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Abstract. A widely used approach for locating points on deformable
objects is to generate feature response images for each point, then to fit
a shape model to the response images. We demonstrate that Random
Forest regression can be used to generate high quality response images
quickly. Rather than using a generative or a discriminative model to eval-
uate each pixel, a regressor is used to cast votes for the optimal position.
We show this leads to fast and accurate matching when combined with a
statistical shape model. We evaluate the technique in detail, and compare
with a range of commonly used alternatives on several different datasets.
We show that the random forest regression method is significantly faster
and more accurate than equivalent discriminative, or boosted regression
based methods trained on the same data.

1 Introduction

The ability to accurately detect features of deformable models is important for
a wide range of algorithms and applications. A widely used approach is to use
a statistical shape model to regularise the output of independent feature detec-
tors trained to locate each model point. Examples include Active Shape Models
(ASMs) [1,2], Pictoral Structures [3] and Constrained Local Models (CLMs)
[4,5], though there are many others.

The task of the feature detector is to compute a (pseudo) probability that
the target point occurs at a particular position, given the image information
p(x|I)1. Local peaks in this correspond to candidate positions (eg in ASMs) or
the probabilities for each point are combined with the shape model information
to find the best overall match (eg CLMs and Pictoral Structures). A wide variety
of feature detectors have been used in such frameworks which can be broadly
classified into three types:

Generative in which generative models are used, so p(x|I) ∝ p(I|x).
Discriminative in which classifiers are trained to estimate p(x|I) directly.
Regression-Voting in which p(x|I) is estimated from accumulating votes for

the position of the point given information in nearby regions.

1 Where techniques return a quality of fit measure, C, we assume these can be con-
verted to a pseudo-probability with a suitable transformation.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part VII, LNCS 7578, pp. 278–291, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Robust and Accurate Shape Model Fitting 279

Although there has been a great deal of work matching deformable models using
the first two approaches, the Regression-Voting approach has only recently begun
to be explored in this context.

Recent work on Hough Forests [6] has shown that objects can be effectively
located by pooling votes from Random Forest regressors. Valstar et al.[7] have
shown that facial feature points can be accurately located using a similar ap-
proach, but using kernel SVM based regressors.

In the following we show that Regression-Voting is a powerful technique, and
that using Random Forest voting leads to fast, accurate and robust results when
used in the Constrained Local Model framework.

We demonstrate the performance on a range of datasets, both images of faces
and radiographs of the hand, and show the effect of different choices of pa-
rameters. We show that voting using Random Forest regression outperforms
classification based methods and boosted regression when trained on the same
data, leading to state of the art performance.

1.1 Related Work

Shape Model Matching: There is a wide range of literature on matching
statistical shape models to images, starting with Active Shape Models [1] in
which the shape model is fit to the results of searching around each model
point with a suitably trained detector. Active Appearance Models (AAMs) [8]
match combined models of shape and texture using an efficient parameter update
scheme. Pictoral Structures [3] introduced an efficient method of matching part-
based models to images, in which shape is encoded in the geometric relationships
between pairs of parts. Constrained Local Models [4,5] build on a framework in
which response images are computed estimating the quality of fit of each model
point at each point in the target image, then a shape model is matched to the
data, selecting the overall best combination of points.

Belhumeur et al. [9] have shown impressive facial feature detection results
using sliding window detectors (SVM classifiers trained on SIFT features) com-
bined with a RANSAC approach to selecting good combinations of feature
points.

Regression based matching: One of the earliest examples of regression based
matching techniques was the work of Covell [10] who used linear regression to
predict the positions of points on the face. The original AAM [11] algorithm
used linear regression to predict the updates to model parameters. Non-linear
extensions include the use of Boosted Regression [12,13] and Random Forest
Regression [14]. The Shape Regression Machine [15] uses boosted regression to
predict shape model parameters directly from the image (rather than the iter-
ative approach used in AAMs). Zimmerman and Matas [16] used sets of linear
predictors to estimate positions locally, an approach used for facial feature track-
ing by Ong and Bowden [17]. Dollár et al.[18] use sequences of Random Fern
predictors to estimate the pose of an object or part.
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Regression based voting: Since the introduction of the Generalised Hough
Transform [19] voting based methods have been shown to be effective for locating
shapes in images, and there have been many variants. For instance, the Implicit
Shape Model [20] uses local patches located on an object to vote for the object
position, and Poselets [21] match patches to detect human body parts.

Hough Forests [6] use Random Forest regression from multiple sub-regions to
vote for the position of an object. This includes an innovative training approach,
in which regression and classification training are interleaved to deal with arbi-
trary backgrounds and where only votes believed to be coming from regions
inside the object are counted.

