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Abstract. We present an algorithm for extracting high quality tem-
porally coherent alpha mattes of objects from a video. Our approach
extends the conventional image matting approach, i.e. closed-form mat-
ting, to video by using multi-frame nonlocal matting Laplacian. Our
multi-frame nonlocal matting Laplacian is defined over a nonlocal neigh-
borhood in spatial temporal domain, and it solves the alpha mattes of
several video frames all together simultaneously. To speed up computa-
tion and to reduce memory requirement for solving the multi-frame non-
local matting Laplacian, we use the approximate nearest neighbor(ANN)
to find the nonlocal neighborhood and the k-d tree implementation to di-
vide the nonlocal matting Laplacian into several smaller linear systems.
Finally, we adopt the nonlocal mean regularization to enhance tempo-
ral coherence of the estimated alpha mattes and to correct alpha matte
errors at low contrast regions. We demonstrate the effectiveness of our
approach on various examples with qualitative comparisons to the results
from previous matting algorithms.

1 Introduction

Video matting is widely used in various video editing tasks [1], such as video
object cut and paste. A major difference between image matting and video mat-
ting is that video matting requires temporal coherence across the alpha mattes
extracted from each video frame. When applying conventional image matting
algorithms [2–13] to video matting problem, noticeable flickering artifacts occur
along matting boundaries due to the temporal inconsistency of extracted alpha
mattes across consecutive video frames. In addition, it is cumbersome for users
to draw trimap/scribbles for each video frame for image matting.

In conventional video matting approaches, such as [9, 14, 15], the goal was to
minimize the amount of user input by propagating trimaps from small number of
frames to the entire video sequence. Since the propagated trimap is temporally
consistent, the extracted alpha mattes also exhibit a certain degree of tempo-
ral coherence, which reduces the flickering artifacts along matting boundaries.
However, since alpha mattes are still estimated individually in a frame-by-frame
manner, flickering artifacts still occur especially when the color distribution of
foreground and background regions is similar (e.g. Figure 1). There are previous
works that tried to maintain the temporal coherence of video mattes by using
optical flow to warp the alpha matte from previous frame to current frame and
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(a) (b) (c) (d) (e)

Fig. 1. In this example, the alpha matte for each individual frame can be easily dis-
tracted by the background with similar color. By including temporal coherence con-
straint, our results are less affected by the black and white strips of background. (a)
Input frame. (b) Trimap. Alpha mattes from (c) Closed-form Matting [5], (d) Nonlocal
Matting [11], (e) Our method.

then by using it as soft constraint in matting [16]. In [17], Lee et al. tried
to include temporal coherence of alpha mattes by processing three consecutive
frames together using a 3×3×3 local window. Their method, however, still pro-
cesses the video frames in a local manner, e.g. previous frame/current frame/next
frame. Thus, temporal coherence across a long video sequence might not be well
preserved.

In this paper, we propose a video matting algorithm which is based on the
multi-frame nonlocal matting Laplacian. Our work is inspired by the recent
work of nonlocal image matting [11]. We define a 3D nonlocal neighborhood in
video to propagate matting constraints across a long video sequence. The 3D
nonlocal neighborhood encourages pixels with similar color and texture across
consecutive video frames to have similar alpha values. Our multi-frame nonlocal
matting Laplacian solves the alpha mattes of multiple consecutive frames to-
gether simultaneously. Hence, it can effectively protect the temporal coherence
of alpha mattes during optimization without smoothing out tiny structures of
alpha mattes. To tackle the extensive memory requirement of the multi-frame
nonlocal matting Laplacian and to improve efficiency of our algorithm, we use
k-d tree to divide video frames into many small video blocks so that larger num-
ber of video frames can be encoded together in the multi-frame nonlocal matting
Laplacian. After computing the alpha mattes for each video frame, we apply the
non-local mean regularization [18] to further enhance the spatial and temporal
coherence of alpha mattes across the whole video sequence.

