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Abstract. Automatic face association across unconstrained video
frames has many practical applications. Recent advances in the area of
object detection have made it possible to replace the traditional tracking-
based association approaches with the more robust detection-based ones.
However, it is still a very challenging task for real-world unconstrained
videos, especially if the subjects are in a moving platform and at dis-
tances exceeding several tens of meters. In this paper, we present a novel
solution based on a Conditional Random Field (CRF) framework. The
CRF approach not only gives a probabilistic and systematic treatment
of the problem, but also elegantly combines global and local features.
When ambiguities in labels cannot be solved by using the face appear-
ance alone, our method relies on multiple contextual features to provide
further evidence for association. Our algorithm works in an on-line mode
and is able to reliably handle real-world videos. Results of experiments
using challenging video data and comparisons with other methods are
provided to demonstrate the effectiveness of our method.

1 Introduction

We are interested in automatically assigning identity labels to a group of faces in
each frame of real-world videos. An example of face association is demonstrated
in Fig.[Il A successful solution to this problem has immediate applications: video-
based face recognition[Il2], automatic video annotation, automatic collection of
large-scale face dataset[3], just to name a few. We believe the following two
aspects are especially important for solving this problem:

Bottom-up face association. Traditionally, automatic face association is an
inherent outcome of multi-object tracking algorithms: Each target face initiates
an independent tracker, which searches in successive frames for the best match
over a neighborhood as determined by temporal coherence constraints. In addi-
tion to suffering from the same problems as the single-face tracker, such as drift
errors, the trackers are frequently confused with each other due to subject’s in-
teractions and the similarity in face appearances. In recent years, the so-called
“tracking-by-detection” approaches [A5I6I7IROTO/TT] have gained popularity as
a result of the significant progress in object detection techniques. These methods
first apply object detectors to every video frame and then connect the detection
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Fig. 1. Face association A face association algorithm solves the correspondence prob-
lem between face detections and the identity labels. At time ¢1, subject Purple (we use
color of the corresponding label to refer to the person) does not appear in the scene.
At time t2, A new subject, i.e. subject Green shows up and needs to be enrolled to the
identity list. At the same time, there is a false detection (pink bounding box) which
should not be assigned any label. At time t3, subject Yellow, who was absent at ¢2
returns to the scene. His face should be re-identified. The detector also misses subject
Blue (the dotted bounding box), which should be retrieved by face association.

results into trackdl. In comparison with the tracking-based methods, the face
association methods are free of drift errors, much more robust against shaky
camera and occlusions and easier to recover from failure.

Context features. Recently, context-based vision has received increasing inter-
est. Although there have been different notions of context in vision applications,
it usually refers to information from regions of the image outside the region of
interest and/or other sources such as maps, time stamp, etc. When speaking of
face, the context can be the hair, clothing of a subject, or even other people in
the image. The importance of context is even more obvious as we process real-
world videos, in which low-resolution, blurred or arbitrarily-illuminated faces are
more the norm than the exception. To effectively integrate evidence from both
face appearance and context features, a systematic approach is needed.
Motivated by these considerations, we propose an automatic face association
algorithm for real-world videos. To be specific, we solve the problem using a
conditional random field (CRF), where each node represents a detected face
(either true or false positives) in a video frame. Our contributions can be sum-
marized as follows: First, we propose a general CRF-based framework to solve
the face association problem for videos. Unlike many existing works in multi-
object association [4U5J6], our method is an on-line procedure, which is crucial
to real-world applications. Second, we leverage the abundant contextual features
available in the video. The features enter the potential function through both
unary and pairwise terms and significantly improve the performance of face as-
sociation in terms of accuracy and robustness. Third, we introduce the concept
of “null state” and apply logistic regression to handle false detections or novel
faces. Therefore, the CRF in our case is dynamic in the sense that not only the
features are characterized in a time-adaptive fashion, but also that the number

! We use the more particular term “face association” or “face labeling” to this bottom-
up strategy, but avoid using the word “multi-face tracking” as used in some papers.
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of nodes and states can vary at any time. All of the three aspects contribute
to the proposed algorithm’s capability for handling real-world videos: The data
association strategy allows accurate localization, easy recovery from failures and
quick scene adaption; The use of contextual features results in robust face la-
beling despite the presence of nuisance factors like significant camera motion,
bad illumination or low-resolution; The time-varying structure handles situa-
tions when subjects enter or leave the scene. Moreover, our on-line method can
process videos in a timely manner.