Valstar et al. [7] showed that facial feature points can be accurately located
using kernel SVM based regressors to vote for each point position combined with
pair-wise constraints on feature positions. We show that using Random Forest
regression, together with a global shape model, leads to significantly faster and
more accurate results.

Girshick et al. [22] showed that Random Forests can be used to vote for the
position of joint centres when matching a human body model to a depth image.
Criminisi et al.[26] use Random Forest regression to vote for the positions of the
sides of bounding boxes around organs in CT images.

Recently Dantone et al. [23] have used conditional random forests to find facial
features. Our method differs from this in that we use an explicit shape model to
find the best combination of points.

2 Constrained Local Models

The CLM is a method for matching the points of a statistical shape model to
an image. Here we summarise the key points of the approach - for details see
[4,5]. We use a linear model of shape variation [1] which represents the position
of each point using

xi = T (x̄i +Pib; t) (1)

where x̄i is the mean position of the point in a suitable reference frame, Pi a set
of modes of variation and T (·; t) applies a global transformation (eg. similarity)
with parameters t.

To match the model to a new image, I, we seek the points, x = {xi}, which
optimise the overall quality of fit of the model to the image.

More formally, we seek parameters p = {b, t} which minimise

Q(p) = − log p(b, t|I) = − log p(b)− α

N∑

i=1

log p(xi|I) (2)

where the scaling factor α is included to take account of the fact that the condi-
tional probabilities for each point, p(xi|I), are not strictly independent, and we
have assumed that all poses are equally likely, so p(b, t) = p(b).
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Given an estimate of the scale and orientation, we can scan the target image
to compute quality of fit Ci(xi) = − log pi(xi|I). The objective function is then

Q(p) = − log p(b) + α

N∑

i=1

Ci(xi) (3)

The first term encodes the shape constraints, the second the image matching
information. The cost function Q(p) can then be optimised either using a general
purpose optimiser [4], or using the mean-shift approach advocated by Saragih et
al.[5].

Examples of quality of fit functions, C(x), for each point include using nor-
malised correlation with a globally constrained patch model [4] or sliding window
search with a range of classifiers [5,9]. Figure 2 gives an example of a set of such
fit functions.

Fig. 1. 17 facial points used in experiments Fig. 2. Superposition of vote accumulation
images for 17 point face model. Note that
there is a separate image for each point.

In this work we show that Random Forest regression can be used to produce
effective cost maps, leading to fast, robust and accurate performance.

3 Voting with Random Forest Regressors

In the Regression-Voting approach, we evaluate a set of points in a grid over
a region of interest. At each point, z, a set of features, f(z), are sampled. A
regressor, d = R(f(z)), is trained to predict the most likely position of the
target point relative to z. The predictions are used to vote for the best position
in an accumulator array V , so V (z + d) → V (z + d) + v where v expresses
the degree of confidence in the prediction (Figure 3). After scanning the whole
region of interest, V can be smoothed to allow for uncertainty in the predictions.
For instance, [7] uses an SVM regressor, with each sample voting for one nearby
point.

One advantage of the regression approach is that it avoids the somewhat
arbitrary cut-off radius sometimes required when selecting positive and negative



282 T.F. Cootes et al.

Fig. 3. During search each rectangular patch predicts (one or more) positions for the
target point. Votes are accumulated in a grid.

examples for the training. It also allows integration of evidence from regions
which may not even overlap the target point.

Random Forests [27] have been shown to be effective in a wide range of clas-
sification and regression problems. They consist of a set of binary trees, each
stochastically trained on random subsets of the data. Although any one tree
may be somewhat overtrained, the randomness in the training process encour-
ages the trees to give independent estimates, which can be combined to achieve
an accurate and robust result.

A natural extension of Regression-Voting is to use multiple (independent)
regressors, or to have each regressor predict multiple positions. Both ideas are
combined in Hough Forests [6] which use sets of random trees whose leaves store
multiple training samples. Thus each sample produces multiple weighted votes,
allowing for arbitrary distributions to be encoded. In related work, [22] and [26]
produce votes in higher dimensional spaces (3D or 6D), but work directly with
the vector votes rather than accumulator arrays.

In the following we use Random Forest regression, accumulating votes in a
2D array (Figure 3). A key advantage of decision trees is that each leaf can store
arbitrary information derived from the training samples which arrived at that
leaf, {dk}. For instance, this could be the mean, d̄, and covariance Sd of these
samples, or the full set of samples.