In short summary, our technical contributions are in twofold: first, we propose
the multi-frame nonlocal matting Laplacian for video matting; second, we intro-
duce the nonlocal mean regularization in video matting to enhance the overall
temporal coherence after individual estimation of alpha matte. We tested our
video matting algorithm on various examples. Our experimental results show
that our approach produces video mattes with better temporal coherence than
video mattes from previous methods.
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2 Related Work

There is a great deal of works targeting image/video matting problems. In this
section, we review the most relevant works to ours.We refer readers to [9] and [19]
for a more extensive survey on image/video matting.

In image matting problem, conventional approaches typically start with a user
supplied trimap/scribbles. The provided trimap indicates definite foreground re-
gions, definite background regions, and the unknown regions where the alpha
values need to be estimated. Representative works included in [2–13]. The ba-
sic idea of these approaches is to use the definite foreground and background
regions as hard constraints to infer the alpha values within the unknown re-
gions. It is assumed that the colors within local regions are smooth [2], that
the color gradients are smooth [3], or that the local color distribution satis-
fies a linear model [5]. As demonstrated in many previous works, better sam-
pling strategy of foreground and background colors enables to estimate bet-
ter alpha mattes [7, 12, 20, 21]. Such sampling strategy is not limited to a
local manner. For instance, Lee and Wu [11] introduced the usage of nonlo-
cal neighbors and modified the matting Laplacian formulation of [5]. Their ap-
proach demonstrates a higher quality of alpha mattes compared to the results
from [5] but with fewer user input scribbles. This property is important in video
matting since it is too labor extensive to ask users to draw trimap/scribbles
in each video frame across the whole video. An approach to minimize user
inputs while maintaining the original matting quality is necessary for video
matting.

Early works in video matting such as [14, 22, 23] target to reduce user in-
puts by propagating trimaps from limited video frames [14] or by estimating
the trimaps automatically through altering the video captures [22, 23]. How-
ever these approaches still estimate the alpha mattes individually for each video
frame. Although accurate and temporally coherent trimap can alleviate the prob-
lem of temporal inconsistency of the estimated video mattes, there are still cases
where temporal coherence is not well preserved. There are limited number of
works that try to preserve temporal coherence of alpha mattes implicitly at the
optimization level. In [16], Eisemann et al. used the alpha matte from previous
frame as soft constraint to guide the alpha matte at current frame. Lee et al. [17]
processed 3 consecutive frames together to estimate the alpha mattes of video
through color distribution analysis in a 3×3×3 local window. These approaches
show that temporal coherence can be preserved better if temporal coherence can
be modeled explicitly in the optimization process.

Comparing our works with previous works, especially with [16, 17], our ap-
proach considers a larger nonlocal neighborhood in spatial temporal domain to
preserve the temporal coherence better. The uniqueness of our approach is the
multi-frame nonlocal matting Laplacian that explicitly models temporal coher-
ence in the matte optimization level. Further, by using nonlocal mean regular-
ization as post-processing, we can effectively correct errors and remove artifacts
that arose from our k-d tree segmentation based computation.
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Fig. 2. Illustration of 3D Nonlocal Neighbor. (a) The purple crosses in spatial temporal
volume of video are the 3D nonlocal neighbors of the red-colored pixel. (b)-(f) show the
3D nonlocal neighbor (red pixels) of the blue pixel in (d) in five consecutive frames.
The 3D nonlocal neighbors track the hair structures according to color and texture
similarity.

3 Algorithm

In this section, we describe our algorithm for video matting. We will first de-
fine the 3D nonlocal neighborhood. Then, we will define the multi-frame nonlocal
matting Laplacian. We will also describe our k-d tree segmentation to solve the
memory requirement problem of multi-frame nonlocal matting Laplacian. Fi-
nally, we will describe the nonlocal mean regularization that refines the initial
alpha mattes resulted from solving the multi-frame nonlocal matting Laplacian.

3.1 3D Nonlocal Neighbor

We define the 3D nonlocal neighborhood of a pixel by measuring the textural
similarity of pixels in a spatial temporal video volume. The 3D nonlocal neigh-
borhood extends the simple spatial window, i.e. 3 × 3 window, in closed-form
matting [5] to formulate our multi-frame nonlocal matting Laplacian in video.