2 Related Work

A large body of literatures exists on object tracking. Interested readers may refer
to [12] for a comprehensive review. General tracking algorithms can be extended
to the multi-target case by initiating multiple independent trackers [I3]. Though
straightforward in idea, this approach has many limitations stated in Section [II

Automatic face labeling from TV /film/news videos has attracted increasing in-
terest in recent years. Most of the existing works treat face association as a con-
strained clustering problem. Therefore, researchers have focussed their attention
in obtaining a good distance measure [T4/T5T6/312]. In most of these works, sim-
ple association strategies like the K-means or agglomerative clustering are applied,
and are shown to produce promising results on videos with a small number of faces.
But in many practical situations we need to process crowded scenes.

Association-based approaches have also been widely used to simultaneously
localize multiple pedestrians in videos. According to the role a detector plays,
they fall into three categories. In the first case, detection results are integrated
into a tracking framework [7J8], functioning as part of the proposal distribution or
the observation model. Alternatively, the associations can be performed directly
on detected results in individual frames [4J5]. As the intermediate case, posi-
tive detections can activate trackers running for a short temporal window. The
obtained “tracklets” are then connected to form global assignments[QTO/TTI6].
Although substantial progress has been made, one or more of the following draw-
backs are present in most of these works: 1)The method is only compatible with
off-line processing. 2)Empirically determined parameters or heuristically defined
function forms are used to combine multiple cues into the affinity model or the
energy function. 3)Generative models and joint distributions, instead of discrim-
inative models and conditional distributions, are employed for association. As a
result, the dependence of observations on the interplay among local associations
cannot be effectively captured by the model.

A CRF-based approach was suggested in [6] for multi-pedestrian association.
Our approach differs from [6] in a fundamental aspect; In our work, the nodes in
CRF are identity labels and face candidates detected in the current frame, while
[6] defines each node to be a tracklet pair or a label pair, working only in an
off-line mode. Hence, both the features and the learning process used in our work
are different from theirs. Our work also differs from the recently published work
in [I7] in the sense that the energy function of the latter does not contain global
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parameters and therefore its parameter learning is only local to each feature
function. In contrast, by following the canonical CRF formulation, our model
naturally inherits CRF’s strength in modeling the interactions between features.

The effectiveness of contextual features has been studied for face labeling and
recognition in consumer photos. Gallagher and Chen [18] learned group priors,
i.e. the co-occurrence of people, and used it to resolve ambiguous label of faces in
a graphical model framework. Clothing appearance has been combined with the
face using an MRF model to improve the recognition accuracy in [I9]. Relative
poses among subjects in a family album can also be a useful cue[20].

3 Problem Formulation

Suppose there are N detected faces in the current frame F; of the input video. Let
Y: = {y1,y2, ...y~ } denote the set of unknown labels we would like to associate
with these faces. Let L be the number of all the subjects that have appeared in
the scene up to frame F;_1, then the state(label) space is £ = {0,1,2,...,L}.
Here we introduce a “null” state with the label 0 to account for false detections
and novel faces. Note that both the number of detected faces and the state space
vary with time, and the mapping from Y} to the state space is many-to-one.

We create a graph G = (V, E) and let vertices V' = {y1,y2,...yn, X}, where
X is a global observation node |4. To make the maximum use of information
encoded in the contexts, we let the label nodes to be fully connected to each
other. CRFs model only the conditional probability p(Y|X) instead of the joint
probability p(Y, X):

pYX.0) = o T oY), (1)
’ ceC

where C' is the set of all cliques in the graph and W is the potential function
defined for clique ¢, 6 is CRF parameter and Z is the normalization factor.

