1, . . . , klAi
} via the

mapping πAi : X → XAi ,

πAi(x) :=
(
x[k1], . . . , x[klAi

]
)T

, (8)
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where x[t] is the tth element of x. Furthermore, we define the following pseudo re-
projection π+

Ai
: XAi → X

π+
Ai
(x) := y ∈ X, with y[s] =

{
x[r] if s ∈ Ai and r = |{k � s | k ∈ Ai}|
0 else ,

(9)

where |A| denotes the cardinality of the set A, and we assume that

X =
{
π+
Ai
(xAi) | xAi ∈ XAi , 1 � i � m

}
. (10)

It is essential for our approach that the domain of a single function f̃Ai is much smaller
than the domain of the function f . Further, note that the convex conjugate f∗ and bi-
conjugate f∗∗ are by definition convex functions since they are written through a point-
wise supremum over affine functions. Thus, it is clear that the minimizer of the non-
convex optimization problem (7) can be computed by minimizing the convex envelope
f∗∗ instead. Unfortunately, computing f∗∗ is intractable in many situations and hence
there is not much hope to find a closed form expression for f∗∗. However, there is hope
that we can compute a weaker approximation to the true convex envelope by allowing
for some simplifications. The key idea is presented in Proposition 1.

Proposition 1. Given the definitions above, the following inequality holds

f∗∗(x) =

(
m∑
i=1

f̃Ai ◦ πAi

)∗∗
(x) �

m∑
i=1

(
f̃∗∗
Ai

◦ πAi

)
(x) =: f̄(x) . (11)

Proof. See supplementary material. ��
Proposition 1 basically shows, that a weaker (less tight) envelope f̄(x) is obtained by
computing the sum of the bi-conjugate functions instead of the bi-conjugate of the sum.
On the one hand, the expected advantage of the former is that the functions f̃∗∗

Ai
might

be much easier to compute than (
∑m

i=1 fAi)
∗∗. On the other hand, the quality of the

relaxation depends on the splitting of f .

3.1 The Approximate Convex Envelope

As indicated by the task stated in Section 2, many problems in computer vision suggest
a natural splitting of the energy, which is mainly motivated by the fact that energies
are usually modeled by defining the interaction between certain elements in a local
neighborhood. Thus each function f̃Ai in (7) can be defined to model the interaction in
one specific neighborhood.

Moreover, based on a given splitting one can improve the relaxation by grouping
certain functions fAi together to a new function fGj , i.e. summing up the according
functions f̃Ai . Note, that this grouping strategy improves the relaxation, but simultane-
ously increases the combinatorial complexity. In the following, we will work with an
approximation to the true convex envelope given by

f̂(x) =
m̂∑
j=1

(
f̃∗∗
Gj

◦ πGj

)
(x) . (12)
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By using Proposition 1, one can easily verify, that the following inequalities hold for all
x ∈ X .

f∗∗(x) � f̂(x) � f̄(x) (13)

Hence, instead of minimizing f or f∗∗, we propose to minimize f̂ . The resulting mini-
mization problem can be rewritten as the following saddle-point problem.

min
x∈X

f̂(x) = min
x

m̂∑
j=1

f̃∗∗
Gj

(
πGj (x)

)
= min

x
max

y

m̂∑
j=1

〈
πGj (x), yGj

〉− f̃∗
Gj

(yGj ) , (14)

where y = (yG1 , . . . , yGm̂
)
T and yGj ∈ X∗

Gj
. In order to solve (14), it is crucial to

handle the f̃∗
Gj

functions, which can be done in various ways. For simplicity we will
use a polyhedral approximation which is explained in Section 3.2.

3.2 Polyhedral Approximations

In many interesting cases we do not expect that we will find an explicit formula for
the conjugate functions f̃∗

Gj
. Hence, we need to find an implicit representation. The

key comes through the following inequality, which is provided by the definition of the
convex conjugate. Given a function g and its convex conjugate g∗, one has for any x,
y ∈ X

g∗(y) � 〈x, y〉 − g(x) . (15)

By definition equality is reached by taking the supremum over x of the right hand side.
Let us now interpret the above inequality in terms of the epigraphs of g and g∗. Let
(x, s) be a point in the epigraph of g. Then one has for any (y, t) in the epigraph of g∗

t � 〈x, y〉 − s . (16)

In other words, we can refine a polyhedral approximation of g∗ by successively sam-
pling points from the epigraph of g, and by adding inequality constraints as denoted
in (16). Clearly, the largest (and hence most successful) constraints will be generated
by taking points on the graph of g, i.e. points (x, g(x)). The idea is now to obtain an
approximation of g∗ by computing a finite number of points {(xi, gi), 1 � i � k} on
the graph of g. As shown above, we can generate a set of constraints of the form

t � 〈xi, y〉 − gi for 1 � i � k . (17)

Of course, the more constraints we add, the better the approximation will be. Note, that
in the case of discrete multi-labeling problems the domain X is already finite. Thus, by
taking all points in X as sampling points, we obtain an exact representation.