In order to find the 3D nonlocal neighbors of a pixel efficiently, we use the
Approximate Nearest Neighbor(ANN) [24] searching algorithm. For each pixel in
a video frame, we define a feature vector, which is a collection of pixel intensi-
ties around the 5 × 5 local window. Within each block of k-d tree implementa-
tion(Section 3.3), we search 30 nonlocal nearest neighbors from the ANN data
structure. In order to guarantee sufficient nonlocal neighbors within the same
video frame, we force the nonlocal neighborhood to have at least 10 samples com-
ing from the same video frame within the same block. For each pixel, we have
also searched 10 nonlocal neighborhood across neighboring blocks of k-d tree. The
nonlocal neighbors within and across different blocks of k-d tree will be handled
differently and will be detailed in Section 3.3. Figure 2 shows an example of 3D
nonlocal neighborhood defined over a spatial temporal video volume.

After we define the 3D nonlocal neighbors of a pixel, we encode the textural
and color similarity between each pair of nonlocal neighbors into a kernel function
k3D(i, j):
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Fig. 3. Multi-Frame Nonlocal Matting Laplacian. For illustration, we show a 3-frame
matting Laplacian L3. The 3N × 3N matting Laplacian encodes correlation across
consecutive frames. For a pair of nonlocal neighbor, e.g. i-th pixel in I1 and j-th pixel
in I2, across different frames, their similarity weighting is encoded at the i-th row and
j-th column in the block I1I2.

k3D(i, j) = kt(i, j)× ks(i, j), (1)

kt(i, j) = exp(−distt(i, j)
2

2σ2
), (2)

ks(i, j) = exp(− 1

h1
2 ‖I(S(i))− I(S(j))‖2g), (3)

where distt(i, j) is the temporal distance between pixel i and pixel j, S(i) is the
spatial patch around of pixel i, and ‖ · ‖g is a Gaussian function with standard
deviation equal to the radius of spatial patch S. The kernel function will be
used to define the multi-frame nonlocal matting Laplacian to set weight on its
matrix element as illustrated in Figure 3. Comparing our kernel function with
the kernel function from [11], ours has additional term to give more weight to
nonlocal neighbor with smaller temporal distance. The 3D nonlocal neighbors
can effectively propagate alpha matte constraints within the multi-frame non-
local matting Laplacian weighted by temporal distance and textural and color
similarity. In our implementation, we set σ2 = 2, h2

1 = 0.01, and the window
radius of S(i) is 3 in Equation (1).

3.2 Multi-frame Nonlocal Matting Laplacian

The multi-frame nonlocal matting Laplacian is a matting Laplacian containing
the affinities between pixels in a video volume (Figure 3). This big and sparse
matting Laplacian matrix consists of several sub-matrices, where entries in each
sub-matrix represent relationship between pixels in spatial temporal volume.
We fill the multi-frame nonlocal matting Laplacian by using the 3D nonlocal
neighbors defined in the previous subsection. Since the 3D nonlocal neighbors
are defined across several video frames, it allows us to propagate matting con-
straints along temporal domain to preserve temporal coherence. The multi-frame
nonlocal matting laplacian is defined as:



Video Matting Using Multi-frame Nonlocal Matting Laplacian 545

Fig. 4. K-d Tree Based Volume Segmentation. (a) Alpha mattes of a segment. (b)
Visualization of segments. Segments with the same color belong to the same nonlocal
matting Laplacian (c) Segmented trimaps. (d) Segmented frames. (e) Seam caused by
individual estimation of alpha mattes. (f) Seams removed by a global step.

αTLFα =

F∑

f=1

N∑

i=1

α(N3D(i))T ḠT
i Ḡiα(N3D(i)), (4)

where F is the number of participating frames,N is the number of pixels, N3D(i)
is the 3D nonlocal neighbors of i, and α(N3D(i)) is a vector that represents
alpha values of pixels in N3D(i). Our multi-frame nonlocal matting Laplacian
is denoted as LF. Ḡi encodes pixel affinities among 3D nonlocal neighbors. We
refer readers to [11] and our appendix for its derivation and details.