When scanning the target region, a range of styles of voting can be used:

1. A single, unit vote per tree at the mean offset.
2. A single, weighted vote per tree, using a weight of |Sd|−0.5. This penalises

uncertain predictions.
3. A Gaussian spread of votes, N(d̄,Sd).
4. Multiple votes from the training samples [6].

In the experiments below we compare these different approaches, and show that
using a single vote per tree gives the best performance, both in terms of accuracy
and speed in our applications.

If the number of votes cast for the point to be at pixel x is V (x), then we
set the cost map image to be given as C(x) = − log(max(V (x), v0)), where
v0 > 0 introduces robustness to occlusion by allowing points to have a non-zero
probability of occuring anywhere.



Robust and Accurate Shape Model Fitting 283

An advantage of using regression voting, rather then classification, is that
good results can be obtained by evaluating on a sparse grid, rather than at
every pixel. Sampling every third pixel, for instance, speeds up the process by a
factor of nine, with minimal loss of accuracy (see results below).

3.1 Training

We train the models from sets of images, each of which is annotated with the
feature points of interest on the object, x. A statistical shape model is trained by
applying PCA to the aligned shapes [1]. The model is scaled so that the width
of the bounding box of the mean shape is a given value, wref (typically in the
range 50-150 pixels).

The shape model is used to assess the global pose, t, of the object in each
image, by minimising |T (x̄; t)−x|2. Each image is resampled into a standardized
reference frame by applying the inverse of the pose, Iref (i, j) = I(T (i, j; t)).

To train the detector for a single feature point we generate samples by extract-
ing features fj at a set of random displacements dj from the true position in the
reference frame, T−1(xi; t), where xi is the position of the point in the image.
Displacements are drawn from a flat distribution in the range [−dmax,+dmax]
in x and y. To allow for inaccurate initial estimates of the pose, we repeat this
process with random perturbations in scale and orientation of the estimate of
the pose. We then train a set of randomised decision trees [27] on the Ns pairs
{fj ,dj}. To train one tree we take a bootstrap sample (drawing Ns examples
with replacement) of the training set, then use a standard, greedy approach to
construct the tree, recursively splitting the data at each node. Given the sam-
ples at a particular node, we seek to select a feature and threshold to best split
the data into two compact groups. Let fi be the value of one feature associated
with sample i. The best threshold, t, for this feature at this node is that which
minimises

GT (t) = G({di : fi < t}) +G({di : fi ≥ t}) (4)

where G(S) is a function evaluating the set of vectors S. In the following we use
an entropy measure G({di}) = Nlog|Σ| where Σ is the covariance matrix of the
N samples.

In the experiments below we use Haar-like features [28] sampled in a box
around the current point, as they have been found to be effective for a range of
applications and can be calculated efficiently from integral images.

Thus to select the feature and threshold at each node, we choose a random set
of features from all possible Haar features, then choose the feature and associated
optimal threshold which minimises GT . Following [29] we speed up the training
by only using a random subset of the available data at each node to select the
feature and threshold. In the following we use random subsets of size 400 when
there are more than 400 samples to be processed at the node.
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3.2 Shape Model Matching

Given an initial estimate of the pose of the model (either from a detector or
from an earlier model), we seek to find the model parameters which optimise
Q(p) (Eq.3). In order to focus on the effect of the methods used to compute the
quality of fit images, Ci(xi) in the experiments below, we follow [1] in assuming
a flat distribution for the model parameters, b within hyper-ellipsoidal bounds:

p(b) =

{
p0 if bTS−1

b b ≤ Mt

0 otherwise
(5)

where Sb is the covariance matrix of the parameters and Mt is a threshold on the
Mahalabanobis distance. Mt is chosen using the CDF of the χ2 distribution so
that 99% of samples from a multivariate Gaussian of the appropriate dimension
would fall within it. In this case, optimising Q(p) is equivalent to optimising

Q0(b, t) =
N∑

i=1

Ci(xi) subject to bTS−1
b b ≤ Mt (6)

This has the advantage that it avoids having to choose the value of α.
Given initial estimates of b and t, we first transform the image into the

reference frame by resampling using the current pose: Iref (i, j) = I(T (i, j; t)).
We compute the cost images, Ci(·), by searching in Iref around the current
estimate of each point in the reference frame.