3.3 Linear Programming Formulation

Now we propose a relaxed version of the saddle-point problem described in (14) by us-
ing polyhedral approximations according to (17). By approximating each f̃∗

Gj
(x) in (14)

one obtains the following relaxation
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min
x

max
y, t

n∑
j=1

〈
πGj (x), yGj

〉− tGj (18)

s.t. tGj �
〈
siGj

, yGj

〉
− fGj(s

i
Gj

), for 1 � i � kGj , 1 � j � n ,

where t = (t1, . . . tn)
T, and siGj

denotes the ith sampling position of the group Gj .
By introducing Lagrange multipliers μ(siGj

) for each constraint we can identify the tGj

variables as Lagrange multipliers for
∑kGj

i=1 μ(s
i
Gj

) = 1. Thus, the vector μj , which
contains all elements of μ, that belong to the jth group, has to be on the standard
kGj -dimensional unit simplex SkGj

. In a final step, we identify the yGj variables as

Lagrange multipliers for πGj (x) =
∑kGj

i=1 s
i
Gj

μ(siGj
) and rewrite (18) as

min
x,μ

n∑
j=1

kj∑
i=1

fGj (s
i
Gj

)μ(siGj
) (19)

s.t. μj ∈ SkGj
, πGj (x) =

kGj∑
i=1

siGj
μ(siGj

) , 1 � j � n .

By taking a closer look at (19), one can see, that the solution x is obtained as a collection
of convex combinations of sampling positions within the groups. Furthermore, due to
the definition of πGj (x) these convex combinations have to coincide with the solutions
of neighboring groups for elements, where their domains intersect.

The LP in (19) shows an interesting connection to the Shlezinger relaxation [19],
which had been generalized by Werner et al. [23]. The only differences are the so called
marginalization constraints obtained by discretizing the label space, which has not been
done in the proposed method.

3.4 Primal-Dual Algorithm

In this section we describe how to solve the saddle-point problem (14) via the primal-
dual approach described by Chambolle and Pock [4]. Therefore, it will be convenient
to introduce a linear assembling operator A, such that Ay =

∑m̂
j=1 π

+
Gj

(yGj ). By using
this operator, we can rewrite (14) as

min
x

max
y

〈Ay, x〉 −
m̂∑
j=1

f∗
Gj

(yGj ) . (20)

A numerical algorithm to solve the above saddle-point problem is given by
⎧⎪⎪⎨
⎪⎪⎩

xk+1=(xk − τAyk)

x̄k+1 = xk+1 + θ(xk+1 − xk)

yk+1
Gj

=(id+σ∂f∗
Gj

)−1
(
ykGj

+ σ
[
A∗x̄k+1

]
j

)
∀ 1 � j � m̂ ,

(21)

where τ and σ are chosen such that τσ‖A‖2 < 1 and θ ∈ [0, 1].
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Thus, the only interesting thing to show is the calculation of the resolvent operator
(I + σ∂f∗

Gj
)−1(z), which is defined as the solution of

argmin
w

‖w − z‖2
2σ

+ f∗
Gj

(w) . (22)

By using the polyhedral approximation (17), we can rewrite (22) as

min
w,t

‖w − z‖2
2σ

+ t (23)

s.t.
〈
siGj

, w
〉
− fGj(s

i
Gj

)− t � 0 , ∀ 1 � i � kGj .

Introducing Lagrange multipliers μ = (μ(s1Gj
), . . . , μ(s

kGj

Gj
))T for the inequality con-

straints, we arrive at

min
w,t

max
μ�0

‖w − z‖2
2σ

+ t+

kGj∑
i=1

(〈
siGj

, w
〉
− fGj (s

i
Gj

)− t
)
μ(siGj

) . (24)

Thus, minimizers in w are characterized by

w = z − σ

kGj∑
i=1

siGj
μ(siGj

) . (25)

By substituting this relation into the proximal map (24), we can get rid of w, and we

see that t itself is just a Lagrange multiplier for
∑kGj

i=1 μ(s
i
Gj

) = 1, i.e. μ has to be in
the standard kGj -dimensional unit simplex SkGj

. Hence we obtain

min
μ∈SkGj

σ

2

∥∥∥∥∥∥
kGj∑
i=1

siGj
μ(siGj

)− z

σ

∥∥∥∥∥∥

2

+

kGj∑
i=1

fGj (s
i
Gj

) μ(siGj
) , (26)

which is a simplex constrained quadratic program, that can be solved e.g. with the
FISTA algorithm presented by Beck and Teboulle [1].

Compared to the minimization strategy presented in Section 3.3, the quadratic pro-
gram is defined point-wise, thus the μ variables need not to be saved for the entire set
of neighborhoods, yielding a memory-efficient algorithm.

4 Results

In this section we present some experimental results for our example task of binary
image segmentation based on Mumford’s elastica curve model [15].

Here the data term in (2) is computed as d = (I − μf )
2 − (I − μb)

2, where I is
the input image and μf,b are the mean values of the foreground and background. We set
λ = 1 and evaluate the results for different α and β configurations (compare Fig. 2).
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(a) Input (b) α = 0.5, β = 0 (c) α = 1, β = 0 (d) α = 2, β = 0

(e) α = 0.1, β = 0.5 (f) α = 0.1, β = 2 (g) α = 0.1, β = 4 (h) α = 0.1, β = 8

Fig. 2. Segmentation results for the Don Quixote image by Pablo Picasso (256 × 216 px) us-
ing a cell-complex, that corresponds to a 8-connected graph in graph cut frameworks (compare
Fig. 1(d)). We set λ = 1 and show results for different α and β values. The processing time is
between 1 and 5 minutes, depending on the strength of the regularization.

As expected the segmentation results with curvature regularity (β 
= 0) favor certain
directions, and lead to polygonal structures. Moreover, one can see that the curvature
regularization tends to preserve elongated structures, whereas the length regularization
tries to remove them.

5 Conclusion

In this paper we proposed a novel approach for minimizing non-convex functions, that
fulfill a certain splitting property. As such functions are ubiquitous in computer vi-
sion, the proposed approach is applicable to a broad class of problems. Moreover, we
demonstrated the general applicability of the approach on the task of binary image seg-
mentation based on Mumford’s elastica curve model [15].
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