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Abstract. We proposed a computational visual saliency modeling tech-
nique. The proposed technique makes use of a color co-occurrence his-
togram (CCH) that captures not only “how many” but also “where and
how” image pixels are composed into a visually perceivable image. Hence
the CCH encodes image saliency information that is usually perceived as
the discontinuity between an image region or object and its surrounding.
The proposed technique has a number of distinctive characteristics: It is
fast, discriminative, tolerant to image scale variation, and involves min-
imal parameter tuning. Experiments over benchmarking datasets show
that it predicts fixational eye tracking points accurately and a superior
AUC of 71.25 is obtained.

Keywords: Attention, saliency modeling, co-occurrence histogram.

1 Introduction

We are surrounded by a tremendous amount of visual information that our visual
system cannot process completely [1]. Visual saliency, which describes the state
by which an object stands out from its surrounding, provides a mechanism to
prioritize the processing of the overloaded visual information. Computational
modeling of visual saliency aims to build a saliency map that represents the
saliency of the corresponding scene. It has been studied for years and many
saliency modeling techniques have been reported in the literature [14]. In recent
days, it has drawn even more attention thanks to the advance of eye-tracking
devices by which fixational eye tracking points can be recorded while a subject
is freely viewing a visual scene or image.

The reported saliency modeling techniques can be broadly classified into two
categories depending on whether learning is involved. For non-learning based
techniques, Itti and Koch’s model [2,3] is probably one of the earliest efforts
that computes saliency based on the difference of filter responses within different
color channels at different image scales. In addition, some techniques compute
saliency based on the complexity of image regions that is captured by image
variance or image entropy [4]. Other techniques have also been reported that
make use of image difference [5], context features [18], spectral residual [6], image
segmentation [19], image color [23,24], etc.
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Fig. 1. Saliency from the color co-occurrence histogram (CCH): For the sample images
in the first row, the second and the third rows show the corresponding CCH based
saliency maps and fixation maps, respectively

The learning-based techniques first learn a set of saliency features from either
the image under study or a pool of natural images. The saliency of an image
region is then computed based on the similarity between the learned features
and that of the image region under study. Bruce et al. have proposed to com-
pute saliency based on maximum information sampling where saliency features
are learned through independent component analysis (ICA) [7,8]. Zhang et al.
propose to compute the image saliency based on the learned image statistics
[9]. In recent years, some techniques have also been proposed to directly learn
from the fixational eye tracking data [11,12,17]. Other techniques have also been
reported that make use of graph topography [10], self-resemblance [13], etc.

Though many saliency modeling techniques have been proposed, most still
have certain limitations. First, most techniques [2,3,4,5,6] are sensitive to the
image scale variation due to the used image features or filters. Second, non-
learning based methods often rely on either local features [4,5,19] or global fea-
tures [6] but saliency modeling often requires the combination of the two. Take
image complexity or difference based techniques [4,5] as examples. High image
complexity or difference could have little correlation with high saliency where
a small and homogenous image region may have higher saliency than a large
image region with complex/dynamic but regular texture. Third, most learning
based techniques are robust but often have poor discrimination between salient
and unsalient image regions. Last but not least, most reported saliency modeling
technique are a bit slow whereas saliency computation as a preprocessing step
for most applications needs to be accomplished as fast as possible.
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We present a saliency modeling technique that uses a color co-occurrence his-
togram (CCH) to capture certain spatial information. Different histograms have
been proposed to capture the spatial information. One example is color correlo-
grams [22,15] that captures the probability of color pairs at different distances.
Annular color histogram [16] has been proposed which captures the occurrence
of pixels within different annular areas. Chang et al., [25] also use the color co-
occurrence for the purpose of object recognition. The CCH based saliency model
has several desirable features:

• It is tolerant to image scale variation;
• It involves minimal parameter tuning and is very easy to implement;
• It is ultra-fast and has potential for real-time applications;
• It predicts the human fixations accurately as illustrated in Figure 1.

2 Proposed Saliency Modeling Method

This section describes the proposed saliency modeling technique. Given an im-
age, a CCH is first built for each color channel. The image saliency is then
computed from an inverted CCH. Finally, an overall saliency map is computed
by averaging the saliency of different color channels.

2.1 Color Co-Occurrence Histograms

The traditional 1-dimensional histogram records the image color/intensity dis-
tribution. It just counts the occurrence that is defined by “how many” pixels at
each color/intensity level. On the other hand, the spatial information, i.e. “where
and how” pixels are composed together is completely ignored. On the other hand,
spatial distribution of image pixels is important to the perception of an image.
We show that a two-dimensional CCH captures certain spatial information that
can be used to compute the image saliency properly.