A CRF does not model the data distribution p(X), which is what we have
observed. Therefore, a CRF is capable of incorporating non-local features, and
the edge potentials between the label nodes can be either dependent or inde-
pendent of the observation nodes. The property makes it especially useful for
modeling contextual features. We will assume the potential function to possess
the log-linear form: Inp(Y|X,0) = > o> Oufu(Ye, X) — In Z(X, 0), where
fx (Y., X) are feature functions. The log-linear form not only imposes positivity,
but also has a close relationship to the Maximum Entropy models. At the tth
frame, we are trying to solve for the optimal label configuration Y} that max-
imizes the conditional probability. It is then used to renew the models used in
feature functions and update the state space to £;41.

2 We omit the time index to keep the notations simple as long as it does not cause
any confusion.
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Fig. 2. Context-aided face matching The face appearance alone usually is not
sufficient as a strong feature to perform association. Contextual information, such as
clothing appearance and relative poses, can be incorporated to make a more confident
decision. Two frames from a video of faces in a moving boat collected at distances of
several tens of meters are shown in this figure.

4 Context-Aided Association

In this work, we incorporate face appearance with four kinds of contextual fea-
tures: clothing appearance, relative scale, relative position and uniqueness of
identity. The conditional probability is thus defined as:

logp(Y|X,0) = —log Z(X,0) + > O fa(ysai(X)) + Y 05/5(yi, hi(X))

eV eV
+ > 0L We Y (X)) + Y 0y (X)) + Y i),
(i,j)eE (i,5)eE (i,))eE

(2)

where fo, f3, fy, £, and fx are the feature functions for the four aforementioned
features, respectively. We demonstrate our use of contextual features in Fig.
In the following, we define each feature function individually.

4.1 Potentials and Feature Functions

Face Appearance. Face appearance provides the most direct evidence about
a subject’s ID, though for our case its power has been impaired by nuisance
factors. We maintain an Online Appearance Model (OAM)[21] for each existing
face track, motivated by the algorithm’s success in modeling appearances with
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strong temporal coherence. In an OAM, object appearance is represented by a
mixture of three components, namely the stable, wander and lost components.
The stable component models steady and long-term appearance; The wander
component is responsible for modeling the short-term change in appearance;
The lost component accounts for outliers. Considering that alignment errors in
cropping exist due to the nature of the sliding-window detection strategy, in
the OAM we use Gabor features, which can tolerate small translation and scale
variations, in lieu of raw intensity values.

The model parameters are updated by an Online-EM procedure. Denote the
set of Gabor coeflicients of a detected face at time ¢t as a; = {an ¢}, n =1,2,..., N,
and the set of existing, recently updated OAMs as A;_1 = {A;¢—1},0=1,2,..., L.
In the E step, we calculate the ownership probabilities of the face with respect
to the Ith OAM:

A
o14(a) = Maq,iPq (8t A1) , ¢ = {wander, stable,lost}. (3)

; Zq Mg,tPq(as|Ari-1)

Pwander and Psiaple are the two normal distributions whose parameters are up-
dated every frame for each OAM. p;,s¢ is a uniform distribution over the domain
of observation feature values. The feature function, which evaluates how likely
a node y is in state [, is defined as:

A1) , ¢ = {wander, stable}.