Similar to the previous works in [5, 11], the optimal alpha mattes can be
obtained by solving:

(LF + λD)α = λDβ, (5)

where α is a FN × 1 vector whose entries are alpha values for participating
frames, D is a FN × FN diagonal matrix whose elements are 1 for constrained
pixels and 0 for the unconstrained pixels, β is a FN × 1 vector which encodes
constraints from user given trimap/scribbles, and λ is a large constant that
guarantees the solution is consistent with the constrained pixels. Note that the
alpha values of F frames will be solved together in this setting.

3.3 K-d Tree Segmentation

Solving Equation (5) allows us to process multiple frames together, but the size
of the linear equation system is too large, and it requires a lot of memory and
computation. In addition, this large linear system limits the number of frames
that can be processed together. Hence, we introduce k-d tree segmentation, which
partition video frames into many smaller blocks to reduce size of the linear
system in Equation (5).

Our k-d tree segmentation is inspired by Fast Matting [6]. We partition the
spatial temporal volume recursively to build the k-d tree. Within each block,
we count the number of unknown pixels. If the number of unknown pixels is
larger than a threshold, we continue our partitioning. In order to encode more
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Fig. 5. (a) An image patch with high KL divergence. (b) An image patch with low KL
divergence. High KL divergence means that the foreground and background colors are
easily distinguishable which implies quality of estimated alpha mattes.

video frames, we fixed the number of frames in each block and partitioned the
video blocks in spatial domain recursively as illustrated in Figure 4. The k-d tree
manages the connectivity of each neighboring blocks.

Using the k-d tree segmentation, we can estimate alpha mattes of each video
block individually. However, this method falls short in handling the nonlocal
neighbors of a pixel across neighboring blocks and the boundary condition of
alpha mattes between neighboring blocks. Here, we introduce a method to pre-
dict the goodness of the estimated alpha mattes within each block, and use this
prediction to rank the order of video blocks. We solve the alpha mattes of video
block according to the sorted order. The alpha mattes of solved video blocks
are then used as soft boundary constraint to guide the alpha matte estimation
of unsolved video block. The alpha values of nonlocal neighbors across different
video blocks are also used as soft constraint to guide the alpha estimation within
the center of video block. Hence, we can effectively propagate the alpha values
across different video blocks without introducing much computation overhead.
Also, since we start with salient video blocks where the estimated alpha mattes
are more accurate, we can improve the accuracy of alpha mattes of video block
with ambiguous color distribution.

To predict the quality of estimated alpha mattes within each video block, we
evaluate the color distribution. We use KL divergence to measure color distance
of unknown pixels to the foreground and background color distribution:

KL(S) =
∑

i∈S

||I(i)− C0|| log ||I(i)− C0||
||I(i)− C1|| , (6)

where S is unknown regions in a video block, and C0 and C1 are the two cluster
centers representing the foreground and the background color distribution of a
video block. Figure 5 shows an example of two image patches with high and
low KL divergence. For a video block with distinguishable color distribution, we
assume the estimated alpha mattes will be more accurate.

After we estimate the alpha mattes of all video blocks, we apply the global
step [6] to further reduce seams across different video segment. The global step
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54th Frame 55th Frame

(a) Before Regularization

(b) After Regularization

(c) Difference

between two regions

Fig. 6. Matte Regularization. From the left, each column represents the 54th frame
and the 55th frame, respectively. (a) Before regularization. (b) After regularization.
(c) Color map showing the intensity difference between two frames. A brighter pixel
corresponds to a higher value. The 54th and 55th frames have exactly same scenes.
Despite of it, you can notice different matting results for two frames in (c). When we
integrate each frame into a video, this temporal inconsistency makes flickering effects.

perform Closed-form matting [5] on each frame individually with the estimated
alpha mattes from previous processes as soft constraint as follow:

E = αTLα+ λ1(α− αlocal)
TD(α− αlocal) (7)

where L is the matting Laplacian of Closed-form matting [5], αlocal is the es-
timated alpha mattes from the previous processes, and D is a N × N identity
matrix. We use the soft constraint as initial solution of the global step and run
the conjugate gradient for 5 iterations to obtain our results.