Consider an image X = {x(i, j)|1 ≤ i ≤ h, 1 ≤ j ≤ w} where h and w denote
the image height and image width. Let M = {x1, x2, · · · , xk} be a sorted set of
k distinct image values of X . A CCH of X can be expressed as follows:

Hc = {hc(xm, xn)|xm, xn ∈ M} (1)

where hc(xm, xn) denotes co-occurrence of xn in the neighborhood of xm. The
CCH ofX can be built as follows. For each pixel at (i, j) with value xm, h(xm, xn)
is increased by one if one pixel within its neighborhood (centered at (i, j) with
a radius of z) has a value xn. The neighborhood size z can be set between 1
and 3 which has little effects on the CCH construction and the ensuing saliency
computation to be discussed in the ensuing sections.

The CCH encodes the image saliency information as illustrated in Figure 2.
In particular, most color pairs in homogenous image regions are captured by
CCH elements around the diagonal which encode image occurrence information.
High-contrast color pairs are captured by CCH elements far off the diagonal
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(a) (b)

Fig. 2. A sample CCH: For the first sample image in Figure 1, Figure 2a shows the
CCH of the Q channel image in the YIQ color space; Figure 2b shows the 100th row
of the CCH as shown in Figure 2a

that encode image co-occurrence information. Salient image pixels are typically
captured by two types of low-frequency CCH elements. They could be high-
contrast pixel pairs such as those lying around the red bell pepper boundary
which are captured by CCH elements far off the CCH diagonal. They could also
be low-contrast pixel pairs such as those lying at the red bell pepper center which
are captured by CCH elements around the CCH diagonal.

The CCH has two desirable characteristics. First, the CCH varies little when
it is computed at far different image scales. This explains why the CCH-based
saliency is tolerant to the image scale variation. Second, the CCH varies little
when the neighborhood size z is different. This explains why the CCH based
saliency modeling involves minimal parameter tuning (as z is the only parameter
used in our proposed technique).

2.2 Saliency Modeling from Image Histograms

The CCH is first normalized as follows before the saliency computation:

Hc =
Hc∑xu

xm=xl

∑xu
xn=xl

hc(xm,xn) (2)

where xl and xu denote the lower and upper image value bounds within the
input image. An inverted CCH can then be derived as follows to facilitate the
ensuing saliency computation:

H̃c = Ha −Hc (3)

where Ha is defined by the average of Hc non-zero elements as follows:

Ha = 1
∑

xu
xm=xl

∑
xu
xn=xl

NZ

(
hc(xm,xn)

)
(4)

where NZ(x) denotes a binary non-zero function which returns 1 if x > 0 and
0 otherwise. The denominators therefore give the number of positive elements
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Fig. 3. The CCH captures image saliency information: For the two synthetic images in
Figures 2a and 2d, Figures 2b and 2e show the CCH based image saliency and Figures
2c and 2f show the corresponding saliency maps, respectively

within the CCH. The setting of Ha is based on the rationale that the image
values that are more common than the average should not be treated as salient.
Note that many H̃c elements capturing high-frequency color/intensity pairs (such
as those within large and homogeneous image regions) are negative. The H̃c

elements with a negative value is simply trimmed to 0 in our system.
The image saliency at (i, j) can then be computed from H̃c as follows:

Sc(i, j) =
∑i+z

p=i−z

∑j+z
q=j−z h̃c

(
x(i, j), x(p, q)

)
(5)

where z denotes the size of the neighborhood which is the same as the one that
is used for the CCH construction. The term h̃c

(
x(i, j), x(p, q)

)
denotes a H̃c

element at [x(i, j), x(p, q)] where x(p, q) and x(i, j) denote values of image pixels
at (p, q) and (i, j), respectively.

CCHs capture both ”unexpected” and ”discontunity” aspects of the image
saliency as illustrated in Figure 3. In particular, two synthetic images in Figures
3a and 3d both contain a pair of squares and a pair of circles within the two
squares. The value of the grey areas is set to 128 and that of the two circles as
well as the black and white background is 0 and 255 so that the contrast between
the two circles and the grey areas is the same as that between the grey areas
and the black and white background. Figures 3b and 3e show the CCH based
saliency and Figures 3c and 3f show the corresponding saliency maps.