(4)
The M step happens after the label of the CRF has been determined through
inference. We use the appearance of the node that has been labeled as subject
[ to update the parameters of the Ith OAM. The set of updating equations can
be found in [21I]. We illustrate an example of OAM in Fig. Bl (a)-(d).

fa (y =1, a(Xt)) = Z log Z Ol,q(an,t)pq (an,t
n q

Clothing Appearance. As a contextual feature, clothing appearance assists the
goal of face association, especially for real-world videos because: 1) It occupies
a larger area than face and hence is easier to extract from a distance. 2) The
between-class variation for clothing appearance is usually more distinguishable
than face appearance. Given F, the center of a face, we locate the torso by using
a probabilistic mask p(I € torso|F,) (See Fig.[Ble)), which is learned from the
H3D (Human in 3D) dataset[22]. If the clothing histogram feature for a detection
is denoted as h, the color feature function for the tth frame is defined as:

fﬁ(y = lv h) = log(l - d(h7 hl,t—l)’ (5)

where d is the chi-square distance between two histograms. The histogram model
h; is also updated at every frame with a forgetting parameter. We assume mutual
occlusion to be happening when two torsos are in significant overlap. In this
situation, we associate the intersection region to the torso with more consistent
color distributions.
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Fig.3. The OAM and the probabilistic mask of torso From frame ¢ —20 to ¢t —2
there was partial occlusion, which is still present in the mean of the S(stable) component
of the recently updated OAM A;_1(b). The occlusion disappeared at frame t — 2. So
in the current frame ¢ we get a clean face a;(a). (c) is the mean of the W(wander)
component of A;—1, which captures this recent appearance change. (d) is produced
by subtracting the posterior mixture probability of S component from that of the W
component. We can see that the previously occluded region is much better accounted
for by the W component than by the S component. (e) The learned probabilistic mask
of torso. The green square marks the position of the reference face.

Relative Pose. Shaky cameras are common for real-world videos. Unfortu-
nately video stabilization algorithms often fail when complicated or textureless
background (water surface, wall etc.) are present. However, the relative scale and
distance features do not suffer as much, and they maintain a temporal coher-
ence at the same time. Note that these features cannot be defined in a MRF
framework as MRF’s edge potentials cannot condition on non-local observa-
tions. We approximate the camera with a para-perspective model. This is a
reasonable model since for the camera whose field of view can hold a group of
people, the depth variations of the scene points that we are interested in are
usually small in comparison to Zy, the distance between the frontal plane and
the image plane. Another assumption implied by the model is that the move-
ment of a face along the camera axis is also insignificant compared to Zy. Let
the scale-normalized distance(SND) between the images of two rigid objects A
and B be Aap = [(up — pa)/wa, (v —va)/wal, where (pua,va) is the image
coordinate of A’s center, w, is the size of A’s image, and so on. It is easy to
show that, when the focal length and the principal point of the para-perspective
camera changes, the difference of A 25 between two consecutive frames satis-
fies: Aap: — Aapi—1 = 0ap/T, where d4p is the displacement of A w.r.t. B
in the world coordinate system (we disregard the camera-axis direction for the
aforementioned reason) during the same time interval and 7 is a constant factor.
That is, the SND’s change is only dependent on the object’s motions and is
independent of the camera’s zoom or translation.
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We define the relative distance feature function as:

(i =1,y = 12,15 (Xy)) = log L(Aps je — Aty 1g,0—1 M0 bp)
Tow(i =11, y5 = 12,mi5(Xy)) = log L(Av; 1 — Avyy 1y i—1|mu,by),  (6)

where £ is the Laplace distribution: £(z|m,b) = ,, exp(flw_bm‘). The choice
of Laplace distribution over the more frequently used Gaussian distribution is
justified by two considerations: First, the Laplace distribution has longer tails,
therefore it is more robust against outliers. Second, in our experiments, the
Laplace distribution can approximate the empirical distribution of the features
more accurately (See Fig Hl). Parameters of the Laplace distributions are esti-
mated from the training data using the maximum likelihood method.

o
%8 06 o0& -0z 2 04 08 08

0 o
Detascale

Fig. 4. Distributions of relative positions The empirical distributions are visu-
alized using histograms. The fitted Laplace distribution is plotted in red, and the
Gaussian distribution is plotted in green. Parameters are set as the maximum likeli-
hood estimates. The distribution of the x-direction distance variation is much larger
than that of the y-direction, which makes sense since the human moves horizontally
much more often than vertically.