3.4 Matte Regularization

After performing the global step, we obtain alpha mattes for each video frame.
Although our multi-frame approach which solve alpha mattes of several con-
secutive frames simultaneously to produce temporally coherent mattes, there
are still weak temporal inconsistency between alpha mattes. This inconsistency
happened across alpha mattes in temporal domain when two consecutive frames
belong to different video blocks in k-d tree segmentation. To further enhance
temporal coherence, we post-processed the alpha mattes using nonlocal mean
regularization. The nonlocal mean regularization [18] is commonly adopted in
image denoising. We extended this process to video matting to filter out subtle
temporally inconsistent of alpha values. We reuse the 3D nonlocal neighborhood
defined in the previous subsection to enforce spatial and temporal coherence.

The nonlocal regularization of alpha mattes is defined as follow:

αi =

∑
j∈Ω w(i, j)×KL(S(j))× αj∑

j∈Ω w(i, j)×KL(S(j))
, (8)
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where w(i, j) is a weighting term in Equation (1) that measures colors and tex-
ture similarity between pixels, and KL(S(i)) is the KL divergence of color distri-
bution of video block in Equation (6) which evaluates the accuracy of estimated
alpha mattes in each video block. The inclusion of KL divergence allows us to give
more weight to a pixel with a more accurate alpha value. After nonlocal mean
regularization, we obtain our final temporally coherent video mattes. Figure 6
shows the effect of nonlocal mean regularization. The regularization smoothed
the flickering effects of the estimated alpha mattes across video frames while the
fine details of alpha mattes are preserved.

4 Results and Discussion

We show our experimental results in this section. We used video frames from
a movie clip and the standard data set of [14]. In Figure 7 and Figure 8, we
compared the results of our algorithm to those of the closed-form matting [5]
and the nonlocal matting [11]. Since closed-form matting and nonlocal matting
are methods for image matting problem, we also present comparisons to spectral
video matting [16] in Figure 7-(B) and in Figure 8.

We performed our experiments on a machine with Intel Core i7 860 and 6.0 GB
memory. The input video of our experiments has 720× 480 resolution, and each
frame has 38798 unknown pixels on average. In the experiment, it took 1.5 hours
to process a 6-second video with 30 frames per second. Hence, it takes about
30 seconds for processing one frame. Our single-threaded C++ implementation
was not well optimized. Therefore, we anticipate that a fully-optimized imple-
mentation or a gpu-based implementation would reduce the running time. We
measured memory usage for estimating alpha mattes of k-d tree video segments.
In the experiments, on average 417 MB was used for each video segments. This
quantity includes space for sparse matrix data and additional space for solving
linear equation systems. By virtue of k-d tree implementation, we could run the
alpha matting within the memory budget.

Throughout the comparisons, our method shows better quality than closed-
form matting, nonlocal matting, and spectral video matting in the experimental
data set. In a relatively hard example where the boundary of the foreground
object can be distracted by the background color, such as Figure 7-(A) and
Figure 8, our method outperformed others. Because of the ambiguous foreground
and background, the closed-form matting [5] failed to extract clean boundary of
the object. Although the nonlocal matting [11] still results in noisy boundary, our
results show clean and smooth object boundary extraction. In the case where
the video frames have distinct colors for foreground and background, such as
Figure 7-(B), our results are similar to those of [11], but better than the results
from [5] and [16].