We then estimate the shape model parameters using the following simple but
robust model fitting approach in the reference frame:

1. r = rmax, tref = Identity, xi = x̄i +Pib
2. while r ≥ rmin

(a) Search in disk of radius r for best points:
xi → argminy:|y−xi|<r Ci(y)

(b) Estimate the shape and pose parameters, b, tref , to fit to the points
(c) If bTS−1

b b > Mt, move b to nearest valid point on limiting ellipsoid
(d) Regularise the points: xi → T (x̄i +Pib; tref )
(e) r → krr

3. Map results to the image frame: t → t ◦ tref , xi → T (xi; t).

If the pose changes significantly, we resample the image at the new pose, re-
compute the cost images and repeat the above steps. In the experiments below,
we set rmax to approximately 25% of the object width, rmin to 3 pixels (in the
reference image) and kr = 0.7.

4 Experiments on Faces

To compare the performance of the approach with alternatives, and to evaluate
the effects of choices of parameters, we train a 17 point model using 1182 images
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of 105 different people, including a range of head orientations and expressions.
Figure 4 shows some of the modes of the shape model. The reference frame image
is 120 pixels wide, and Haar-like features are sampled from patches of size 24 x
24. The regression functions are trained using random displacements of up to 8
pixels in x and y in the reference image, as well as random changes in scale of
up to 5% and rotations of up to 3o. Each random forest has 10 trees.

Mode 1 Mode 2 Mode 3

Fig. 4. First three modes of 17 point shape model

We test the model on the images from Session 1 of the XM2VTS database
[30]. The model begins with the mean shape at a position displaced randomly by
up to 15 pixels in x and y and 5% in scale and 3o orientation. Following common
practice [4], the error is recorded as the mean error per point as a percentage of
the inter-occular distance, deyes. Thus we use

m17 =
1

17deyes

∑

i

|xi − x̂i| (7)

where x̂i is the position of the manual annotation for the point, and deyes =
|x̂lefteye − x̂righteye|.

4.1 Comparison with other Classifiers/Regressors

We apply a single stage of the model search and evaluate the performance when
using different methods of generating the cost images, all trained on the same
data. These are (a) the proposed RF Regression, (b) Boosted regressors (trained
on the same features) and (c) RF classification (in which samples within 5% of
inter-occular distance of the point are classed as positive examples, the rest as
negative examples). Figure 5 shows the relative performance. The RF regression
significantly outperforms the other methods, and is considerably faster (31ms
compared to 140ms for boosting and 1130ms for the classifier, when running on
a single core).

4.2 Effect of Voting Style

We apply a single stage of the model search and evaluate the performance when
using different methods of voting. The error is recorded as the mean error per
point as a percentage of the inter-occular distance (m17). Figure 6 compares the
performance. It shows that using a single vote at the mean position for each
tree leads to the best overall performance. The only competing method is cast-
ing Gaussian votes, however this is significantly slower and gives no significant
difference in performance.
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Fig. 6. Effect on performance of different
voting schemes

4.3 Effect of Step Size

Rather than sample every pixel, we need only sample the image on a sparse grid.
Since each tree casts votes over a region, we can achieve good accuracy without
having to sample everywhere.

The table below shows the performance as a function of step size (where step
size of smeans only take one sample in each s x s square. It shows that significant
subsampling can be used without compromising accuracy.

Step Search time Median error 90%ile
(ms) %IOD %IOD

1 193ms 4.8% 7.0%
2 58ms 4.8% 6.9%
3 31ms 4.8% 7.0%
4 21ms 4.9% 7.0%

4.4 Test on BioID Data

We test for the generalisation performance of our proposed approach in a natu-
rally unconstrained environment by considering the widely used BioID database.
The database consists of 1521 images of several individuals captured in an arbi-
trary office space scenario using a webcam device. It exhibits natural variations
in lighting, background, facial expression or pose, and has been used to test a
range of different algorithms. In order to compare with other reported results,
we focus on localising the 17 facial features shown in Fig. 1. We initialise the
model using a Viola and Jones face detector [28].

The final result is presented as the CDF of m17 in Fig. 7, where it is compared
to the other published results on the same images. Note that Luo et al. [24] and
Cao et al. [25] have recently published results which are slightly better than [9],
but follow the same form. Discussions with the authors of [7] suggest the curves
are not directly comparable as they re-annotated some of the data.

We perform an experiment to evaluate the effect of annotation noise on the
shape of the CDFs. We add Gaussian noise of SD 0.5, 1 and 2 pixels in x and y
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Fig. 7. CDF of the m17 measure on BioID,
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Fig. 9. Model fitting accuracy on AFLW

to the manual annotations of BioID, then compare with the original positions.
Figure 8 shows the CDFs of m17 for different noise levels, and our own result.
The shape of our curve is consistent with noise of about 1.5 pixels. The lack of a
distinctive ”S” shape to the results of [9,7] suggests their point errors are more
correllated.