In a similar fashion, we define the feature function for relative size as:

(wj7t B wl27t—1|
Wit Wiy, t—1

Fy (i =,y = 12,7i5(X¢)) = log £ Moy, by) (7)

Uniqueness. The uniqueness constraint follows intuitively from a simple fact:
No person can appear more than once in the same frame. However, the constraint
does not apply to the null state that will be discussed in Section 2] as multiple
new faces and false detections can be present at the same frame. This feature
function has the following form:

[ —inf ify; =y; #0
fA(yhyJ) - { 0 otherwise (8)

As we can see, this hard constraint dominates other feature functions and en-
forces a zero probability when it is violated, but has no influence when it is
satisfied. Thus, 0, is fixed as 1.
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4.2 The Null State

So far, the definitions of the feature functions have not considered the issue of
the null state. In other words, we have not defined f(y;, X) or f(v;,y;,X) when
y; = 0 or y; = 0. It is very challenging to explicitly model the null state, which
is an open-universe set. The problem becomes even more complicated when we
attempt to guarantee the function value for the null state to be in an appropriate
numerical scale comparable to that of other states.

If we denote the domain of a unary feature function f as X, then f define a
map Z : X — R

ZP(X) = fp = [f(yz = 1aX)7f(yi = 27X)’ ’f(yz = va)]Tv (9)

where L is the number of the non-null states. We now construct a second map:
Zy: RE — I+ as follows:

T
Z/ f _ f/ _ ! / / ! QWI ¢(f) 1
p( )_ p_[fO?f17~-~7fL} 7fl - ZZILO@W:T/ﬂf)’ ( 0)

where I is the closed interval [0, 1], and ¢ is a set of nonlinear basis functions.
The pairwise case is a little more complicated. We define a “null state set”
N = {(l1,12)|ls = 0V I3 = 0} for the edges of the CRF, which contains L + 1
elements. We can similarly learn a map for a pairwise feature function Z; :
R _y I(L+1)2‘7 but with an additional constraint: V(l1,l) € N : f(’l1 L) = P
This is intuitive as there is no reason to favor one null state in A" over another
in the eye of an pairwise feature function. Although the logistic regression is a
classification algorithm, its output is continuous and so can be interpreted as
class-conditional probabilities. So the models define a map for feature functions,
with the desired property that their outputs with respect to different states have
comparable magnitudes. Note that we need to learn a model for each different
case of state numbers. We trained models for L = 2, ..., 20.

4.3 Parameter Estimation and Inference

The parameters of the CRF are estimated using a regularized maximum likeli-
hood procedure: Given M labeled data pair {X(m), Y (™) Ym=1,...,M, We maximize:

M
E=L+M0|>=">logp(Y™ X" 0)+ \[0]|>. (11)
m=1

For this purpose we need to compute

oL _ & m) g (m

0p, = 20120 Fow™ X)) = 37 p(YIXT ) 37 fuwi, X)) (12)
p m=1 i€V Ye i€V

oL M

oo, = 21 D0 Fau™ i XY = 37 p(YIXT0) DT folwinw, X)) (1)
q

m=1 (i,j)EE Yey (i,j)EE
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where f, and f,; are unary and pairwise functions. Note this requires an enumer-

ation of all the possible configurations in the label space y, which is generally

infeasible. Alternatively, we use the Gibbs sampler to generate samples from

the label space and infer p(Y|X(™) #). At the test time, the MAP solution:

Y* = argmax p(Y|X,#) is solved by the Loopy Belief Propagation (LBP) algo-
Y

rithm. Occasionally the LBP may fail to converge, in which case we switch to
the variational Mean Field algorithm for a max marginal solution.