Together with the individual matting quality, our method also produced good
results in term of temporal coherence. Methods of [5], [11] and [16] could not
overcome their limitation as they still process each frame separately and indi-
vidually. Even though the trimap is temporally consistent, their estimated alpha
mattes failed to maintain some temporal coherence. In contrast, our results were
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(A)
(a) Input Frame (b) Closed-form Matting (c) Nonlocal Matting (d) Ours
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Fig. 7. Comparisons of our alpha matting results with results from other methods
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(a)

(b)

(c)

(d)

(e)

43rd42nd41st 44th 45th

Fig. 8. Comparisons of alpha mattes. Each column represents results from different
frames. (a) Inputs, (b) Results from Closed-form Matting [5], (c) Results from Nonlocal
Matting [11], (d) Results from Spectral Video Matting [16], (e) Our results.
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temporally coherent. We show the zoom-in areas of Figure 8 for better visualiza-
tion and comparisons on the temporal coherence. In Figure 8, even though the
zoom-in area display the same part for each frame, the alpha mattes’ intensities
of the closed-form matting [5] and the nonlocal matting [11] for the consecutive
frames are not consistent. This causes flickering effects when we composite the
object on a new video background. In comparison, our results in Figure 8-(e)
exhibits not only clear and distinct hair textures in different frames, but also con-
sistent alpha mattes over time. Our consistent alpha mattes, which are regarded
as temporally coherent, produce natural and visually pleasing video without any
flickering effect.

5 Summary and Conclusion

In this paper, we have presented a method for video matting, which enforces
temporal coherence of alpha mattes explicitly using 3D nonlocal neighborhood
and multi-frame nonlocal matting Laplacian. The 3D nonlocal neighborhood is
effective in maintaining both the spatial and the temporal coherence of alpha
mattes. To deal with heavy computations of video matting with multi-frame
nonlocal matting Laplacian, we presented k-d tree implementation. It reduces
computation by dividing the video volume into small video blocks. Each blocks
are processed separately in local step and then combine together in global step to
remove seams on the boundaries of segments. We have also adopted the nonlocal
mean regularization to further enhance temporal coherence of our video mattes.
The nonlocal mean regularization considers the color distribution of local regions,
and a larger weight is given to the mattes of regions with distinct foreground
and background color distribution. Our experimental results demonstrated good
results in term of spatial matting quality and also in terms of temporal coherence
comparing to previous works.
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Appendix A Derivation of Multi-frame Nonlocal
Laplacian

This appendix shows the derivation of Equation (4). According to the derivation
of [5] and [17], we can express alpha values as:

α(N3D(i)) =
[
I(N3D(i)) 1

] [ai
bi

]
,

where N3D(i) is the 3D nonlocal neighbors of i, α(N3D(i)) is a vector that
represents alpha values of pixels in N3D(i), and I(N3D(i)) is the color vector of
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N3D(i) with its column size equal to 3 for RGB channels and its row size equal
to the number of 3D nonlocal neighbors of pixel i.

By multiplying the diagonal nonlocal weighting matrix Q, we obtain the fol-
lowing:

Qα(N3D(i)) = Q
[
I(N3D(i)) 1

] [ai
bi

]
� I0(N3D(i))

[
ai
bi

]
,

where

Q = diag(k3D(i, ·)/di),
di =

∑

j∈N3D(i)

k3D(i, j).

In order to get a closed-form equation, we need to estimate
[
a∗i b∗i

]T
that satisfies

[
a∗i
b∗i

]
= argmin

∣∣∣∣

∣∣∣∣I0(N3D(i))

[
ai
bi

]
−Qα(N3D(i))

∣∣∣∣

∣∣∣∣ .

After some mathematical rearrangement, we get
[
a∗i b∗i

]T
:

[
a∗i
b∗i

]
= (IT0 (N3D(i))I0(N3D(i))+ε

[
Id 0
0 0

]
)−1IT0 (N3D(i))Qα(N3D(i))

� I†0α(N3D(i)).

where ε is a small value that ensures IT0 (N3D(i))I0(N3D(i)) in Equation (9) has
its pseudo-inverse.

Substituting
[
a∗i b∗i

]T
in Equation (9), and multiplying Q−1 in the both side

of Equation (9) gives us

α(N3D(i)) = Q−1I0(N3D(i))I†0α(N3D(i))

� Giα(N3D(i)).