In terms of computational efficiency we believe our method is is one of the
fastest (it takes 27ms on a single core to perform the search given the result of
the face detector, compared to many seconds for [9] - though that includes the
global search).

4.5 Test on AFLW Data

We also test the system on a subset of images from the Annotated Facial Land-
marks in the Wild dataset [31], which includes a wide range of face variation in
images sampled from the internet. We selected all the images from the database
for which all 15 frontal landmark points were annotated (about 6700 images).

We manually annotated an additional two points to obtain a 17-point markup.
Our model was trained using 326 images plus the reflected pairs (652 in total).
To test the model, we first applied an off-the-shelf face detector to obtain the
initialisation data and gathered a total of 4755 images (those for which the face
is detected correctly, and removing the images used for training). The model was
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m17 < 5% 5% ≤ m17 < 10% 10% ≤ m17 < 15% m17 ≥ 15%

Fig. 10. Examples of results on image from AFLW

trained using a slightly different markup (as in the Bioid data set) - the centre
of the nostrils are annotated instead of the exterior. Figure 9 shows the CDF of
the m17 measure before and after running a two stage model from a range of
perturbed positions on the set. Figure 10 shows example results on this data.

5 Performance on Hand Radiographs

To demonstrate that the approach generalises to other application areas, we
tested the system on a set of 550 radiographs of hands, each annotated with
37 points. Figure 11 shows an annotation and two of the shape modes of the
resulting model, indicating that there is significant shape variation.

We trained the models on the first 200 images, then tested on the remainder.
In the first experiment we use a model with a 70 pixel wide reference image,
and 13 x 13 pixel patches. We demonstrate the effect of varying the magnitude
of the maximum displacements used when training the regressors from 5 to 15
pixels. We measure the error as the mean error relative to the width of wrist
(to provide scale invariance). Figure 12 shows the CDFs of the mean point error
for a range of displacements. It shows that larger displacements lead to higher
convergence rates, but at the cost of overall accuracy. Such models are useful
in the early part of a multi-stage search. In Figure 13 we show that excellent
results can be achieve with a three stage approach, fitting with a model with
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Example radiograph Shape Mode 1 Shape Mode 2

Fig. 11. Hand radiograph with 37 points, and first two modes of a shape model

(wref = 70,13 x 13 patches, dmax = 15), then (wref = 70,13 x 13 patches,
dmax = 7) and finally (wref = 210,13 x 13 patches, dmax = 7). The early stages
find the approximate positions, which are refined using the higher resolution
model in the final stage. The graph also compares three different local models
for the response images; (a) normalised correllation with the mean, (b) a random
forest classifier (using the same Haar-like features) and (c) the proposed random
forest regression voting approach. In each case reference image was 70 pixels
wide, and each patch was 13 x 13 pixels within the reference frame. In each
case the models were initialised with the mean shape but at randomly displaced
positions from the correct pose. Figure 12 shows that the classifier significantly
out-performs normalised correlation, but that the regression voting (c) is by far
the best overall. Note that the initial error has a median of 17%, which is off
the graph. Given that the mean wrist width is about 50mm, this suggests that
more than 90% of the time the mean point error is less than 1mm.

In [32] we demonstrate how the methods describe above form part of a com-
pletely automatic system for segmenting the femur in pelvic radiographs, achiev-
ing the best published results in that field.
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6 Discussion and Conclusions

We show that voting with RandomForest regressors trained to predict the offset of
points from the evaluated patch is an effective method of locating feature points.
When incorporated into theConstrainedLocalModel framework, it achieves excel-
lent performance on a range of facial and medical datasets. The approach is found
to outperform alternative methods (classification and boosted regression) trained
on the same data.We show that using a single vote per tree gives good results, and
is significantly faster than alternative approaches. The coarseness of the sampling
step can be adjusted to balance between speed and accuracy as required. Overall
the method is fast, allowing tracking of faces at frame-rate. Note that although the
approachhas been demonstrated on frontal faces, it would be equally be applicable
to feature detection for non-frontal faces, given a suitable training sets.We have fo-
cused on comparing the votingmethodwith different feature detectors, rather than
on producing the best facial feature finder. The approach could equally well be in-
corporated into a range of othermodelmatching frameworks, such asActive Shape
Models or Pictorial Structure Matching [3].

Acknowledgements. We thank K.Ward, R.Ashby, Z. Mughal and
Prof.J.Adams for providing the hand radiographs and S. Adeshina for the
annotations.
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