4.4 Removal of False Detections and Recovery of Missed Detections

Depending on the detectors applied, some faces may be missed and some de-
tections may be false positives. Detections assigned with a null label become
candidates for false positive or novel faces. They are examined for a number
of consecutive frames. Those with low re-appearing rate are considered as false
positives and discarded, and the others are kept as novel faces. For the faces
which are previously detected but are missing from the current MAP solution,
we propose hypothesis according to their most recent SND features w.r.t. other
subjects. We then generate samples of bounding boxes {s; = (1, Vi, wi) }i=1,....N
over the neighborhood of the hypothesis and evaluate for them the unary feature
functions: fo(ys, = lm,a(s:)), f8(ys; = lm,h(s;)), where I, is the label of the
missed face. Only if one or more samples yield function outputs significantly
higher than a conservatively-set threshold will a recovery of the missing face be
enforced. Otherwise the hypothesis is simply rejected.

5 Experiments

Dataset. We collected a real-world video dataset in outdoor environments con-
sisting of 67 video sequences at 10 different scenes. The number of subjects
showing up in each frame ranges from 2 to 14. The database is challenging in
the following aspects: 1) Videos were acquired at a distance ranging from 50 to
200 meters. Such a capture distance results in low-resolution face images. 2) We
intentionally introduce perturbations due to zoom-in and zoom-out operations.
The level of camera shaking can be roughly measured by the displacement-scale
ratio (DSR), i.e. the displacement of a face’s image center due to camera mo-
tion/the width(height) of the face, both in pixels. It is not rare to see DSRs
as large as 1.5 or even 2.5 in our databases, i.e. within two consecutive frames,
the center of a 50 x 50 bounding box shifts 125 pixels due to camera motion.
3) Face appearances are subject to blur, pose variations and occlusions caused
by sunglasses, cell phones, scene objects or other people. 4) The illumination
condition is uncontrolled and could often be extreme in its variation. We use an
independent set of 42 short video sequences for parameter estimation. This 10
GB dataset together with the source code will soon be released on our website.

Face Detection. We apply the cascaded Harr-feature face detector [23] to each
frame, followed by a skin detector using HSV color space thresholding. We mark



Face Association across Unconstrained Video Frames Using CRF 177

those face candidates with a unreasonable portion of skin pixels (We empirically
determine the upper and lower threshold to be 0.85 and 0.2) as tentative false
positives and the remaining ones as tentative true positives. The CRF inference
is applied to the tentative true positives. However, the tentative false positives
are not simply discarded. When their locations are coincided with a sample in
the missing face recovery procedure described in Section. L4l we will assign
bonus score to that sample.

Evaluation Metrics. To qualitatively evaluate the performance of our algo-
rithm, we borrow the set of metrics commonly used in multi-pedestrian tracking
works, including:

— GT: the number of ground-truth face tracks.

— Recall: correctly labeled faces / total ground-truth detections.

— Precision: correctly labeled faces / total labelings made.

— MA: the percentage of mostly associated face tracks, which are correctly
labeled for more than 80%.

— MW: the percentage of mostly wrongly associated trajectories, which are
correctly labeled for less than 20%.

— PA: the percentage of partially successfully associated face tracks.

— Frag: fragments, the number of times that a ground-truth face track is
interrupted.

— IDS: ID switch, the total number of times that a ground-truth face track
changes its associated label.

Results. Sample face association results on the video database are presented in
Fig. Bl The white bounding boxes mark the detections which are labeled by our
algorithm as false positives. The black ones mark the faces that are recovered by
our scheme as presented in Section L4l As can be seen from the result, despite
large scene variation, our method is able to reliably associate faces: Faces can
be re-identified after occlusion moves away (e.g. subject 5 in the 4th sequence);
The false detections can be removed accurately; Even those “lost” faces can be
retrieved. Some errors do exist in our results. The most common failure mode of
our method happens when a previously occluded subject re-appear with a new
face pose. As a result, both face appearance and relative distance/scale features
may fail to associate the re-appearing face with existing tracks. An example of
this can be found in the 1st sample sequence of Fig. B, where subject 4 was
labeled as a new subject when being detected again. (Note, however, that the
subject marked with a null label in the last image of the 3rd sequence is not an
error. It is a novel face and is in its examination phase before finally accepted
into the ID list, as discussed in Section[.4l) Another major source of error is the
uncertainty of localization existing in the output of face detector. Although the
Gabor filter help alleviate the problem to some extent, sometimes the bounding
boxes of the same face in consecutive frames can exhibit high variations in scale
and position. This kind of error affects all the feature functions. An efficient face
registration module can improve the performance of the current implementation
and therefore is one of our future directions.