Finally, we can derive the quadratic cost function. Our multi-frame nonlocal
matting Laplacian is denoted as LF, and Ḡi as I−Gi. I is an identity matrix.

αTLFα =
F∑

f=1

N∑

i=1

α(N3D(i))T ḠT
i Ḡiα(N3D(i)).

References

1. Litwinowicz, P.: Processing images and video for an impressionist effect. In: ACM
SIGGRAPH (1997)

2. Chuang, Y.Y., Curless, B., Salesin, D.H., Szeliski, R.: A bayesian approach to
digital matting. In: CVPR (2001)



Video Matting Using Multi-frame Nonlocal Matting Laplacian 553

3. Sun, J., Jia, J., Tang, C.K., Shum, H.Y.: Poisson matting. ACM Transactions on
Graphics 23, 315–321 (2004)

4. Wang, J., Cohen, M.F.: An iterative optimization approach for unified image seg-
mentation and matting. In: ICCV (2005)

5. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image mat-
ting. IEEE Trans. on PAMI 30 (2008) 0162–8828

6. He, K., Sun, J., Tang, X.: Fast matting using large kernel matting laplacian ma-
trices. In: CVPR, pp. 2165–2172 (2010)

7. Wang, J., Cohen, M.F.: Optimized Color Sampling for Robust Matting. In: CVPR
(2007)

8. Wang, J., Agrawala, M., Cohen, M.: Soft scissors: An interactive tool for realtime
high quality matting. ACM Transactions on Graphics 26 (2006)

9. Wang, J., Cohen, M.F.: Image and video matting: a survey. Found. Trends. Com-
put. Graph. Vis. 3 (2007)

10. Zheng, Y., Kambhamettu, C.: Learning based digital matting. In: ICCV (2009)
11. Lee, P., Wu, Y.: Nonlocal matting. In: CVPR (2011)
12. He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A global sampling method for

alpha matting. In: CVPR (2011)
13. Chen, Q., Li, D., Tang, C.K.: Knn matting. In: CVPR (2012)
14. Chuang, Y.Y., Agarwala, A., Curless, B., Salesin, D.H., Szeliski, R.: Video matting

of complex scenes. ACM Transactions on Graphics 21 (2002)
15. Apostoloff, N., Fitzgibbon, A.: Bayesian video matting using learnt image priors.

In: CVPR (2004)
16. Eisemann, M., Wolf, J., Magnor, M.: Spectral video matting. In: Proc. Vision,

Modeling and Visualization, VMV (2009)
17. Lee, S.Y., Yoon, J.C., Lee, I.K.: Temporally coherent video matting. Graph. Mod-

els 72 (2010) 1524–0703
18. Buades, A., Coll, B.: A non-local algorithm for image denoising. In: CVPR (2005)
19. Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., Rott, P.: A perceptually

motivated online benchmark for image matting. In: CVPR (2009)
20. Rhemann, C., Rother, C., Gelautz, M.: Improving color modeling for alpha mat-

ting. In: BMVC (2009)
21. Gastal, E.S.L., Oliveira, M.M.: Shared sampling for real-time alpha matting. In:

Eurographics (2009)
22. Joshi, N., Matusik, W., Avidan, S.: Natural video matting using camera arrays.

ACM Transactions on Graphics 25 (2006)
23. McGuire, M., Matusik, W., Pfister, H., Hughes, J.F., Durand, F.: Defocus video

matting. ACM Transactions on Graphics 24 (2005)
24. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algo-

rithm for approximate nearest neighbor searching. Journal of the ACM 45, 891–923
(1998)


	Video Matting Using Multi-frame Nonlocal Matting Laplacian

	Introduction
	Related Work
	Algorithm
	3D Nonlocal Neighbor
	Multi-frame Nonlocal Matting Laplacian
	K-d Tree Segmentation
	Matte Regularization

	Results and Discussion
	Summary and Conclusion
	References