As Figures 3b and 3e show, the CCH captures the image saliency properly
where the boundaries of circles and grey squares all have high saliency. More im-
portantly, the boundary with a lower-frequency discontunity pattern has higher
saliency. Take the synthetic image in Figure 3a as an example. The boundary



326 S. Lu and J.-H. Lim

(a) (b) (c)

Fig. 4. CCH based saliency: For the sample image in Figure 4a, Figures 4b and 4c
show the CCH based saliency and the corresponding saliency map, respectively

of the white circle has higher saliency than that of the black circle and the grey
squares, though the image contrast along all circle and square boundaries is the
same. The higher saliency is because the frequency of the discontunity pattern
along the white circle (i.e., white versus grey) is lower than that along both the
black circle and the grey squares (i.e., black versus grey).

2.3 Saliency Map Construction

The CCH based saliency can be determined based on the saliency of differ-
ent color channels. We compute saliency within the YIQ color space that takes
advantage of human color-response characteristics. The overall saliency map is
determined by averaging the saliency of different color channels as follows:

Sc(i, j) = G(
∑N

c=1 Sc(i, j)) (6)

where N is the number of color channels (Y, I, and Q channels) used and G(·)
denotes a standard Gaussian smoothing function.

Figure 4 illustrates the CCH based image saliency. For the sample image
shown in Figure 4a, Figure 4b shows the CCH based saliency as determined
in Equation 6 (before smoothing). Figure 4c shows the corresponding saliency
map after a Gaussian smoothing. As Figure 4b shows, the proposed technique
captures the image saliency properly.

3 Experimental Results

This section presents experimental results including dataset description, quali-
tative results, quantitative results, and discussion, respectively.

3.1 Datasets

We evaluate the proposed technique by using the AIM dataset [7] and the dataset
in [6]. The AIM dataset is created from eye tracking experiments performed



Saliency Modeling from Image Histograms 327

Fig. 5. CCH based saliency varies little when image scale changes: For every two rows,
the first column show an image and the corresponding fixation map. The rest columns
show saliency maps by our proposed method and four methods in [18], [6], [8] and [9],
respectively. The two saliency maps in each column for each image are computed when
the image is resized to 1.0 and 0.25 (upper and lower) of the original scale.

while participants are freely viewing 120 static images. For each image, fixa-
tional points of 20 subjects are collected and a fixational map is determined by
smoothing the collected fixational points. The dataset in [6] consists of 62 static
images and the corresponding hit maps as illustrated in the second column in
Figure 6, which are determined by averaging the salient image regions that are
manually labeled by 4 subjects.

3.2 Qualitative Results

We first qualitatively compare our method with four state-of-the-art techniques
[6,8,9,18]. The four comparison techniques are evaluated based on their imple-
mentations that can be downloaded from the authors’ websites. For Gaussian
smoothing of the computed saliency, a standard deviation at 0.04 of the image
width is uniformly set for all evaluated methods. Figure 5 shows several images
within the AIM dataset and the corresponding saliency maps. For each image
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Fig. 6. CCH based saliency varies little with the neighborhood size z: For the first
image in each row, the second-fifth columns show the corresponding hit map and the
CCH based saliency maps when z is set to 2, 4, and 6, respectively

at the top-left of every two rows, the map directly below the image is derived
from the fixation points recorded by eye trackers. The saliency maps within the
columns 2-6 are computed by our proposed method (z is set to 2) and the four
comparison methods [18,6,8,9], respectively. Besides, the saliency maps from top
to bottom within each of columns 2-6 are computed when the image is at 1.0
and 0.25 of the original image scale, respectively.

The CCH based saliency has several distinct characteristics. First, it is tolerant
to the image scale variation as illustrated in Figure 5 where the saliency com-
puted at two different image scales is very close to each other. But the saliency
by [6,8,9] is quite different at different scales. The saliency in [18] is completely
the same at the two scales because it is actually computed and averaged over
four different scales in the authors’ implementation. The scale-tolerance can be
explained by the CCH which is tolerant to the image scale variation.

The CCH based saliency is more discriminative as shown Figure 5. In par-
ticular, the saliency by the two learning based techniques in the fifth and sixth
columns is severely “blurred” where unfixed image regions also have fair saliency.
This could be due to the learned saliency features some of which exist within
both salient and unsalient image regions. In addition, all the four comparison
methods are more or less sensitive to high dynamic texture such as trees as
shown in the saliency maps of the second and third images in Figure 5.

The proposed technique also involves minimal parameter tuning where the
only parameter is the neighborhood size z. But the variation of z has little effect
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Fig. 7. (a) AUCs of the proposed technique and three comparison techniques when
image scale changes from 0.1 to 1.0 of the original scale (the neighborhood size is fixed
at 2); (b) AUCs of the proposed technique when the neighborhood size z changes from
1 to 10 (for images at 1, 0.5, and 0.25 of the original scale)

on the CCH and so the computed saliency. This can be illustrated in Figure
6 where for the first image from the dataset in [6] in each row, the graphs in
columns 2-5 show the corresponding hit map and the CCH based saliency maps
when z is set to 2, 4, and 6, respectively. As Figure 6 shows, the CCH based
saliency varies little when z is set to different values.