178 M. Du and R. Chellappa

We also compare our result with two alternative approaches. The first one is sim-
ilar to the approaches used in [T6J2/[1]. In this method, we first connect frame-based
detection results with a short-duration face tracker. Whenever the tracking result
has significant overlap with a detection result both in spatial location and in appear-
ance, it will be reset by the latter. The tracker will stop when it fails to find such an
overlap detection for five consecutive frames. The intermediate gap between detec-
tions shorter than five frames will be bridged by the tracker. The obtained tracklets
are then grouped by applying constrained agglomerative clustering. The “cannot
link” constraint is the same as the uniqueness constraint mentioned in Bl The
face tracker is based on a particle filter and the OAM observation model. We set
the number of particles to be 200. The tracker worked on videos stabilized accord-
ing to SIFT feature correspondences. Note that our CRF method is applied to the
original, un-stabilized videos. The other compared approach is the min-cost flow
algorithm as proposed in [5]. It is based on a generative Hidden Markov Model,
which does not incorporate observations into the transition probability. Compar-
isons in terms of the criteria defined above are summarized in Table[Il As shown,
our method clearly outperforms the Tracking-Clustering method and has better

Fig. 5. Sample face association results Images of each row are from the same video
sequence. The number of frames in-between is 100. The subjects in the 1st and the
4th rows are captured by remote cameras located at more than 50 meters away. The
subjects in the 2nd row are on the shore and were imaged by cameras on a boat moving
towards them. The subjects in the 3rd row are in a moving boat. The figure is best
viewed in color and with pdf magnification.
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overall performance than the Min-Cost method. Besides, both of these alternative
approaches work in an off-line mode, but ours operates in an on-line fashion, which
is more difficult and more advantageous for real-world applications. Also shown
in this table are the results obtained by removing the face/clothing/relative pose
feature function each at a time. We keep the uniqueness feature all the time, other-
wise we would get a very noisy result. We see that face appearance is still the most
important evidence, as the performance drops most drastically after we remove
it from the feature set. Without this feature, the ID switch error will be frequent
because of the confusion caused by similar clothing (For example, the second sam-
ple sequence of Fig.[]). Relative distance and scale feature rank the second place
in terms of importance, especially for videos which are captured by a shaky cam-
era or on a moving platform. Disregarding this feature leads to high occurrences
of fragment error. This mainly happens when blur or occlusion causes appearance
features to be unreliable and spatial correlation is the only possible cue to maintain
correspondences. Performance degradation after dropping the clothing feature can
be mostly accounted by cases in which blurred and low-resolution faces are present.
In general, every feature play an important role in this framework, and we achieve
the best performance by combining all of them using the CRF framework.

Table 1. Face association results on the real-world database

Method GT Recall Precision MA MW PA Frag IDS
Tracking-Clustering 371 70.2 74.4 63.6 11.1 253 133 167
Min-Cost Flow 371 741 77.9 72.8 10.0 17.2 120 124
CRF (no face feature) 371 58.6 60.5 57.7 20.5 21.8 163 199
CRF (no clothing feature) 371 T1.7 74.2 67.5 124 20.1 135 146
CRF (no relative distance/scale feature) 371 66.5 69.3 60.1 14.0 259 172 151
CRF 371 81.6 83.5 782 8.6 13.2 121 101

6 Conclusions

In this paper, we presented an on-line face association algorithm. The method is
based on CRFs, whose property allows us to conveniently incorporate multiple
contextual features. The algorithm is able to deal with blurred or low-resolution
faces, shaky/zooming camera, occlusion and subject entry/exit, and hence is
suitable for real-world video processing. Our algorithm has achieved promising
experimental results on a challenging face association database.
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