3.3 Quantitative Results

Quantitative experiments have also been conducted based on the AIM dataset
where the performance is measured based on the receiver operating characteris-
tic (ROC). For each image in the AIM dataset, multiple thresholds are selected
to convert the CCH based saliency map and the corresponding fixational map
into multiple pairs of binary maps. True positives (TP) and false positives (FP)
are then determined. A ROC curve and the area under the ROC curve (AUC)
are further computed. In our experiments, we follow the ROC computation pro-
cedure in [20] to compensate the center-bias that commonly exists within the
human fixation and often affects the performance evaluation [9,20].

Figure 7a shows the AUCs of the proposed technique and the three comparison
techniques when the image is resized from 1.0 to 0.1 of the original image scale
(for the method [18], a single AUC at 69.58 is derived where the saliency is
computed and averaged at four image scales). As Figure 7a shows, the AUC
of the three techniques varies clearly with the image scale. In particular, the
AUC of [6] increases when the image scale decreases because spectral residual
is better captured at a lower image scale. The AUC of [8] instead decreases
greatly when the image scale decreases. This can be explained by the saliency
features which are sensitive to the image scale variation. As a comparison, the
AUC of the proposed technique is more stable with respect to the image scale.
The scale tolerance can be explained by the CCH which is tolerant to the image
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Table 1. AUC and execution time of the proposed technique and the four comparison
techniques based on the AIM dataset [8]

Algorithms Optimal AUC Execution Time (s)

Ours (z = 2) 71.25 0.17

Hou’s [6] 69.08 0.18

Bruce’s [8] 69.90 5.20

Zhang’s [9] 68.13 10.43

Goferman’s [18] 69.58 58.24

scale variation. Figure 7b shows the AUCs of the proposed technique when the
neighborhood size z increases from 1 to 10 (for images at 1.0, 0.5, and 0.25 of the
original scale). As Figure 7b shows, the performance of the proposed technique
is stable when z changes greatly. Besides, better performance is achieved when
z lies 1∼3 which helps to reduce the computation load greatly.

Table 1 shows the optimal AUCs (the maximum AUC at different scales in
Figure 7) and the average execution time (at 0.5 of the original image scale
and tested on the same PC) of the proposed technique and the four comparison
techniques. As Table I shows, the proposed technique obtains highest AUC. In
addition, its execution time is around 0.17 second which is slightly faster than
the method in [6] (which works on the grayscale image only) but significantly
faster than the other three methods. The speed advantage is due to the histogram
operations that involve only light computation whereas most reported methods
involves a large number of filters of different dimensions, e.g. 25 filters of 1323
dimensions in [8] and 362 filters of 363 dimensions in [9].

3.4 Discussion

The CCH based saliency modeling technique has a good response to the psy-
chological patterns with irregular shapes and colors as illustrated in Figure 8. In
particular, the CCH based saliency is able to capture some saliency pattern (ir-
regular shape) in grayscale image as illustrated in the second image in Figure 8.
As the same time, the CCH based saliency is also able to capture some unusual
color pattern as illustrated in the last two images in Figure 8.

The proposed technique could be improved in several aspects. First, it does
not consider the image orientation information which is completely missed in the
computed saliency. Second, optimal combination of the saliency from different
color channels needs to be studied. Currently, saliency from different channels is
simply averaged which instead often predicts the human fixation very differently.
Better saliency could be derived through optimal weighting of saliency from
different image channels. Third, the incorporation of high-level objects such as
human faces needs to be further studied. CCHs just capture low-level information
but high-level objects with semantic meaning often predominantly attract our
attention [8,17]. The incorporation of high-level objects will be more useful for
tasks such as object detection and visual searching.



Saliency Modeling from Image Histograms 331

Fig. 8. The CCH based saliency has a good response to the psychological patterns that
are irregular in color and shape

4 Conclusion

This paper presents a saliency modeling technique that makes use of color co-
occurrence histograms. Compared with state-of-the-art techniques, the proposed
technique has several distinct advantages: It is ultra-fast; It is tolerant to the im-
age scale variation; It involves little minimum parameter tuning and is very easy
to implement. Experiments on two benchmarking datasets show that the pro-
posed CCH based saliency predicts the human fixations accurately and obtains
a superior AUC of 71.25.
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